

Design Dimensions of

Aspect-Oriented Systems

Dissertation

vorgelegt dem Fachbereich Wirtschaftswissenschaften,
der Universität Duisburg-Essen

(Campus Essen)

von Stefan Hanenberg, geboren in Oberhausen

zur Erlangung des Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Gutachter:
Prof. Dr. Rainer Unland

Prof. Dr. Klaus Pohl

Oktober, 2005

Tag der mündlichen Prüfung: 27. Januar 2006

für Monika Hanenberg (1945-2002)

 Ombra mai fu
 Di Vegetabile,
 Care ed amabile
 Soave piu.

ABSTRACT

Aspect-oriented software development is a promising approach that addresses the
problem of modularizing crosscutting concerns – concerns whose implementation
cannot be modularized due to the set of abstractions provided by the underlying
programming language as well as due to the set of decomposition criteria applied to the
underlying problem. Thereto, aspect-oriented systems provide additional abstractions in
order to increase the modularity of software systems and consequently to increase the
system’s readability, understandability, maintainability and reusability.

Nowadays, there are already a number of so-called aspect-oriented systems available
that supply a set of new constructs to address the given problem. However, it is not
clear what the criteria for a system are in order to be called aspect-oriented and what
commonalities and differences exist among different aspect-oriented systems. This also
implies that for a given crosscutting concern it cannot be determined on an abstract
level what system is able to modularize such a concern in an appropriate way.

This thesis describes the characteristics of aspect-oriented systems by so-called
design dimensions – orthogonal, conceptual views on the core ingredients of aspect-
oriented systems that determine the underlying implementation. It is shown that by
means of such abstract design dimensions it is possible to estimate the appropriateness
of a system with respect to modularize a given crosscutting concern.

ACKNOWLEDGEMENT

This thesis would have never been written without the continuous support of many
colleagues and friends.

I am grateful to Professor Dr. Rainer Unland for his supervision, for the
environment he provided, and especially for his support in those situations, where I was
no longer sure about how to go on with the thesis.

Dominik Stein spent with me countless hours, days and month of discussion. I owe
him much for the enumerable and valuable comments he gave that helped me
improving (and finishing) the thesis. It is a great joy to work with him.

I would like to thank Robert Hirschfeld for many, many discussions on aspect-
orientation and for his patience when I tried to understand the implementation details
of AspectS. The work with him influenced many of my views on software construction.

The close collaboration with Arno Schmidmeier helped me a lot when trying to
figure out what the core ingredients of aspect-orientation are. He never hesitated to
share his detailed knowledge of aspect-orientation and to share his experience from
industrial projects.

Jeff Gray’s comments significantly improved my thesis. I feel honored that he spent
so much time reading my thesis, correcting faults, and giving advice.

Furthermore, I would like to thank many people for their time and support, for
sharing their ideas, for shepherding, and for giving advice: Mohammed Al-Mansari,
Frank Büscher, Jim Coplien, Pascal Costanza, Kris De Volder, Rémi Douence, Oliver
Horn, Günter Kniesel, James Noble, Christian Oberschulte, Andrea Schauerhuber,
Maximilian Störzer, Markus Völter, Uwe Zdun, and Renat Zubairov.

Finally, I would like to thank Melanie and Ben for their love and patience. Without

you, this thesis could have never been written.

CONTENT

 ABSTRACT 5

 ACKNOWLEDGEMENT 7

1 INTRODUCTION 1
1.1 Decomposition, Composition, and Abstraction in Software

Construction 1

1.2 Aspect-Oriented Software Development 3

1.2.1 Separation of Concerns 3
1.2.2 Crosscutting Concerns and Crosscutting Code 4
1.2.3 Aspect-Oriented Programming 9

1.3 Problem Statement 10

1.4 Goal 10

1.5 Structure 11

2 EXAMPLES OF ASPECT-ORIENTED SYSTEMS 15
2.1 Introduction 15

2.2 AspectJ 15

2.2.1 Introduction 16
2.2.2 Pointcut 17
2.2.3 Advice 19
2.2.4 Aspect 20
2.2.5 Weaving Aspects 21

2.3 Hyper/J 21

2.3.1 Concern Mapping 22
2.3.2 Hypermodules 23
2.3.3 Hypermodule Composition 27

2.4 AspectS 27

2.4.1 The Framework AspectS 28
2.4.2 Advice Qualifiers 32
2.4.3 Method Representation in Smalltalk 32
2.4.4 Method Wrapping in AspectS 34

2.5 Chapter Summary 35

 Content

3 SALLY – SPECIFYING GENERIC ASPECTS 37
3.1 Introduction 37

3.2 Introductions in Aspect-Oriented Systems 38

3.2.1 Introductions in AspectJ 39
3.2.2 Introductions in Hyper/J 40

3.3 Where Current Implementations Fail 41

3.3.1 Singleton implementations 41
3.3.2 Visitor implementations 43
3.3.3 Decorator implementations 45
3.3.4 Summary so far 46

3.4 Sally 47

3.4.1 Decomposition of the Underlying Application 48
3.4.2 Pointcut Specification 50
3.4.3 Join Point Wrappers 58
3.4.4 Introductions 61
3.4.5 Weaving 63

3.5 Applying Parametric Introductions 65

3.5.1 Concrete Parametric Introductions 66
3.5.2 Abstract Parametric Introductions 67
3.5.3 Parametric Multi-Introductions 68
3.5.4 Unnamed Introductions 70

3.6 Related Work 71

3.7 Chapter Summary and Conclusion 72

4 MORPHING ASPECTS – CONTINUOUS WEAVING
FOR ASPECT-ORIENTED SYSTEMS 75

4.1 Introduction 75

4.2 Examples 76

4.2.1 Tracing 77
4.2.2 Subject-Observer Protocol 79

4.3 Morphing Aspects and Continous Weaving 81

4.3.1 Join Point Dependencies 82
4.3.2 Specifying the Morphing Process 85

4.4 Implementation Example 87

4.5 Experimental Results 90

4.6 Related Work 92

4.7 Chapter Summary and Conclusion 93

Content

5 DESIGN DIMENSIONS OF ASPECT-ORIENTED
SYSTEMS 95

5.1 Introduction 95

5.1.1 Aspect, Join Point, and Weaving 96
5.1.2 Quantification and Obliviousness 98
5.1.3 This Chapter’s Outline 100

5.2 A Model for Aspect-Oriented Systems 100

5.3 Join Points 102

5.3.1 Static and Dynamic Join Points 103
5.3.2 Structural and Behavioral Join Points 106
5.3.3 Orthogonality of Design Dimensions 108
5.3.4 Concrete Join Point Models 109
5.3.5 Incomplete and Complete Coverage 111

5.4 Join Point Selection 113

5.4.1 Lexical, Property-based, and Semantic Crosscutting 116
5.4.2 Distinction of Join Point Encoding and Join Point Addressing 118
5.4.3 Join Point Properties 119
5.4.4 Join Point Addressing 138
5.4.5 Relationship between Join Point Properties and Join Point Addressing 152

5.5 Join Point Adaptation 154

5.5.1 Structural and Behavioral Join Point Adaptation 155
5.5.2 Constructive and Destructive Join Points Adaptation 158
5.5.3 Non-Variable and Parametric Adaptation 161
5.5.4 Variable and Fix Join Point Abstraction 163
5.5.5 Orthogonality of Design Dimensions 165

5.6 Weaving 166

5.6.1 Static and Dynamic Weaving 167
5.6.2 Code Instrumentation and Interpretation 168
5.6.3 Dynamic Weaving: User-Driven and System-Driven Weaving 169
5.6.4 Orthogonality of Design Dimensions 170

5.7 Dependencies between Join Point Model, Selection,
and Weaving 171

5.8 A Critial Discussion of the Term Design Dimension 173

5.9 Chapter Summary and Conclusion 173

6 IMPLEMENTATIONS OF
DESIGN DIMENSIONS 177

6.1 Introduction 177

6.2 Variabilities in Implementations 177

 Content

6.2.1 Join Point Model 178
6.2.2 Join Point Properties and Join Point Addressing 178
6.2.3 Join Point Adaptation 180
6.2.4 Weaving 180

6.3 AspectJ 181

6.3.1 Abstract Join Point Model 182
6.3.2 Join Point Properties and Property Addressing 182
6.3.3 Join Point Adaptation 188
6.3.4 Weaving 189

6.4 Hyper/J 189

6.4.1 Abstract Join Point Model 190
6.4.2 Join Point Properties and Join Point Addressing 190
6.4.3 Join Point Adaptation 194
6.4.4 Weaving 196

6.5 AspectS 196

6.5.1 Abstract Join Point Model 196
6.5.2 Join Point Properties and Join Point Addressing 197
6.5.3 Join Point Adaptation 200
6.5.4 Weaving 201

6.6 Sally 201

6.6.1 Abstract Join Point Model 201
6.6.2 Join Point Properties and Addressing 202
6.6.3 Join Point Adaptation 203
6.6.4 Weaving 204

6.7 Morphing Aspects 204

6.8 Roles in Terms of Design Dimensions 205

6.8.1 Introduction to Roles (the Kristensen Perspective) 206
6.8.2 Abstract Join Point Model 208
6.8.3 Join Point Properties and Join Point Addressing 208
6.8.4 Join Point Adaptation 210
6.8.5 Weaving 211
6.8.6 Discussion and Conclusion 211

6.9 Chapter Summary and Conclusion 212

7 DESIGN DIMENSIONS-BASED
COMPARISON AND SELECTION 213

7.1 Introduction 213

7.1 Appropriateness of Aspect-Oriented Systems 213

7.2 Comparing Aspect-Oriented Systems 215

7.2.1 Comparing Join Point Models 215
7.2.2 Comparing Join Point Properties and Addressing 217

Content

7.2.3 Comparing Join Point Adaptations 218
7.2.4 Comparing Weavers 219

7.3 Selecting Systems for Observer Implementations 219

7.3.1 General Characteristics 220
7.3.2 Interface-based, non-polymorphic subject observation 221
7.3.3 State-change-based, non-polymorphic subject observation 222
7.3.4 Interface-based, polymorphic subject observation 224
7.3.5 Interface-based, adapted, polymorphic subject observation 225

7.4 Chapter Summary and Conclusion 227

8 RELATED WORK 229
8.1 Introduction 229

8.2 Conceptual Descriptions of Object-Oriented Systems 229

8.3 Enumeration-Based Crosscutting, Lexical Crosscutting,
Quantification, and Obliviousness 230

8.4 Join Point Model by Masuhara et al. 231

8.5 Modeling Framework for Aspect-oriented Systems 233

8.6 Two-dimensional Taxonomy of Aspect-Oriented Systems 233

8.7 Join Point Designation Diagrams 234

8.8 Viewpoints 234

8.9 Taxonomy of Software Change 235

8.10 Design Patterns 236

8.11 Aspect-Oriented Design Patterns 237

8.12 Design Patterns for Aspect-Oriented Systems 238

9 CONCLUSION 241
9.1 Summary 241

9.2 Future Works 242

9.3 Discussion and Conclusion 243

BIBLIOGRAPHY 245

1

INTRODUCTION

1.1 Decomposition, Composition, and
Abstraction in Software Construction

Nowadays, software systems become larger and larger and the functionality provided by
single software systems becomes more generous. Consequently, approaches are needed
in order to make software systems understandable, manageable, and maintainable.

The term decomposition (cf. e.g. [Parn72], [Cour85]) describes the result (often as
well as the process) of dividing large problems into smaller parts for reducing the
complexity. The benefit of reducing the system's complexity is caused by the ability of
being manageable by humans. The purpose is to reduce the psychological complexity
[BCK98, p. 39] inherent in dealing with large software systems in order to make the
system intellectually manageable (cf. [SmSm77], p. 105). The result is that it is easier to
handle a subsystem instead of the whole system because one has not to think about all
aspects of the system when the system is created. This argument is mainly directed
towards the creation of new systems. Furthermore, subsystems become more
comprehensible because one only partially needs to understand the solution instead of
the whole one. Hence, this argument is more directed to the maintenance of existing
systems. The term composition simply states the way of how the decomposed
subsystems are being combined.

So far, the necessity for dividing a large problem into a smaller problem is plausible.
However, the main question is how to decompose a system into a number of
subsystems: It is necessary to determine what mental rules or guidelines for
decomposing a system are to be applied to a given problem.

How a complex system is decomposed into smaller subsystems depends on the
underlying decomposition criteria as described by D. Parnas [Parn72]. He argues that
the underlying criterion of the modularization is directly responsible for the quality of
the resulting software. This quality implies on the one hand the suitability of dividing
the problem into sub-problems and the corresponding reduction of the complexity. On
the other hand, it refers to each module's stability with respect to future changes:
Additional requirements coming later to the software might lead to changes in
numerous modules. However, the question is what criteria should be applied to
decompose a system and what collection of criteria might be used in combination.

The underlying philosophy of separating a large problem into simpler parts in the
context of software construction is usually referred to as a paradigm [Floy79]. This

2 1 - Introduction

(philosophical) term was first popularized in [Kuhn70]. However, the term is often used
in different ways in the area of software engineering. Here, this thesis agrees with Jim
Coplien who defines a (software) paradigm as something that "encodes rules, tools, and
conventions to partition the world into pieces that can be understood individually" [Copl98, p. 107]. A
paradigm provides a set of criteria that (when applied to a system) permit to decompose
complex systems into a set of sub-systems where each one has a reduced complexity.

A complex system that is decomposed according to an underlying paradigm is usually
organized as a hierarchy, whereby the system "is composed of interrelated subsystems that have
in their turn their own systems, and so on […]" [Cour85, p. 596]. Consequently, the elements
of each subsystem depend on the criteria applied to the enclosing system. Hence, when
the subsystem is decomposed any further only the parts of the problem space left by the
enclosing decomposition criteria influence the resulting sub-subsystems. So, an applied
decomposition criterion indirectly determines parts of the properties of each resulting
subsystem: The aspects that are already left out by a system’s decomposition criterion
are no longer available in the module’s subsystems. According to [TOHS99], the term
dominant decomposition criterion is being used to describe this implicit relationship
between a system and its subsystems: A decomposition criterion is dominant since it
implicitly determines the elements that do no longer need to be considered in the
subsystems. Consequently, the subsystems decomposition criteria are dominated by the
super systems’ criteria.

Although paradigms offer collections of criteria for decomposing systems, it is still
up to the developer to select an appropriate one: The process of choosing the right
criteria from the paradigm for a given problem and applying it to the problem is still a
creative process. The main problem in this context is to determine good
decompositions: Decomposition criteria are required that are reasonable in the sense
that the resulting decomposition is understandable, manageable, and maintainable.

Paradigms like object-orientation (cf. e.g. [Wegn87] for an explanation of the core
ingredients of object-orientation) provide a number of abstractions like object, field,
method, class, subclassing, subtyping, aggregation or delegation in order to handle a
system’s complexity. On programming language level, corresponding constructs are
provided in order to map the conceptual model created from the object-oriented
paradigm to corresponding pieces of code.

However, although a given paradigm provides a set of abstractions the problem of
the dominant decomposition criterion still exists. Once a certain element is identified as
a class, the way of how its ingredients are to be decomposed is restricted. Consequently,
if a decomposition criterion is applied quite early and in a rather impractical way, the
underlying paradigm cannot help to organize the software in a better way.

1 - Introduction 3

1.2 Aspect-Oriented Software Development

1.2.1 Separation of Concerns

The claim for the need of an appropriate representation of a complex software system is
also described by the term separation of concerns by E. Dijkstra (cf. [Dijk76], p. 210)1:

To my taste the main characteristic of intelligent thinking is that one is willing and able
to study in depth an aspect of one's subject matter in isolation, for the sake of its own
consistency, all the time knowing that one is occupying oneself with only one of the aspects.
The other aspects have to wait their turn, because our heads are so small that we cannot
deal with them simultaneously without getting confused. This is what I mean by focusing
one's attention upon a certain aspect; it does not mean completely ignoring the other ones,
but temporarily forgetting them to the extend that they are irrelevant for the current topic.
Such a separation, even if not perfectly possible, is yet the only available technique for
effective ordering of one's thoughts that I know of.
I usually refer to it as "a separation of concerns" […].

Separation of concerns describes the process of dividing large problems into smaller
parts for reducing the complexity. In that way, the phrase is comparable to the
previously mentioned term decomposition.

However, Dijkstra also emphasizes a new point of view on decomposition: Instead
of searching for certain (and possibly artificial) decomposition criteria, the phrase
separation of concerns is considered to be somehow natural since it is regarded as a
characteristic of intelligent thinking. Consequently, a problem is decomposed is rather a
natural way: A system is decomposed into a number of elements whereby the
decomposition corresponds to the understanding of the system from the developer’s
point of view. The decomposition according to separation of concerns is not the result
of an artificial construction and selection of decomposition criteria. Instead, the
decomposition comes from a natural understanding of the problem.

From the developer’s point of view, the phrase separation of concerns urges to think
about the concerns that influence the software to be created and to keep them in their
own modules. Typical examples (that are often mentioned in the aspect-oriented
literature) are business logic (cf. e.g. [CDHJ]), persistency (cf. e.g. [RaCh03]), security
(cf. e.g. [HZU05]) or transaction handling (cf. e.g. [ClBa05]). The idea still relies on a
dominant decomposition criterion that typically corresponds to the underlying business
objects and business logic. The other (non-dominating) decomposition criteria come
from non-functional requirements.

However, it turns out that this way of decomposing a problem into separate modules
does not satisfy the idea that all modules should reflect the concerns they represent: It
turns out to be even impossible to modularize code coming from some of the non-
dominating decomposition criteria. Such concerns are called crosscutting concerns
and are discussed in the following section.

1 In fact, the phrase separation of concerns is being used in countless papers in the aspect-oriented
literature as the key motivation for the aspect-oriented approach (cf. e.g. [FECA04]).

4 1 - Introduction

1.2.2 Crosscutting Concerns and Crosscutting Code

The term crosscutting was first introduced in [KLM+97]. It describes the nature of
elements resulting from the underlying decomposition [KLM+97, p. 227]:

In general, whenever two properties being programmed must compose differently and yet are to be
coordinated, we say that they crosscut each other.

Although not mentioned explicitly in [KLM+97] the term crosscutting concern is
being used to describe the same problematic (cf. for example [ClBa05] among many
others). A crosscutting concern is a concern (or its implementation) that cannot be well
modularized. The lack of modularization is not necessarily inherent to this concern but
comes from decomposition criteria applied to those modules the concern is related to.
Consequently, crosscutting concerns result in code that is distributed over a number of
modules and typically induces highly redundant code. This thesis uses the term
crosscutting code to describe the code implementing the crosscutting concern,
cf. e.g. [HaUn02a].

A typical problem that results from crosscutting code is the problem of the co-
evolution of design and code (see [Wuyt01]): If for example in an object-oriented
application a class (that is created because of an underlying functional decomposition
criterion) evolves, it is potentially necessary to consider also all crosscutting concerns
that touch this class. If inheritance is the underlying mechanism for implementing this
evolution, this problem is also known as inheritance anomaly (see [MaYo93] for a
detailed discussion).

In order to give an intuitive understanding of the terms crosscutting concern and
crosscutting code, the following subsections illustrate two examples of crosscutting
concerns and their corresponding code representations resulting from typical design
pattern implementations. According to [HaKi02], implementations of design patterns
[GHJV95] are typical examples of crosscutting code. The reason for this is quite simple:
Design patterns are elements of reusable design. In case the design elements occur on
the code level in the same or in a similar way such elements cause code redundancies. In
addition to the illustration of crosscutting code, the problems caused by such
crosscutting characteristics are being discussed in the following.

1.2.2.1 Example 1: Observer Implementations

Implementations of the observer design pattern [GHJV95] are commonly accepted to
be examples of crosscutting concerns and they are probably the most often mentioned
examples in the aspect-oriented literature (see for example [GyBr03, HaUn02a, SHU02,
VeHe03] among many others). The intention of the observer pattern is to separate the
object that changes its state (called subject) from the objects that depend on this
object’s state (called observers) and that need to be updated whenever a state change
occurs. The observer pattern is often applied to the design and implementation of
graphical user interfaces2.

In [GHJV95] a typical implementation of the observer pattern is proposed that
occurs often in almost the same form. The subject maintains a collection of observers
that need to be informed whenever the subject changes. Furthermore, the subject has a

2 See also the publish-subscriber pattern as described in [BMRS96].

1 - Introduction 5

method attachObserver and detachObserver (each receiving an observer as
a parameter) for adding and removing observers to and from the subject’s observer list.
In addition, subjects have a method that informs its observers about state changes
(informObservers). Every time a subject’ state changes, the corresponding
method informObservers is being invoked that in turn triggers the notification of
each observer by calling the corresponding method update.

public class Point {

 int x,y;
 ArrayList observers = new ArrayList();

 public void setX(int x) {
 this.x = x;
 this.informObservers();
 }

 public void setY(int y) {
 this.y = y;
 this.informObservers();
 }

 public void setXY(int x, int y) {
 this.x = x;
 this.y = y;
 this.informObservers();
 }

 public void attachObservers(Observer observer) {
 observers.add(observer);
 }

 public void detachObservers(Observer observer) {
 observers.remove(observer);
 }

 public void informObservers() {
 for (Iterator it=observers.iterator();
 it.hasNext();)
 ((Observer) it.next()).update();
 }
}

public class GuiElement …… {

 Color color;
 ArrayList observers = new ArrayList();

 public void setColor(Color color) {
 this.color = color;
 this.informObservers();
 }

 public void attachObservers(Observer observer) {
 observers.add(observer);
 }

 public void detachObservers(Observer observer) {
 observers.remove(observer);
 }

 public void informObservers() {
 for (Iterator it=observers.iterator();
 it.hasNext();)
 ((Observer) it.next()).update();
 }
}

Figure 1-1. Observer implementation from the crosscutting’s point
of view.

Figure 1-1 illustrates the corresponding implementations of subjects. Both classes
Point as well as GuiElement have the corresponding fields and methods, which are
very close to the implementation proposed in [GHJV95]. Obviously, the observer
implementation contains some crosscutting characteristics that are due to different
circumstances.

First, the field for managing observers and the methods for attaching, detaching, and
notifying observers occur in different classes in an identical way. The reason for this
comes mainly from the fact that Java provides only single (implementation) inheritance.
In case the inheritance relationship is needed for other purposes (like a superclass
AbstractGuiElement for GuiElement that encapsulates domain-specific
knowledge for graphical user elements), it is necessary to specify the field and the
corresponding methods in a redundant way. This means that the observer-
implementation crosscuts the business logic of the classes Point and GuiElement.
Both classes are created due to the underlying functional decomposition criterion and
the observer implementation needs to be added to these classes.

6 1 - Introduction

Second, the informObservers messages that are sent after each field
assignment also represent crosscutting code. Each method call obviously occurs in the
same way more than once within both classes. In comparison to the previously
discussed fields and methods, such crosscutting calls have a finer level of granularity.
They do not depend only on the decomposition criterion that modularizes a certain
element from the problem space to a class. They also depend on the behavior being
performed by state changing methods, i.e. on the decomposition criterion that is
responsible for separating the class’s behavior into methods.

The problem with this code is that in case it is necessary to change the observer
implementation (for example, for storing observers in a different data structure),
changes need to be performed in all classes implementing the subjects. For example, if
developers decide to use a WeakHashMap3 for storing observers, a number of class
definitions need to be modified in an invasive way because there is no single module
encapsulating the corresponding field declaration.

In case a subject is extended via inheritance and new fields are being introduced, it is
necessary to implement corresponding method calls whenever the new state changes.
Otherwise, the underlying subject-observer protocol would be inconsistent. In case
methods that change the subject’s state are overridden, it is also necessary to pay
attention to the corresponding observer notifications.

The same problem occurs if it seems desirable to change the notification in a way
that observers should receive a reference to the subject that has been changed and also a
string describing the name of the field to that a new stated has been assigned. In such a
situation, all state-changing methods as well as all informObservers methods need
to be changed.

1.2.2.2 Example 2: Visitor Implementations

Frequently recurring implementations of the visitor pattern [GHJV95] are also known
examples of crosscutting concerns (cf. e.g. [HaKi02, HaUn03a]). The intention of the
visitor pattern is to encapsulate polymorphic behavior outside the class hierarchy and is
used to implement operations on complex structures. This encapsulation implies two
different elements: First, the functionality that needs to be provided for each element of
the structure, and second, a traversal strategy that determines how the elements are to
be visited.

Figure 1-2 illustrates an extraction of a typical implementation according to the
exemplary one proposed in [GHJV95] for a given class hierarchy consisting of the
classes A, B, C, D, and E4. Each class in the hierarchy implements the interface
VisitedElement that declares the methods accept and getChildren. All
classes in the hierarchy need to implement the method accept, which represents a
double dispatch method: It invokes the method visit on the visitor and passes
this in order to invoke the right method based on the static type of this.
Consequently, this method cannot be inherited and a redundant definition is required.

3 The use of the class WeakHashMap is motivated by the underlying garbage collection in Java. Objects
stored in a WeakHashMap are not prevented from being garbage collected (see [Sun04c]). Observer
implementations like proposed in [HaKi02] make use of WeakHashMap.

4 An alternative Java implementation of the visitor pattern can be found for example in [PaJa98].

1 - Introduction 7

The method getChildren returns a collection of child objects, i.e. the method’s
intention is to provide means to navigate through the hierarchy. Consequently, all
classes, which have additional children, need to provide an appropriate implementation.

The interface Visitor defines a method visit for each class to be visited in the
hierarchy with a corresponding parameter. This method is being invoked by the double
dispatch method. Each concrete visitor implements its version of visit. Typically, a
concrete visitor performs some operations on the object being delivered, requests the
object’s children, and invokes the accept method on each child. Figure 1-2 illustrates
an exemplary piece of code for the method visit(A a) in ConcreteVisitor.

A
Object accept(Visitor v) {
 return v.visit(this);
}
...

B
Object accept(Visitor v) {
 return v.visit(this);
}
...

C
Object accept(Visitor v) {
 return v.visit(this);
}
...

D
Object accept(Visitor v) {
 return v.visit(this);
}
...

0..nE
Object accept(Visitor v) {
 return v.visit(this);
}
...

<<interface>>
Visitor

Object visit(A a);
Object visit(B a);
Object visit(C a);
Object visit(D a);
Object visit(E a);

ConcreteVisitor

Object visit(A a) {
 // do something with A
 for(i=0; I <= a.getChildren(); i++) {
 a.getChildren[i].accept(this);
 }
 return ..something...
}
Object visit(B a) {…}
Object visit(C a) {…}
Object visit(D a) {…}
Object visit(E a) {…}

Object accept(Visitor v);
VisitedElement[] getChildren();

<<interface>>
VisitedElement

Figure 1-2. Crosscutting visitor implementation.

The visitor implementation is also a good example for crosscutting code although the
underlying rules that describe the crosscutting are slightly more complex than in the
observer example. The class hierarchy represents a given decomposition the visitor
refers to. Consequently, the class hierarchy is the result of the applications of a
dominating decomposition criterion.

8 1 - Introduction

First, in case the class hierarchy is a pure representation of the domain model all
relationships between such classes describe classes that should be traversable via the
visitor. Consequently, such relationships implicitly define what classes should implement
the interface VisitedElement: Just by analyzing the type relationships in the class
hierarchy starting from type A it can be determined that classes B, C, D, and E need to
implement VisitedElement.

Second, all concrete classes implementing directly or indirectly VisitedElement
need to implement the method accept in order fulfill the needed double dispatching
characteristic. Syntactically, the method appears in all classes in the same way. However,
the static type of this differs in all classes (which is the reason why the method cannot
be inherited).

Third, the signatures of the interface Visitor are implicitly determined by the
subtypes of VisitedElement (which are in turn implicitly defined via the
relationships within the class hierarchy). In the example, it can be determined from the
inheritance hierarchy that the interface Visitor requires five visit methods with
the parameter types A to E (represented by the arrows from the interface Visitor in
Figure 1-2).

Forth, in case the ordering of children is not important for the visitor5 the different
getChildren methods can be directly computed from the domain model. In such a
case the method getChildren simply returns all available children without
guaranteeing any ordering. For example, in Figure 1-2 (assuming that ordering is not
important) the method getChildren in class A returns an instance of B and an
instance of C (in arbitrary order) because those are the only available children.

The crosscutting also results in a number of problems when the visitor
implementations need to be changed. In case a new return type is required for the visit
method, all accept and visit methods need to be changed. This is caused by the
fact that the return type is defined in the double dispatch methods as well as in the
visit methods. While the visit methods are modularized in the visitor interface
(and the corresponding visitor implementations), the double dispatch methods are
distributed over the whole class hierarchy.

In case new classes are added to the class hierarchy, it is necessary to add
corresponding double dispatch methods to them and to add corresponding visit
methods to the visitor.

1.2.2.3 Summary

In general, the terms crosscutting concerns and the resulting crosscutting code refer to
the fact that a given concern depends on a number of given modules that result from a
given decomposition. In the observer example as well as in the visitor example the
dominating decomposition criteria lead to a number of classes the observer or the
visitor pattern is applied to (in fact, this variety of classes is a prerequisite for the

5 In general, this is not the case. For example, in parse-trees which are typical applications of the visitor
pattern the ordering is obviously important. However, [Lieb96] illustrates a number of examples where
the ordering of children is not important.

1 - Introduction 9

application of both patterns). However, there are 1) different kinds of crosscutting and
2) the term crosscutting code closely depends on the underlying techniques being used.

First, crosscutting code like the redundant methods for attaching and detaching
observers as well as the redundant double-dispatch methods in different classes seem to
be quite simple kinds of crosscutting because it simply requires to copy existing code to
some classes. On the other hand, as discussed in the visitor example, the underlying
dependencies of the crosscutting might be quite complex.

Second, both examples are based on the programming language Java, which has a
number of specific characteristics like single implementation inheritance and single
dispatching (see for example [DLS+01] for a detailed discussion on method
dispatching in Java and corresponding alternatives). In case Java would provide multiple
inheritance and multi dispatching, the crosscutting nature would be different: Neither in
the observer example nor in the visitor examples there would be the need for redundant
(and syntactically equal) method definitions.

Consequently, the terms crosscutting concerns and crosscutting code cannot be
considered objective terms in the sense that a certain concern or its code are inherent
crosscutting, i.e. independent of the underlying techniques being used. In fact crosscutting
concerns exist only for a given dominant decomposition and crosscutting code depends
on the underlying language features. Nevertheless, both terms turn out to be useful in
describing the previously illustrates code anomalies. Hence, this thesis still uses the
phrases crosscutting and inherent crosscutting and implicitly means crosscutting that results
from a given decomposition.

1.2.3 Aspect-Oriented Programming

The term aspect-oriented programming6 addresses the problem of crosscutting code.
Originally, the term was introduced in [KLM+97] and was defined as a property that must
be implemented but which cannot be cleanly encapsulated in a generalized procedure.

Nowadays, the term aspect-oriented programming is understood as a set of
techniques and mechanisms that permit to address the problem of crosscutting
concerns (see for example [FECA04]).

Similar to object-oriented programming, there are languages or systems called
aspect-oriented programming languages or systems7 that provide a number of
abstractions that permit to address the problems resulting from crosscutting concerns.
The intention of aspect-oriented systems is to provide language constructs that improve
the modularity of the underlying software. In that way aspect-oriented systems try to
decrease (or in the best case even to solve) the problem of crosscutting code.

6 Nowadays the term aspect-oriented software development [FECA04] is more frequently used which
applies the ideas underlying aspect-oriented programming to all parts of the software development
process.

7 The use of the term system is mainly motivated by approaches like CLOS [Stee90], which are object
systems for LISP but which do not extent the underlying programming language via new syntacitical
and semantical language constructs. Instead, the new constructs are written in the underlying language
themselves. Hence, such new constructs do not really represent new language features.

10 1 - Introduction

1.3 Problem Statement
Although the term aspect-oriented software development is being frequently used and
although there are already conferences (see for example [Kic02, Aks03, Lieb04]) on that
topic as well as additional literature (see for example [Labb03, FECA04, ClBa05]), there
is until now no satisfying description of the key characteristics of aspect-oriented
systems available. For example, it turns out that often mentioned characteristics like
quantification and obliviousness [FiFr00, Film01] are not appropriate to describe
aspect-oriented systems (this problem will be discussed in Chapter 5 in more detail).

Although there are a number of systems that are commonly called aspect-oriented
(some of these systems are introduced in the following chapters), it turns out that they
differ widely. It turns out that different systems provide quite different constructs for
modularizing crosscutting concerns. Consequently, some systems are more appropriate
to modularize a given crosscutting concern than other systems.

From a developer’s perspective such a situation is not satisfying because it is not
possible to determine on an abstract level what characteristics a system needs to provide
in order to solve a given problem. A similar problematic situation arises if developers
want to build their own aspect-oriented system. They need to study features of existing
systems that address the modularization of crosscutting concerns. Since there are no
system-independent characteristics of aspect-oriented systems available, developers need
to study a large number of systems in detail and analyze on their own the impact of a
certain feature in order to modularize a crosscutting concern.

The consequences of this lack of characteristics are quite annoying. It is not possible
to determine from a system’s description whether it is valid to call it aspect-oriented.
Furthermore, it is not possible to argue about the benefits or drawbacks of aspect-
orientation in general. In order to argue about the benefits and drawbacks of a specific
system it is necessary to find examples that illustrate that the system is or is not able to
modularize a crosscutting concern. If developers build up a new system and are
interested in its aspect-orientedness they also needs to find such examples to compare one
system with existing ones.

Another related problem similar to the ones above is that the term aspect-orientation
is understood in a language independent way. This corresponds to the term object-
orientation (cf. e.g. [Wegn87]), which also describes a way of developing software and
which is not directly related to certain semantics of programming language constructs
(i.e. languages like Java, C++ or Smalltalk are called object-oriented languages although
their semantics differ). Since aspect-oriented systems exist for different languages that
substantially differ with respect to their semantics, it is desirable to have a set of key
characteristics that do not depend on a certain language.

Consequently, when providing a set of characteristics for aspect-oriented systems it is
desirable to describe them in a language-neutral way.

1.4 Goal
This thesis provides a number of design dimensions that describe key characteristics
of aspect-oriented systems. Each dimension describes a certain characteristic and the

1 - Introduction 11

different divisions within the dimension describe how systems may vary along such
characteristic.

The design dimensions are to be introduced in a non-formal way. The underlying
intention is to rely not on language specific properties like for example whether an
aspect-oriented system is build upon an object-oriented or a procedural programming
language. Furthermore, language-specific details like whether an underlying object-
oriented language provides multi-dispatching should not be considered. Consequently,
the design dimensions do not directly rely on language-specific semantics but are
extracted in a language neutral way.

Another goal of the design dimensions is to describe the different (possibly
orthogonal) factors that influence the design of certain constructs and mechanisms in
aspect-oriented systems. Consequently, it is the intention to extract essential
characteristics of aspect-oriented systems – characteristics that have a large impact on
how the systems can be applied and what kind of crosscutting concerns can be handled.
Hence, the design dimensions must permit to reflect on the different conceptual models
underlying different aspect-oriented systems.

1.5 Structure
This thesis provides a set of abstractions – called design dimensions – underlying the
design of aspect-oriented systems.

In order to argue for the need of such abstractions and to illustrate the variety of
constructs in aspect-oriented systems, the first chapters (Chapter 2, 3 and 4) introduce
different aspect-oriented systems – AspectJ, Hyper/J, AspectS, Sally, and Morphing Aspects.
The introduction of these systems serves two purposes. On the one hand, it illustrates
the variety of different conceptual constructs an aspect-oriented system may possibly
provide – and argues in that way for the need of abstractions that represent different
conceptual approaches in aspect-orientation. On the other hand, the systems are used in
the main chapter (Chapter 5 - Design Dimensions of Aspect-Oriented Systems) to illustrate the
different kinds of dimensions – to explain each design dimension as well as to show that
such dimensions are not just theoretical constructs, but can be found in different
systems. Each system is being introduced with its own terminology, i.e. aspect-oriented
terms like for example join point or weaving are directly taken from the underlying systems
and documentations without extracting the differences and commonalities between such
terms. Consequently, from these sections a number of these system-specific terms are
later on (in Chapter 5) discussed in more detail and are compared to each other. While
the aspect-oriented systems introduced in Chapter 2 are implemented by different
research teams, the systems introduced in 3 and 4 have been built as part of this thesis.

Afterwards, the design dimensions are introduced. Thereto, the problem addressed
by this thesis is explained in more detail based on the system-specific terminologies as
introduced in the previous chapters. Furthermore, the chapter already discusses in its
beginning some related work that tries to describe the common characteristics of
aspect-oriented systems. It shows that such approaches are not sufficient in order to
give a conceptual understanding of aspect-oriented systems, to distinguish aspect-
oriented from non-aspect-oriented approaches and to distinguish between different
conceptual approaches among different systems. The design dimensions are extracted

12 1 - Introduction

by a corresponding observation of different aspect-oriented systems in literature or they
are motivated by the corresponding different kinds of aspect-oriented systems as
introduced in the previous chapters.

Then, the applicability of the design dimensions is shown by mapping existing
systems to them. Thereto, the previously introduced systems are described in terms of
the design dimensions.

Next, the design dimensions are used in order compare systems and select systems
for a given concern. Thereto, certain concerns (variations of the observer design
pattern) from the aspect-oriented literature are used as examples and different
implementation strategies are proposed. Then, such implementation strategies are
described in terms of the design dimensions and the resulting descriptions are compared
to the previously described systems. Based on this comparison, the applicability of a
certain system in order to modularize the given crosscutting concern is estimated.
Consequently, this chapter shows that the design dimensions represent qualitative
criteria than represent essential characteristics – characteristics that permit to estimate the
appropriateness of a system described in terms of the design dimensions in order to
modularize a given crosscutting concern.

After discussing related work, the thesis is summarized and concluded. The following
gives a more detailed description of each chapter.

Chapter 2 (Examples of Aspect-Oriented Systems) introduces three aspect-oriented
systems – AspectJ, Hyper/J and AspectS – and discusses them in detail. These
systems are being used later on to illustrate problems of current aspect-oriented systems
in order to modularize crosscutting concerns, and also to extract commonalities and
variabilities of aspect-oriented systems. Due to the design dimensions that are later on
proposed, the chapter focuses on how an aspect can be added to a system, i.e. what
language constructs each system provides in order to describe the places in the code
where an aspect contributes to a system. Thereto, in AspectJ the pointcut language, advices,
and introductions are introduced, in Hyper/J concern mappings, hypermodules and composition
rules are introduced. In AspectS the framework for join point descriptors, advice instantiation,
and installation of aspects is introduced. Furthermore, the way each system actually
achieves the adding of aspects to the application (known as weaving in the aspect-
oriented literature) is described.

Chapter 3 (Sally – Specifying Generic Aspects) illustrates the need for generic aspect-
oriented systems by illustrating examples of crosscutting concerns that cannot be
modularized using conventional systems. The chapter introduces a system called Sally
which has been developed as part of this thesis. This system provides new language
features that permit to modularize crosscutting concerns that previously introduced
systems fail to modularize. Obviously, Sally differs noteworthy from the previously
described systems. Consequently, Sally is a representative for a number of different
design alternatives available for aspect-oriented systems, which is being used later on in
Chapter 5 to illustrate the underlying design dimension – the parameterization of join
point adaptations (see section 5.5.3). The chapter also discusses related work, i.e. other
systems with similar facilities.

Chapter 4 (Morphing Aspects) introduces continuous weaving – an approach that
addresses a performance problem of current aspect-oriented systems related to the
specific way of how aspect-oriented systems achieve the integration of aspects (i.e.
weaving) into the system. The approach described in this chapter can be considered as a

1 - Introduction 13

new kind of aspect-oriented system with a specific way of specifying aspects. Similar to
the previous chapter Morphing Aspects represent a new approach of building aspect-
oriented software and it utilizes a certain technique, which is later on identified as a new
design dimension of aspect-oriented systems in respect to weaving (see section 5.6.3).
This chapter also discusses related work, i.e. approaches that can be considered related
to the way of how weaving is performed in Morphing Aspects.

Chapter 5 (Design Dimensions of Aspect-Oriented Systems) represents the main part of this
thesis. It introduces the design dimensions of aspect-oriented systems. Thereto, the
chapter discusses in detail why current language-independent approaches are not
sufficient to describe the characteristics of aspect-oriented systems. Then the chapter
introduces a general model for aspect-oriented systems and describes for each element
of the model corresponding design dimensions. In more detail, the chapter provides
design dimensions for join point models, join point selection, join point adaptation
and weaving.

In Chapter 6 (Implementations of Design Dimensions) the design dimensions are applied to
describe the systems as introduced in Chapters 2, 3 and 4. Furthermore, the design
dimensions are applied to related approaches in order to study their aspect-
orientedness. Consequently, this chapter checks the applicability of the design
dimensions in order to describe aspect-oriented systems.

Chapter 7 (Design Dimensions-Based Comparison and Selection) studies the applicability of
the design dimensions in order to compare different systems as well as to select a system
based on the descriptions of a crosscutting concern in terms of the design dimensions.
Thereto, a number of different observer-implementations are used as crosscutting
concerns. Each implementation is described in terms of the design dimension and then
compared with the descriptions in Chapter 6. According to the comparison, a system’s
capability to modularize the crosscutting concern is estimated. Consequently, for each
concern a number of systems are estimated that permit to handle the concern.

Chapter 8 (Related Work) discusses related work. Thereto, only such works that
classify aspect-oriented systems or that provide conceptual models of (aspect-oriented)
systems are discussed as related work. Although the systems in Chapter 3 and 4 provide
new aspect-oriented systems, the approaches related to such systems are discussed in
the corresponding chapters. Consequently, the related work discussed in Chapter 8
represents the work directly related to the design dimensions of aspect-oriented systems.

Chapter 9 (Conclusion) summarizes, discusses, and concludes this thesis and argues for
possible extensions and further work.

2

EXAMPLES OF ASPECT-ORIENTED
SYSTEMS

2.1 Introduction
This section shortly introduces known systems which are commonly accepted as being
aspect-oriented. More precisely, this section introduces the systems AspectJ
[KHH+01], Hyper/J [OsTa01], and AspectS [Hirs02] as exemplary aspect-oriented
systems. Each system has either been introduced at international conferences that
consider the topic of aspect-oriented software development, or has been cited as a
typical example of an aspect-oriented system in the literature published at such
conferences.

The intention of this chapter is to give an overview of the variety of constructs that
are to be considered aspect-oriented features. Such features are being used in
subsequent chapters for extracting commonalities and differences among aspect-
oriented system. This chapter does not intent to be a complete description of all
features provided by the introduced techniques (for further details this chapter refers to
the corresponding technical references available for each system).

While this thesis has been written, a number of aspect-oriented systems appeared or
evolved. Examples for such systems are PROSE [PGA02, PGA03] and JAC [PSDF01],
ObjectTeams [Herr02], or Ceasar [MeOs03]. However, since the intention of this
chapter is to motivate and explain the design dimensions, only systems that are
necessary for this task are introduced.

2.2 AspectJ
AspectJ [AspJ03, KHH+01, Labb03] is a language developed at the Xerox Palo Alto
Research Center. The implementation of AspectJ directly refers to the original work on
aspect-oriented programming [KLM+97] and describes itself as a general-purpose
aspect language, which is commonly accepted in the literature. In contrast to most other
aspect-oriented systems that are mainly research prototypes, AspectJ is already being
used in industry. Furthermore, AspectJ has been studied for modularizing a number of
different concerns like logging [HiHu04], specifications of assertions [KPRS00], persistency
[RaCh03] or typical design pattern implementations [HaKi02]. Furthermore, the impact of

16 2 - Examples of Aspect-Oriented Systems

using AspectJ on the software design has been studied and a number of AspectJ idioms or
design patterns are already known (cf. e.g. [HaCo03, HSU03]).

AspectJ is an extension of the programming language Java and provides the
following new constructs in addition to the known ones provided by Java:

• Introduction: An introduction8 permits to add new supertypes to existing types
or to add new methods or fields to classes or interfaces.

• Pointcut: A pointcut refers to elements in the execution of a program (called
join points) where an aspect contributes.

• Advice: An advice (referring to a certain pointcut) specifies how the aspect
contributes to the corresponding join points.

• Aspect: Aspects are class-like constructs that are used as a container for the
previous mentioned language features.

2.2.1 Introduction

Introductions are designed to be pure type increasing operations [HaUn03a] that do not
change the behavior of an application9. They permit to define fields and methods within
a single aspect which are to be added to a number of target types (this thesis refers to
these kinds of introductions as member introductions in the following). The visibility
of introduced members corresponds to the visibility rules of Java. Furthermore, AspectJ
permits to specify private introductions which are visible only by the introducing aspect
(cf. [AspJ03]). Introductions permit to define new extends or implements
relationships for several target types (this thesis refers to this kind of introduction as
parent introduction in the following).

Member introductions are either achieved by introducing a member to a class or an
interface and then introducing this interface to a number of target types by means of a
parent introduction, or by directly adding the members to a target type. Target types are
specified by so-called type patterns10.

In order to specify type patterns, AspectJ permits to specify a type via its name, or
via its inheritance relationship to other types.

Specifying a type via its name is achieved either by specifying the whole type name as
a sequence of characters or by specifying a type name partially and using the so-called
wildcard *. A wildcard is a placeholder for an arbitrary number of characters (including
zero characters). For example, in order to specify the target type MyType it is possible

8 Newer versions of AspectJ use the term intertype declaration instead of introduction (see [AspJ03]).
However, because of its frequently use this thesis still remains using the term introduction.

9 However, in the current implementation there are some cases where introductions by accident do
change the behavior of the application (cf. [Stör03] for a detailed discussion). However, the intended
design principle is to provide a pure type increasing operation.

10 In previous versions of AspectJ members could directly introduced to a number of target types which
lead to some confusion concerning the type of this inside the method to be introduced (cf. e.g.
[HaUn03a]). However, even in older versions of AspectJ introducing members to interfaces which are
then introduced to a number of target types turned out to be a useful idiom (called the Container
Introduction, c.f. [HSU03, HaCo03]).

2 - Examples of Aspect-Oriented Systems 17

to specify the whole sequence of characters the name consists of (i.e. the type pattern
corresponds to the string MyType). Also, it is possible to specify only the starting
characters and using the wildcard like MyT* (a wildcard without any additional
characters simply refers to all existing types in the application).

Type relationships are expressed via the operators + and &&. The unary operator +
applied after a type name refers to all types which are subtypes of the specified one. For
example, the type pattern MyType+ refers to all subtypes of MyType. The binary
operator && describes all types that correspond to both specified types. For example,
the type pattern MyType+ && MarkerInterface+ describes all types which are
subtypes of MyType as well as subtypes of MarkerInterface.

Furthermore, it is possible to enumerate type patterns using the binary operator ||.
For example, the type pattern MyType || AnotherType refers to the type MyType
as well as to AnotherType.

public interface IF {}

public class A {...}

public class B {...}

public aspect Intr {

 public void IF .m() {

 String s = this.toString();
 System.out.println(s);

 }

 declare parents:

 (A || B) implements IF;

}

Introducing m
to type IF

Introducing IF
to A and B

public class A implements IF {

 public void m() {
 String s = this.toString();
 System.out.println(s);
 }
 ...
}

public class B implements IF {

 public void m() {
 String s = this.toString();
 System.out.println(s);
 }
 ...
}

Weaving

Figure 2-3. Introducing method m to classes A and B in AspectJ.

Since newer versions of AspectJ only one single target type, specified via its name,
can be applied to member introductions while parent introductions permit to specify an
arbitrary type pattern.

An example definition of an introduction is illustrated in Figure 2-3. A method m is
being introduced to two target classes A and B by performing a member introduction to
the interface IF and then introducing IF to A and B within the same aspect. After
compiling the application the method m becomes part of the class definitions of classes
A and B: The aspect Intr becomes woven to the application.

2.2.2 Pointcut

Pointcuts specify those elements of an application’s behavior which are adaptable by an
aspect. Thereto, [KHH+01] introduces the join point concept. A join point is a
principled point in the execution of a program. According to this a pointcut specifies a set of
join points. Join points in AspectJ are for example the execution of a method (or

18 2 - Examples of Aspect-Oriented Systems

constructor), the invocation of a method (or constructor), the initialization of objects, or
field accesses and assignments.

Pointcuts are recursively defined: A pointcut is a named pointcut, a combination of
pointcuts or a (parameterized) primitive pointcut. Named pointcuts are declared by
using the special keyword pointcut followed by an identifier, a (possibly empty) list
of parameters, and a pointcut definition. A pointcut can be combined using the binary
operators &&, ||, or the unary operator ! (negation). Primitive pointcuts are predefined
pointcuts in AspectJ which describe the kind of join point being addressed or additional
characteristics of the corresponding join points. Primitive pointcuts like call,
execution, set and get describe the kind of join point being addressed (and refer
to method call, method execution, field assignment and field access join points).
Primitive pointcuts this, target or args describe the object where a certain join
point occurs in, the target object of a method call, the arguments of a call or an
execution join point. Furthermore, primitive pointcuts like within describe the class
containing the corresponding join point, withincode describes the method
containing the corresponding join point, and cflow describes the control flow a join
point occurs in. A complete list of all primitive pointcuts is available in [AspJ03].

The developer needs to specify a number of parameters for each primitive pointcut.
In general, such parameters are signatures, type patterns, or bounded objects.

Pointcuts like call and execution (as well as withincode) require a
parameter, which specifies the signature of the method being invoked or executed. Such
signature consists of the return type, the declaring type of the corresponding method,
the method’s name, and a list of the method’s parameter types. The types are specified
by type patterns as explained in the previous section. Method names are specified
similar to how type names are specified. They can either be specified by declaring the
whole method name, or by declaring the method name partially in combination with the
unary operator *, or by enumerating method name patterns using the binary operator
||. Parameter type lists are specified either by enumerating type patterns (each type
pattern separated by the operator ,) where each type pattern represents the type in the
parameter list at the specified position. Furthermore, AspectJ permits to specify the type
list partially in order to abstract over the rest of the list using the operator .. . For
example, the signature (void MyType+.set*(..)) specifies all signatures where
the corresponding method is defined in a subtype of MyType, where the return type is
void, the method name starts with the characters set, and the method has an
arbitrary number of parameters11.

Pointcuts describing objects require a parameter that describes either the
corresponding runtime type or a bounded identifier. An identifier is bounded, if it is
declared (with a corresponding type) in the pointcut’s header. The primitive pointcut
args requires a list consisting of type patterns or bounded identifiers. It also permits
the usage of the operator .. for abstracting over parts of the type list.

11 This kind of signature is based on a common naming convention like setter-methods which are defined
by a number of frameworks like for example JavaBeans [Sun04a]. Such naming conventions are also
often being used in persistency frameworks. Hence, pointcut definitions for modularizing persistency
concerns often make use of such conventions (see for example [RaCh03]).

2 - Examples of Aspect-Oriented Systems 19

The primitive pointcuts cflow and if differ slightly from the previous ones. The
cflow pointcut requires a pointcut as its parameter. The if pointcut requires a
boolean expression as a parameter where each object of the expression is bounded
within the pointcut.

aspect MyAspect {
 pointcut pc(MyType t, AType arg):

cflow(execution(* MyObject.*(..))) && call(void MyType+.set*(..))
&& this(t) && args(arg, ..);

 ...
}

Figure 2-4. Example pointcut pc with bounded parameters t and arg.

Figure 2-4 illustrates a pointcut definition in AspectJ. The pointcut refers to all
method call join points where:

• The called method is defined in a subtype of MyType, and

• The called method’s name begins with the characters set, and

• The called method’s return type is void, and

• The called method has at least one parameter, and

• The first actual parameter of the method call has the type AType, and

• The calling object has the type MyType, and

• An arbitrary method defined in class MyObject is on the call stack.

The join point’s calling method is bound to the identifier t and the first actual
parameter is bound to the identifier arg. The type constraints of t and arg are
defined in the pointcut’s header.

2.2.3 Advice

An advice is a module similar to a method which is implicitly invoked whenever a join
point described by a corresponding pointcut is reached. It is not possible to explicitly
invoke an advice via method calls or similar constructs.

An advice definition includes the keywords before, after, or around that
describes when the advice is to be executed relatively to the corresponding join point: A
before advice is executed before the join point is executed, an after advice is executed
afterwards, and an around advice is executed instead of the original join point.
Furthermore, an advice has a list of typed parameters and a pointcut the advice refers to.
An advice (in correspondence to method definitions) has a body which shares the same
namespace as the surrounding aspect and that permits to refer to the parameters
declared in the advice’s header.

AspectJ permits to refer from an advice’s execution to the corresponding join point
from within its body. The keyword thisJoinPoint delivers a reference to an object
representing the join point being reached at the advice. Furthermore, an around advice
permits to execute the join point being adapted via the keyword proceed followed by
a number of parameters.

20 2 - Examples of Aspect-Oriented Systems

Figure 2-5 illustrates an around advice referring to the previously defined pointcut
pc. The advice increases the variable counter and proceeds with the join point by
passing the advice’s parameters.

aspect MyAspect {
 int counter = 0;
 pointcut pc(MyType t, AType arg): ...

 void around(MyType t, AType arg): pc(t, a) {
 counter++;
 proceed(t, arg);
 }
}

Figure 2-5. Example advice increasing the variable counter and
proceeding at the corresponding join point.

2.2.4 Aspect

An aspect is a class-like construct that represents a container for introductions, advices
and pointcuts. Unlike classes, aspects are not explicitly instantiated by the developer. In
correspondence to classes, aspects can define class and object variables as well as class
and object methods. Aspects can be declared abstract whereby abstract aspects can
include abstract methods as well as abstract pointcuts. Abstract aspects do not influence
any join point. Like classes, aspects can extend other aspects or implement interfaces
and override or overload methods.

public aspect AbstractAspect {

 abstract pointcut fooCall();

 before(): fooCall() {
 System.out.println("Before foo was called");
 }
}

public aspect ConcreteAspect extends AbstractAspect {
 // define pointcut fooCall
 pointcut fooCall(): call(void TargetClass.foo());
}

Figure 2-6. Concrete aspect ConcreteAspect defining abstract
pointcut fooCall.

Aspects permit to override pointcuts by defining a pointcut with the same signature
(pointcut name and parameters). The semantics of pointcut overriding is similar to the
semantics of method overriding in Java: A concrete aspect containing a pointcut
definition refers only to the overriding pointcut. Consequently, all advices within the
aspect’s hierarchy (referring to the overridden pointcut) refer to all join points as being
specified in the overriding pointcut.

Figure 2-6 illustrates the definition of an abstract and a concrete aspect according to
the Abstract Aspect idiom (cf. [HSU03]). The aspect AbstractAspect declares a

2 - Examples of Aspect-Oriented Systems 21

pointcut fooCall() and also a before advice referring to this pointcut. The concrete
aspect ConcreteAspect defines the pointcut. Hence, for the concrete aspect the
advice defined in the superaspect refers to the pointcut defined in
ConcreteAspect, and the advice adapts all method call join points referring to
method calls to a method named foo() in an expression having the static type
TargetClass.

2.2.5 Weaving Aspects

According to the original paper on aspect-oriented programming [KLM+97] AspectJ
provides the weaving of aspects. Weaving describes the process that integrates aspects
into an application. The weaving process is executed at compilation. When an aspect is
compiled with a number of Java types the compiler computes those join points where
potentially aspect-specific code needs to be invoked. At such points, additional
statements are generated that check (if necessary) if actually aspect-specific code needs
to be invoked and that perform the corresponding invocations (cf. [HiHu04]). Aspects
are translated into ordinary Java classes in order to be executable in all Java compatible
virtual machines.

While in previous versions of AspectJ weaving was performed on the source code
level, newer versions of AspectJ operate on the bytecode level. Consequently, aspects
can be added to ordinary Java classes and it is not necessary to have any sources
available for such classes. The resulting woven code requires some additional libraries
that contain class definitions like for example the join point representation provided
within every advice.

2.3 Hyper/J
Hyper/J comes from the background of subject-oriented programming [HaOs93].
The foundation of this approach is the observation that some properties associated to
an object are subjective. I.e. different individuals have different mental models of real-
world objects. In that way subject-oriented programming is related to the aristotelian
distinction between essential and accidental properties of subjects like discussed in
[RaCa03] in relation to object-oriented programming: Properties associated to things are
either essential, which are properties telling about what the thing is, or accidental, which
are properties coming from a subjective view on the subject.

The composition techniques provided by object-oriented programming on the other
hand do not provide any possibility to specify such different perspectives. Instead, there
is one dominating perspective to which all other perspectives are directly related. Hence,
the modularization is not based upon multiple decomposition criteria, but mainly on
one dominant one. Tarr et al. [TOHS99] call this the tyranny of the dominant
decomposition and argue that such an approach stands in contradiction to the
principle of separation of concerns (see also Chapter 1.1).

Originally, Hyper/J was considered to be a tool that permits to specify a number of
different perspectives (or dimensions and concerns according to the Hyper/J
terminology) on a piece of software in correspondence to the underlying ideas of
subject-oriented programming. Although the foundations of Hyper/J do not directly
refer to aspect-oriented programming, more recent works of the same authors consider

22 2 - Examples of Aspect-Oriented Systems

Hyper/J (and subject-oriented programming in general) to be also an aspect-oriented
programming approach (cf. for examples [OsTa01]). Since furthermore Hyper/J is also
being considered to be an aspect-oriented programming system by a large number of
different authors (see for example [FECA04] among many others), it is valid to consider
it in this context and to call it an aspect-oriented system.

Hyper/J is a tool that permits to assign classes and methods specified in the
programming language Java to dimensions and concerns depicted by corresponding
identifiers, and to compose such dimensions and concerns using some predefined
composition rules [OKK+96]. Thereto, Hyper/J does not extend the programming
language Java itself by providing new language constructs integrated into Java (which
differs from the AspectJ approach) but permits to specify the composition outside the
usual type definitions in separate files. Such files are used to compose the resulting
application. There are three different kinds of specification files in Hyper/J:

• Hyperspace: The hyperspace file contains all classes that are considered when
performing the composition.

• Concern Mapping: The concern mapping assigns elements like classes,
methods, and fields to so-called dimensions.

• Hypermodule: The hypermodule specifies the composition rules that are to be
applied to the classes within the hyperspace.

The hyperspace just corresponds to the list of all classes that are to be composed. It
can be compared to the list of all classes that are considered during a compilation
process or the list of all classes within the classpath during the Java compilation process.
Furthermore, since this file can be omitted (cf. [TO00]) this thesis does not consider
this file to be an essential element of Hyper/J and concentrates in the following only on
the concern mappings and the hypermodules.

2.3.1 Concern Mapping

A concern mapping specifies a number of identifiers that represent concerns and assigns
Java entities to them. Such Java entities are packages, classes, interfaces, methods (which
are called operations in the Hyper/J terminology) and fields.

Hyper/J defines within the concern mapping for each of those kinds of entities a
corresponding keyword (package, class, interface, operation and
field). The developer assigns an entity to a concern by declaring the corresponding
keyword and afterwards specifying a list of characters that identifies the corresponding
entity.

In order to identify packages, the package’s name is to be declared. In order to
identify classes or interfaces, they are to be specified either by declaring them in a full
qualified way (i.e. including the corresponding package they are defined in) or just by
specifying their name (without specifying the package). In case only the name is
specified, all classes whose name corresponds to the specified one are addressed
(regardless of the package they are defined in). Operations are identified by the type they
are defined in (whereby the types are identified as previously described) followed by the

2 - Examples of Aspect-Oriented Systems 23

operation’s name12. The operation’s name corresponds to a method’s name. Parameter
types are not considered in order to refer to methods. Due to method overloading as
defined in Java, it is possible that within a class there are a number of methods with the
same name that differ only with respect to the parameter types. In that case, an
operation name refers to all of such methods. The identification of fields corresponds to
the identification of methods – they are identified by a character sequence that describes
their declaring type and an identifier that describes the field’s name.

package myApplication : Feature.Kernel
operation check : Feature.Check
operation display : Feature.Display
operation show : Feature.Display

Figure 2-7. Hyper/J concern mapping specification.

Each addressed element is assigned to a concern identifier. A concern identifier is
structured into two elements: One identifier describes the dimension, and one
identifier describes the concern within that dimension. Both identifiers are separated by
the token “.”.

Figure 2-7 illustrates a concern mapping in Hyper/J. The first line assigns the
package myApplication to the concern core in the dimension Feature.
Consequently, all classes defined in the package become part of the corresponding
concern. The other lines assign methods to concerns: All methods having the name
check are assigned to the concern Check in the dimensions Feature and all
methods having the name display or the name show are assigned to the concern
Display in the dimension Feature.

2.3.2 Hypermodules

Hypermodules specify how sets of concerns are to be composed in order to generate a
new application. A hypermodule specification consists of a name that identifies the
hypermodule, a number of concerns that are to be considered for the composition, and
a number of relationships (which correspond to the subject-oriented composition rules,
cf. [TO00, OsTa01]) that are to be established between such concerns. The concerns to
be considered for the composition are called hyperslices in the Hyper/J terminology.
However, for reasons of simplicity this thesis uses the term concern for describing the
concerns defined in a concern mapping and used within a hypermodule.

The concerns being used within a hypermodule are explicitly enumerated: All
concerns identifiers (in addition to the dimension identifiers) need to be specified within
a corresponding hyperslice section of the hypermodule. Figure 2-8 illustrates the
hyperslice declaration of a hypermodule named ComposedApplication that
simply relies on the concern mappings defined in the previous section.

The main part of the hypermodule consists of the specification of relationships
between the complete concerns as well as the specification of relationships between

12 The typename can be omitted so that all operations with the corresponding name are identified.

24 2 - Examples of Aspect-Oriented Systems

selected elements from the concerns. In general, Hyper/J provides composition rules
named general integration rules like merging and overriding that are applied to all
concerns, selected types as well as selected operations. Furthermore, each of such
general integration rules can be adapted by additional relationships like equate, match,
compose or bracket.

hypermodule ComposedApplication
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display
 ...

Figure 2-8. Hyperslide specification within a hypermodule
ComposedApplication.

The merge composition rule permits to compose a number of entities. For example,
the application of a merge relationship to a number of classes results in the creation of a
single class. That class combines members of all classes in a single one. Combining
classes also means that operations are merged by adding corresponding invocations that
refer to the original method definitions. Figure 2-9 illustrates the application of a merge
relationship applied to two classes defined in different packages each having the same
name A and each defining a method having the name myA. In such a case, Hyper/J
composes a single class A that contains the bodies of both methods13.

package a;
class A {
 public void myA() {
 //.. Body 1
 }
}

package b;
class A {
 public void myA() {
 //.. Body 2
 }
}

// concern mapping
package a : Package.MyApplication
package b : Package.MyApplication

// hypermodules
hypermodule MergeResult
 hyperslices:
 Package.MyApplication;
 relationships:
 mergeByName;
end hypermodule;

class A {
 public void myA() {
 //.. Body1
 //.. Body 1
 }
}

Figure 2-9. Merging two classes using the composition rule
mergeByName.

13 This is a slightly simplied view, because Hyper/J creates additional corresponding methods in the
genenerated class containing the original method definitions (with modified signatures) and
corresponding invocations to such methods. However, the illustrated code has the same semantics as
the code actually generated by Hyper/J.

2 - Examples of Aspect-Oriented Systems 25

By applying the override composition rule, classes from one concern override classes
from a different concern. Overriding means that all methods of classes that appear first
in the import are being replaced by the content of methods whose classes appear later
on in the import.

The equate relationship permits to consider two entities identified by different
identifiers to be equal for the composition rules. Syntactically, the equate relationship
consists of the keyword equate followed by the kind of entity (package, class,
operation) that is to be considered equal. Afterwards, the elements to be considered
equal are enumerated. Such elements are enumerated in terms of their corresponding
concern mapping. For example, in the classes A and B which previously have been
assigned to the concern MyApplication in the dimension Package, the identifiers
Package.MyApplication.A and Package.MyApplication.B describe
the corresponding classes. If the equate relationship is applied, the equal elements are
composed according to the corresponding composition rule. Figure 2-10 illustrates the
application of the equate relationship and its impact on the resulting application
composed by using the override composition rule.

package a;
class A {
 public void m() {
 //.. Body 1 } }

package b;
class B {
 public void m() {
 //.. Body 2 }}

..
 relationships:
 overrideByName;
 equate class
 Package.MyApplication.A,
 Package.MyApplication.B;
..

class A {
 public void m() {
 //.. Body2
 }
}

Figure 2-10. Overriding class A with B by applying the equate
relationship within an override composition rule.

The match relationship permits to declare in an explicit way that one entity matches
other ones. Syntactically the match relationship consists of the keyword match
followed by the kind of entity and the entity’s identifier. After another keyword with, a
sequence of characters follows that describes those entities the specified one matches
with. Thereto, special tokens like a wildcard * and a negation ! can be used to describe
the target entities. For example, the following match specification corresponds to the
above equate relationship (if only classes A and B are available):

match class Package.MyApplication.B with “*”

In case this relationships is specified instead of the equate relationship in Figure 2-10
it specifies that the class B that is part of the concern Package.MyApplication
matches all other classes. Consequently, class B overrides all other classes and the
composed application corresponds to the one in Figure 2-10.

The compose relationship permits to create a new unit which is a composition of a
number of units, but which still keeps the original ones. In the case of type composition,
the compose relationship adds a new inheritance hierarchy to those types participating
in this relationship. Syntactically, the compose relationship consist of the keywords
compose in addition to the kind of entity being composed, followed by the entity’s

26 2 - Examples of Aspect-Oriented Systems

name. Then, the keywords with additionally follow, and finally comes an
identifier for the entity that is to be composed in addition to the first one that is
prefixed by the hypermodule’s name. Figure 2-11 illustrates an application of the
compose relationship and the resulting output.

Bracket relationships slightly differ from the other relationships. Instead of selecting
classes, operations, or fields, these relationships can be applied only to operations.

class A {
 public void m() { … }

class B {
 public void m() { … }

hypermodule MyHM
 ...
 overrideByName;
 compose class
 Package.classes.A with
 additionally class
 HM.B;
..

class B extends A {
 public void m() {... } }

class A {
 public void m() {... } }

Figure 2-11. Adding a new superclass A to class B via compose
relationships.

The bracket relationship permits to add additional code before or after some
method calls within a certain class. Thereto, the target methods are to be specified via
two character sequences that specify the target class names and the target method
names. These sequences correspond to the sequences as being used within the match
relationship (including e.g. wildcards). In addition to the target methods, it is possible to
specify the invoking class or the invoking method by specifying their name in a
corresponding concern. Then, the methods that are to be invoked before (and/or after)
are specified. The before or after methods can be parameterized with some special
variables: The variable $ClassName describes the name of the called type as a string,
$OperationName describes the method’s name being invoked as a string, $This
described the target object being called, and $valueArray describes the method’s
actual parameters as an array. The before and after methods consequently require
appropriate parameters.

class Main {
 public void m() {
 ...
 b.writeB() … }
 public void before(String s) {
 //before body }

class B {
 public void writeB() { … }

 ...
 bracket "B"."write*"
 from action ...Main.m
 beforeMain.before($ClassName)

class Main {
 public void m() {
 this.before(„B“);
 b.writeB()...
 }

class B {… }

Figure 2-12. Specifying additional method calls before and after a
certain call.

2 - Examples of Aspect-Oriented Systems 27

Figure 2-12 illustrates an application of the bracket relationship. Within the
hypermodule all methods whose names start with the characters write are specified as
target methods for the relationship. Furthermore, only those method calls that come
from the method m in class Main are to be considered. Furthermore, the rule specifies
that the method before() as specified in class Main is to be invoked before the
original method call. The before call is parameterized with the variable $className
(which is the string B in this example). Conceptually, Hyper/J generates the
corresponding method call into the target method14 as illustrated in Figure 2-12.

2.3.3 Hypermodule Composition

Although the term weaving is not explicit mentioned in the Hyper/J specification
[TO00], Hyper/J also provides a composition of concerns that can be compared to
weaving in AspectJ.

First, it permits to define a number of classes which are being used for the
composition. Next, such classes are transformed in a way as specified within the
corresponding hypermodules. Consequently, the integration of aspects as defined in
AspectJ via weaving corresponds to the integration of concerns in Hyper/J.

Technically, Hyper/J reads bytecode from all classes being addressed by its concern
mappings and hypermodules. Then, it composes a representation of these bytecode
artifacts, which is simply a textual representation of all elements that are possibly
composed. Then, Hyper/J determines from this representation the bytecode elements
that are addressed by hypermodules and that need to be composed. Finally, new
bytecode is generated based on the textual representation of the bytecode elements as
well as the bytecode itself.

2.4 AspectS
AspectS [Hirs03, Hirs02, Hirs02b] is an implementation of a general-purpose aspect
language in the Smalltalk dialect Squeak [IKM+97] based upon the Smalltalk specific
possibility to provide method wrappers as proposed in [BFRJ98]. The features
provided by AspectS are mainly motivated by AspectJ: There are different kinds of
advice (before/after and around) and there is a notion of join points and pointcuts. In
contrast to AspectJ, which is a language extension of Java, AspectS is an object-
oriented framework (in the sense as introduced in [JoFo88]): All applied composition
techniques are already part of the base language. Due to this, AspectS permits to weave
aspects at runtime, because Smalltalk objects are used for composing aspects with the
application.

In order to understand the underlying aspect composition in AspectJ it is necessary
to understand the metaobject facilities of Smalltalk. First, the framework of AspectS is
introduced throughout the following two sections. Afterwards, the metaobject facility of

14 This is a slightly simplified view on the generation. In fact, Hyper/J extracts a number of different
method bodies, composes separate methods and generates appropriate calls to such generated methods.
However, the details of the composition are irrelevant for this thesis.

28 2 - Examples of Aspect-Oriented Systems

Smalltalk with respect to its method representation is shortly discussed. Finally, the
relationship between the framework and such metaobject facility is explained.

2.4.1 The Framework AspectS

The language features of AspectS like advice or introduction are usual object-oriented
constructs in Smalltalk. Aspects, pointcuts and advices are represented as objects. In
contrast to AspectJ, AspectS requires an explicit instantiation of aspects by the
developer. Furthermore, the framework makes use of some naming conventions in
order to create pointcuts and advice.

AsAspect

AsAdvice0..n

AsBeforeAfterAdvice AsAroundAdvice

beforeBlock afterBlock

0..n

BlockContext

aroundBlock

AsJoinPointDescriptor

Class

targetClass

Symbol

targetSelector

AsAdviceQualifier
qualifier

Symbol
1..nattributes

Figure 2-13. Structure of aspects (with advice) in AspectS.

Figure 2-13 illustrates a class diagram of those classes relevant for applying AspectS:

• The (abstract) class AsAspect is the root class for all aspects. It defines the
mechanism how advices are created once an aspect is instantiated, and also
defines additional fields and methods for managing aspects.

• An aspect has a number of associated advices. Each advice is either an instance
of AsBeforeAfterAdvice or an instance of AsAroundAdvice. The
first kind of advice permits to add additional behavior before or after a method is
being executed. The latter one potentially permits to replace a target method.

• The behavior that is being executed when a certain method execution is being
performed is stored in a block15. The corresponding class BlockContext is a
system-defined class.

• The methods that are being wrapped are described by so-called join point
descriptors (instances of JoinPointDescriptor)16, which consist of a

15 In Smalltalk lexical closures are denoted under the term block. In other words, blocks are the Smalltalk
equivalent of closures [GrJo89]. Blocks are objects which encapsulate behavior and which permit to access
the local context in which they are instantiated. Furthermore, blocks permits to receive explicit
parameters in order to perform the corresponding behavior (cf. [GoRo89]).

16 This is a slightly simplified view on the relationship between an advice and its join point descriptors. In
fact, every advice has a reference to a block whose evaluation delivers a collection of join point
descriptors.

2 - Examples of Aspect-Oriented Systems 29

reference to a class object and a reference to a selector (which corresponds to a
method name in Smalltalk). The class object corresponds to the system defined
metaobject. The selector corresponds to a Symbol instance defined for all
methods in the system (and which represents a method’s name).

• Each advice has an additional advice qualifier that specifies a number of
additional constraints within its attributes whereby each attribute is a symbol.
Exemplary attributes are #receiverClassSpecific or
#cfFirstClass. The first one defines that the corresponding advice is to be
invoked whenever an arbitrary instance of that class or any subclass receives a
corresponding message. The latter causes the execution of the advice whenever
an instance of the class occurs for the first time on the call stack. Altogether,
AspectS provides ten different kinds of advice qualifiers (cf. [Hirs02]) that will be
explained in more detail in the next section.

In order to create a new aspect, the developer needs to create a subclass of
AsAspect. According to a naming convention in AspectS that relies on the reflective
capabilities of Squeak each advice requires to be specified in a method whose selector
starts with the character sequence “advice”. Each of such methods needs to return
an initialized instance of AsAdvice.

In order to weave an aspect the developer explicitly needs to instantiate an aspect
and invoke its method install (which is defined in the abstract class AsAspect).
Only after installing an aspect, the base application is being affected by the aspect.
When an aspect receives an install message, it invokes all advice methods in order
to retrieve a set of advice instances. From these instances, the corresponding target
methods are being computed (due to their join point descriptors). Such target methods
are being used for the corresponding method wrappers. In order to unweave an aspect
developers need to invoke its method uninstall (which is also defined in
AsAspect).

AsAspect subclass: #MyAspect
 adviceATest
 ^ AsBeforeAfterAdvice
 qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
 pointcut:
 [OrderedCollection
 with: (AsJoinPointDescriptor targetClass: A targetSelector: #m)]
 afterBlock:
 [:receiver :arguments :aspect :client :return |
 Transcript show: ’invoked method m in A or subclass’.
]

Figure 2-14. Simple aspect definition in AspectS.

The two different advice classes provide a number of class methods that permit a
compact instantiation and initialization of corresponding advice objects.

Figure 2-14 illustrates a simple aspect definition. The aspect MyAspect contains a
method adviceATest, which returns an instance of AsBeforeAfterAdvice.
This instance is initialized with

• An advice qualifier which states that the advice is receiver class specific,

30 2 - Examples of Aspect-Oriented Systems

• A pointcut which defines the method named m in class A to be the target method
of this aspect, and

• The advice that simply prints out the text “invoked method m in A or
subclass”.

When the aspect is instantiated and installed it prints the corresponding message
every time an object of class A or one of its subclasses receives a message m.

AsAspect subclass: #MyAspect
 adviceATest
 ^ AsAroundAdvice
 qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
 pointcut:
 [OrderedCollection
 with: (AsJoinPointDescriptor targetClass: A targetSelector: #m)]
 aroundBlock:
 [:receiver :args :aspect :client :method |
 " something before……"
 method valueWithReceiver: receiver arguments: args
 " something after……"
]

Figure 2-15. Around advice with proceed.

Each block representing the behavior being executed at the corresponding advice
receives a fixed number of parameters being defined by AspectS. An after block (as
illustrated in the example above) has 5 parameters:

• The first one represents the object that is about to execute the corresponding
target method,

• The second once represents the actual parameters of the method call,

• The third one represents the instance of the aspect containing the advice
definition17,

• The fourth one represents the sender of the message, and

• The last one is the object the corresponding method returns.

Before blocks have one parameter less since there is no return object. Around blocks
have as their fifth parameter an object representing the method (i.e. an instance of
CompiledMethod) that is about to be invoked. In order to invoke the original
method within an around advice, the compiled method can be executed with the
corresponding parameters (actual parameters as well as the owning object).
Consequently, the delivered compiled method of around blocks plays a similar role as
the keyword proceed in AspectJ within around advices.

Figure 2-15 illustrates the application of an around advice that also invokes the
wrapped method. The advice sends the message valueWithReceiver:

17 In case the programming convention of AspectS to define the corresponding block within an aspect’s
method is being followed, this parameter is not needed since self within the block refers already to
the corresponding aspect instance.

2 - Examples of Aspect-Oriented Systems 31

arguments: to the method object and passes the original receiver as well as the
original arguments to it. So whenever the original method m is being invoked, the
corresponding advice is invoked and executes some code, then executes the original
method, and finally executes some further code afterwards.

AspectS also defines introductions similar to AspectJ. Introductions in AspectS
conceptually permit to add new methods to classes and are implemented as AsAdvice
subclasses. Consequently, introductions also have join point descriptors. However, the
descriptors play a different role than in before, after, and around advices: Instead of
selecting existing methods in the system that are to be adapted by the corresponding
aspect, they describe the name of the method that should be introduced. Consequently,
once the corresponding aspect defining the introduction is being installed, a new
method object is created: The method is added to the class defined in the join point
descriptor with the corresponding selector that is defined there. Then, the new method
is being wrapped with the introduction block. The introduction’s block parameters
correspond to the parameters of a before block.

AsAspect subclass: #MyAspect
 adviceIntroduce
 ^ AsIntroductionAdvice
 qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
 pointcut: [OrderedCollection
 with: (AsJoinPointDescriptor targetClass: A targetSelector: #newM)
]
 IntroBlock: [:receiver :arguments :aspect :client |
 "the behavior being executed"
].

Figure 2-16. Introducing method newM to class A.

Figure 2-16 illustrates the application of an introduction in AspectS. The aspect
MyAspect defines within its method adviceIntroduce an introduction with the
class A as its target. The behavior being executed at the introduced method is specified
within the block passed to IntroBlock. The selector for this introduced method is
newM. Consequently, whenever an instance of A (or any subclass) receives a message
newM the introduction block is being executed.

Although conceptually the introduction of methods is similar to method
introductions in AspectJ, there is still a difference in respect to the self-reference within
the method body. Since the introduced method’s body is being defined within an aspect
(corresponding to the proposed design guidelines of AspectS), the self-reference within
the introduction block refers to the aspect instance and not to the object owning the
method. Hence, self-calls (to the owning object) need to be sent by using the first
parameter of the introduction block. Another consequence of using blocks for the
method body is that super calls are not that easily possible and require the use of the
reflective features of Smalltalk.

Due to the lack of types in Smalltalk and the resulting lack of method overloading,
introductions cannot potentially change the behavior of objects by introducing a
method that (accidentally) overloads an already defined method in the target class
(which is the case in AspectJ).

32 2 - Examples of Aspect-Oriented Systems

2.4.2 Advice Qualifiers

AspectS provides a number of advice qualifiers that are referred to by predefined
symbols. There are qualifiers that permit to select join points based on

• The sending or receiving class (#receiverClassSpecific,
#senderClassSpecific),

• The sending or receiving instances (#receiverInstanceSpecific,
#senderInstanceSpecific),

• The first occurrence of the receiving class or instance on the call stack
(#cfFirstClass, #cfFirstInstance),

• The non-first occurrence of the receiving class or instance on the call stack
(#cfAllButFirstClass, #cfAllButFirstInstance),

• The first occurrence of a super message on the call stack (#cfFirstSuper)
or the non-first occurrence of a super message on the call stack
(#cfAllButFirstSuper).

In order to determine whether a certain advice is to be executed, the advice qualifiers
#senderClassSpecific, #senderInstanceSpecific and #receiver
InstanceSpecific require additional data about the permitted objects and classes.
Thereto, aspect instances maintain additional references to sender and receiver instances
as well as to sender and receiver classes (see Figure 2-17).

AsAspect

AsAdvice
0..n

AsAdviceQualifier
qualifier

Object
0..nsenderInstances

Class

0..nsender
classes

receivers
0..n

0..nreceiver
classes

Figure 2-17. Relationships for instance and class specific advices.

Developers that specify class or instance specific qualifiers need to add the
corresponding objects and classes to the aspect, which provides corresponding methods
for this purpose.

2.4.3 Method Representation in Smalltalk

In contrast to for example Java the Smalltalk object system has much richer meta-object
capabilities. Classes are objects themselves, (compiled) methods have an object
representation, etc..

In Smalltalk every class is an instance of class Class that indirectly extends class
Behavior (see Figure 2-18). This class has a reference to an instance of
MethodDictionary, which manages all methods belonging to a certain class (see

2 - Examples of Aspect-Oriented Systems 33

[GoRo89, FoJo86] for a more detailed discussion). A method is an instance of class
CompiledMethod that provides fields, which contain among others a byte code
representation of the represented method. Furthermore, a compiled object has access to
its source code or permits to reconstruct source code from its bytecode.

Whenever a client passes a message to a target object, Smalltalk’s virtual machine
performs the corresponding method lookup and computes the target method to be
invoked. Then, the bytecode of this method is being evaluated with the corresponding
receiver object and the arguments. Developers can also explicitly evaluate a compiled
method by invoking its method valueWithReceiver by passing the target object
and an array representing the message's parameters.

 Object

Behavior

ClassDescription

Class

MethodDictionary CompiledMethod 1 1 1 n

valueWithReceiver: r arguments: p

Figure 2-18. Smalltalk class hierarchy of Class.

The metaobject representation of classes and methods permits a flexible adaptation
of class and object behavior. For example, it is possible to execute some additional code
in case a message sent to an object is not understood. Such mechanism is used for
example in [GSR96] for implementing roles (cf. e.g. [KrØs96]).

In order to adapt the behavior of methods in Smalltalk there are a number of
different alternatives that are commonly known under the term method wrapping (cf.
[BFRJ98]). Among others there are three often-applied ones:

• Changing the method’s source code and recompilation of the corresponding
method18,

• Changing the byte code by changing the state of the corresponding compiled
method object, or

• Removing the original method from the class’s method dictionary and add a new
method to it (that potentially also refers to the old one by invoking the
valueWithReceiver method).

Hence, the ability to change the behavior of methods is directly available in the
Smalltalk system and it is not necessary to provide external tools in order to change the
behavior of applications.

18 Such an approach is possible since the compiler is typically part of the runtime environment in Smalltalk
systems. Consequently, an application can run a compilation process.

34 2 - Examples of Aspect-Oriented Systems

2.4.4 Method Wrapping in AspectS

The implementation of AspectS directly relies on method wrappers based on the
replacement of objects in the corresponding method dictionary.

The framework contains an abstract class AsMethodWrapper subclassing
CompiledMethod (see Figure 2-19). For each different kind of advice (including the
introduction advice) there is a corresponding wrapper class (AsBefore
AfterWrapper, AsAroundWrapper, AsIntroductionWrapper).
Instances of these wrapper classes refer to the block objects defining the advice specific
behavior (as explained in section 2.4.1) as well as to the compiled method they are
wrapping19. In same way each wrapper has a reference to its advice qualifier.

Advice AsWrapper

CompiledMethod

0..n

AsBeforeAfter
Wrapper

AsAround
Wrapper

AsIntroduction
Wrapper

wrappedMethod

valueWithReceiver:
 arguments:

valueWithReceiver:
 arguments:

valueWithReceiver:
 arguments:

Figure 2-19. Wrapper implementation in AspectS.

The bytecode of each wrapper simply forwards to the method
valueWithReceiver:arguments:, which is defined by each wrapper. This
method includes the semantics of the different kinds of wrappers. In case of a
before/after wrapper, it checks whether the advice qualifiers are fulfilled. In case they
are fulfilled it executes the before block, the original method, and the after block.

If an aspect receives an install message, it creates corresponding wrapper
instances for all method objects described by the join point descriptor. Then, all of such
methods are being replaced by the corresponding wrapper instances. Consequently,
whenever an object receives a message whereby the corresponding method is wrapped,
the wrapper object is being evaluated. Uninstalling an aspect replaces for all existing
method wrapper the corresponding entry in the method dictionary with the
corresponding original method objects.

19 This is rather a conceptual explaination. Technically, AsMethodWrapper defines a class field
containing a dictionary that maintains wrapper instances and an additional state for them.

2 - Examples of Aspect-Oriented Systems 35

2.5 Chapter Summary
This chapter introduced three aspect-oriented systems. Two of them – AspectJ and
Hyper/J – are based on the programming language Java. AspectS is based on the
Smalltalk dialect Squeak. Each system’s features have been introduced and for each
system it is explained how the composition of aspects is being implemented.

Although all systems call themselves aspect-oriented (because they are commonly
accepted called aspect-oriented and are cited in the aspect-oriented literature), there are
still a number of differences among them. First, the terminology being used in Hyper/J
differs in a significant way from AspectJ and AspectS. Furthermore, it is not obvious
what the similarities between the composition relationships defined in Hyper/J and the
language features of AspectJ or the framework of AspectS are. Another issues is that
although AspectJ and AspectS use the term pointcut, the underlying concept is slightly
confusing: In both approaches the way how pointcuts specify the join points to be selected
(although is it not clear whether both approaches have the same conceptual
understanding of join points) differs noteworthy.

In general, it is not obvious what the common characteristics of the proposed aspect-
oriented systems are and it is not clear what the benefits and liabilities of the proposed
systems are with respect to modularizing a given crosscutting concern.

The systems that are introduced in the following two chapters (Chapter 3 Sally –
Specifying Generic Aspects, Chapter 4 -Morphing Aspects) directly refer to the here proposed
systems. Chapter 3 identifies the problem that there are recurring crosscutting concerns
that cannot be modularized with the here proposed constructs and introduces a new
system that relies on different design decisions than the here proposed ones. Chapter 4
refers to a performance problem caused by the here proposed systems and their means
to weave in aspects and proposes a new system (also based on different design
decisions) that overcomes such problems.

The main chapter of this thesis (Chapter 5 - Design Dimensions of Aspect-Oriented
Systems) relies on the here introduced systems and uses them for illustrating different
design dimensions underlying aspect-oriented systems. It turns out, that there are a
number of essential differences among the three proposed ones and that they differ in
respect to modularizing given crosscutting concerns (which will be shown in Chapter 7
– Design Dimensions-Based Comparison and Selection).

3

SALLY – SPECIFYING GENERIC
ASPECTS

3.1 Introduction
Aspect-oriented software development deals with the modularization of concerns that
cannot be encapsulated by traditional composition techniques. Without modularization
such concerns would be spread over numerous modules. Hence, such concerns are
called crosscutting concerns and the code belonging to them crosscutting code (see also section
1.2.2).

Aspect-oriented programming systems like AspectJ [KHH+01] or Hyper/J [TO00]
that extend object-oriented programming languages provide new composition
techniques in addition to the existing ones. A core tool of aspect-oriented languages is
the weaver: It takes self-contained concerns and weaves them into applications. This allows
programmers to treat such (crosscutting) code in separate modules and to accomplish
the crosscutting effect only afterwards.

AspectJ and Hyper/J support the concept of introduction to define new members for
existing types outside the original class or interface definition. Since both are based on a
strongly typed language (the programming language Java), the question whether a class
has a certain member has to be answered at compile time. Both, AspectJ and Hyper/J
claim to solve the problem of crosscutting concerns. Thus, they claim to solve the
problem that crosscutting code coming from a single concern has to be implemented in
different modules. However, there are often occurring examples of crosscutting code
that cannot be modularized using such implementations of introductions. Hence, a
more advanced implementation is needed.

This chapter addresses the problem of introductions in current aspect-oriented
systems based on strongly typed languages, and introduces with Sally, a new language
approach providing generic (or parametric) aspects, that addresses these problems.

The following subsections are structured as follows. Section 3.2 introduces the
general concept of introductions and discusses its implementation in AspectJ and
Hyper/J. Section 3.3 illustrates some typical examples of crosscutting code that cannot
be modularized by AspectJ or Hyper/J. Section 3.4 introduces the language Sally that
addresses the previously described problems and describes the underlying mechanism
for parametric aspects. Section 3.5 applies parametric introductions in order to

38 3 - Sally – Specifying Generic Aspects

overcome the mentioned problems. Section 3.6 compares parametric introductions to
other relevant concepts. Finally, section 3.7 concludes this chapter.

3.2 Introductions in Aspect-Oriented Systems
The term introduction was originally introduced in AspectJ. It implements a mechanism
for adding fields, methods, and interfaces to classes. This is similar to open classes as
described in [Cann82, CLCM00]. Introductions were motivated by the observation that
different concerns have a direct impact on the type structure of object-oriented
applications. As a consequence modularization is compromised since some elements in
the type structure, like certain fields and methods, come from different concerns.
Aspect-oriented techniques permit to remove these elements from the type definition
and provide a mechanism to introduce them at weave time. An introduction is a strictly
type increasing operation on types since it adds new features to types but does not
permit to remove anything.

weaving

Introduction Module
String newString();
void getString() {
return this.newString();

}

A
...

A
String newString();
void getString() {
return this.newString();

}
...

Figure 3-1. Aspect-oriented introductions.

Figure 3-1 illustrates an aspect-oriented introduction. A special introduction module
defines new members that are to be introduced into a target class A. The weaver takes
the introduction module and the target class and weaves them together. Thus, all
elements of the introduction module become members of the target class A.

A key question of an introduction mechanism is how to handle the self-reference
this in the introduction module. Its handling has a direct impact on the type
correctness of the code that is supposed to be introduced. If this is bound at weave-
time, that means when the introduced members become part of a target class, it is hardly
possible to determine the correctness of an abstract introduction. Abstract introductions
are introductions that can be reused in different contexts. That means the target classes
are unknown at the time the introduction is defined20. If inside an abstract introduction
this is bound at weave-time and the introduced code sends some messages to this,
it is not possible to determine whether the (unknown) target type provides an
appropriate method.

20 In aspect-oriented programming such abstract introductions are often used to define aspect libraries
that are provided by a third party and adapted by the application programmer.

3 - Sally – Specifying Generic Aspects 39

In some approaches, this is not bound to any type at first until the weaving
process adds the introduction modules to its targets. Other approaches bind this
already before weave-time. The binding of this at weave-time permits a flexible
combination of introductions since an introduced method may use further introduced
members. In case this is already bound before weave time, the corresponding type
can be used for type checking of the introduced code.

3.2.1 Introductions in AspectJ

In AspectJ introductions are declared in the class-like construct aspect. It syntactically
consists of the member definition and the name of the target type. To add new
interfaces to a target type, AspectJ provides the keywords declare parents.

class A { ... }
interface NewInterface {...}
aspect MemberIntroduction {
 public String A.newString;
 public void A.doSomething(){...}
}
aspect InterfaceIntroduction {
 declare parents: A implements NewInterface;
}
aspect TypePatternIntroduction {
 public void (A+).doSomething2() {...}
}

Figure 3-2. Introductions in AspectJ.

Figure 3-2 contains an aspect MemberIntroduction that adds a field
newString and a method doSomething to class A. The aspect
InterfaceIntroduction adds the interface to class A. The aspect
TypePatternIntroduction specifies a new method doSomething2 for every
subclass of A.

An often-used idiom in AspectJ is the container introduction (cf. [HSU03]): The
application of introductions to an interface that is later on assigned to a class. In such a
case, AspectJ applies the introduction to all classes implementing the interface. Figure 3-
3 illustrates such an introduction. An aspect IntroductionLoader introduces a
new field newString to an interface Container. A different aspect introduces this
interface to a target class. The result after weaving is that TargetClass contains the
introduced field newString and the introduced interface Container.

The main purpose of container introductions is to apply a collection of introductions
to several different target classes not known at introduction definition time. The
container is then introduced to all target classes without the need to perform any
invasive changes in the introduction definition. This reduces the effort of applying
introductions since it only needs one declare parents statement. Furthermore,
introductions can be applied without knowing in detail all elements that are part of the
container.

In the ordinary application of introductions since version 1.1, AspectJ binds this at
weave-time. Thus, at introduction definition time this does not refer to any type. This
approach works without problems as long as all target classes of an introduction exist,

40 3 - Sally – Specifying Generic Aspects

i.e., all possible classes matching the type pattern are known when the introduction is
defined. For example, in Figure 3-2 this is true for the aspect
MemberIntroduction since the only class that matches the type pattern is a class
named A. At weaving, the weaver binds this to the target class A and checks if all
occurrences of this match A. If this is not true, the weaver throws an exception.
However, if not every possible class exists (as possible up to version 1.1) the introduced
code may contain type errors. For example, a type pattern (A*) refers to all classes
whose names begin with an A. In such a case, AspectJ cannot determine if the use of
this inside the introduced code is type correct.

<<interface>>
Container

<<aspect>>
IntroductionLoader

String Container.newString

+newString

<<aspect>>
ContainerConnector

TargetClass implements Container

introduces
Container

TargetClass
container

TargetClass

weaving

<<interface>>
Container

String newString

Figure 3-3. Container introduction in AspectJ.

In container introductions, this is bound to the container type and not to the
target class (which is somehow misleading since the introduction is performed on the
target class and not on an interface).

Hence, AspectJ realizes the binding of this in two ways: Either at weaving time (in
the usual introduction application) or at introduction definition time (container
connections)21.

3.2.2 Introductions in Hyper/J

In Hyper/J introductions are realized by defining classes that contain the members to be
introduced, and a corresponding hypermodule that defines how to weave the participating
classes.

Figure 3-4 shows schematically how an introduction in Hyper/J looks like and,
furthermore, lists an extract from the corresponding hypermodule specification file: The
class MemberIntroduction contains the members to be introduced and is defined
in an ordinary class. The corresponding hypermodule lays down that the class
MemberIntroduction is to be composed with class A. In fact, the weaver
introduces the class MemberIntroduction as a new super-class of A so that class
A has all methods defined in the introduced super-class. The use of the composition
rule compose permits the introduction of members of one class into several different
target classes. However, it does not really "introduce" the members since members of

21 Since version 1.1 only the latter way of this binding is supported.

3 - Sally – Specifying Generic Aspects 41

the introduced class do not physically become members of the target class. To do so,
Hyper/J provides an equate relationship. It permits two classes to be woven together
to form one single class. However, the disadvantage of this relationship is that it cannot
be used to introduce members into more than one target class (see further section 2.3).

class A {...}
class MemberIntroduction {
 public String newString;
 public void doSomething() {...}
}
// hypermodule specification
relationships:
 ...
 compose class MemberIntroduction with
 additionally class A;
...

Figure 3-4. Introductions in Hyper/J.

Since Hyper/J weaves Java classes, this is bound to the corresponding class in all
members that are to be introduced. Introduced members are regular Java members and,
therefore, can already be accessed from other classes before weaving. If equate is
used Hyper/J forwards all calls to the introduced members to the woven class, that means
all calls to the class to be introduced are transformed into calls to the woven class. Due
to this forwarding mechanism, Hyper/J does not permit to introduce members to more
than one class. If it were possible, it would be ambiguous to what woven class a call has
to be forwarded.

3.3 Where Current Implementations Fail
This section presents some typical examples of static crosscutting code that cannot
completely be modularized by using introductions in AspectJ and/or Hyper/J. Here,
often used implementations of well-known GoF-design patterns [GHJV95] are chosen
for two reasons. First, in aspect-oriented programming some of those implementations
are usually regarded as aspects that need be modularized and reused in different
situations [HaKi02]. Second, the used implementations of GoF design patterns are
commonly known. Hence, it is not necessary to motivate the implementation or to
explain in what context they usually occur.

3.3.1 Singleton implementations

A straightforward implementation of the singleton design pattern [GHJV95] in Java is
to add some members to the class that is supposed to become a singleton: A (private)
static field of the same type as its class, a private constructor and a public static method
that returns the singleton instance22. That means, every class that is supposed to become

22 A discussing of topics like garbage collection in the implementation of the singleton pattern is avoided
here. For a more comprehensive discussion see e.g. [Gran98], pp. 127-133.

42 3 - Sally – Specifying Generic Aspects

a singleton contains all these members. If the singleton pattern is applied to more than
one class, these members represent static crosscutting code. The code stems from the
same concern ("make a class a singleton") that changes the class structure of a system,
but differs slightly from class to class.

class ASingleton {
 private ASingleton () {}
 private static ASingleton
 instance = new ASingleton ();
 public static ASingleton getInstance() {
 return instance;
 }
 ...
}
class BSingleton {
 private static BSingleton
 instance = new BSingleton ();
 private BSingleton() {}
 public static BSingleton getInstance() {
 return instance;
 }
 ...
}

Figure 3-5. Singleton implementations in Java.

For example, in Figure 3-5 two classes implement a singleton. Both have the
singleton specific members whose types differ. Obviously, inheritance as defined in the
programming language Java does not help in this situation to modularize the singleton
implementation because static fields cannot be distributed over different classes in Java
using inheritance.

<<interface>>
Singleton

ASingleton

BSingleton

<<aspect>>
SingletonConnector

SingletonA implements Singleton
static SingletonA.instance =
 new SingletonA();
Singleton B ...

container

+singleton
+instance

+singleton
+instance

<<aspect>>
SingletonLoader

private (Singleton+).new() {}
public static Singleton
 (Singleton+) getInstance {
 return instance
}

+constructor + getInstance()

Figure 3-6. Singleton Implementation in AspectJ.

In AspectJ the singleton can be implemented by introducing all singleton specific
members to an interface Singleton, which represents the container in a container
connection (see Figure 3-6). This container is afterwards connected to a target class via
an introduction (using declare parents). AspectJ does not permit to define the
object creation within SingletonLoader because there is no possibility to refer to

3 - Sally – Specifying Generic Aspects 43

the class to which Singleton will be introduced23. Instead, this has to be defined in
the connector. Hence, AspectJ does not permit to define the singleton aspect in one
single module because instance creation is still scattered over different connecting
aspects. Furthermore, the return type used in getInstance does not correspond to
the type of the target classes (ASingleton, BSingleton). As a consequence,
typing information gets lost during weaving and every object requesting the singleton
instance has to perform a type cast.

Singleton

private static
 Singleton instance = new Singleton();
public static Singleton
 (Singleton+) getInstance {
 return instance
}

HyperModule
..
equate class ASingleton, A
..

ASingleton

Figure 3-7. Singleton implementation in Hyper/J (only one target).

Figure 3-7 illustrates an implementation of the singleton in Hyper/J by using the
equate relationship. The result is that the type of the class variable and the return type
of getInstance correspond to the target class since class Singleton and
ASingleton and, therefore, all occurrences of Singleton in the woven code are
replaced by ASingleton. Thus, the loss of type information that occurred in AspectJ
does not happen in Hyper/J. However, if an equate relationship is chosen, it is not
possible to combine the singleton class with multiple different target classes because of
the forwarding mechanism as described above. A work-around in such case is to make
as many copies of the singleton class as singletons appear in the application and then
perform an equate relationship. But this means to give up the separation of concerns
principle since the singleton-aspect would be spread over numerous different classes
that contain all the same implementation. If a singleton class containing all singleton
specific members were integrated using the compose relationship, the singleton would
become a super-class of both target classes. Hence, both target classes would share the
same static members.

It should be noted here that another possibility in Hyper/J is to define new classes
ASingleton and BSingleton in different packages than the target classes and
then to apply a merge relationship. Although this approach is technically possible, it does
not modularize the crosscutting code in any way.

3.3.2 Visitor implementations

A visitor [GHJV95] encapsulates polymorphic behavior outside of the class hierarchy
and is used to implement operations on complex structures (see section 1.2.2.2 for a

23 It should be mentioned that it is possible to implement the creation by using so-called advice and
introspection. However, this implementation has disadvantages like additional type casts whose
discussion is outside the scope of this chapter.

44 3 - Sally – Specifying Generic Aspects

more detailed discussion on the crosscutting characteristics in visitor implementations).
Let us assume that an object structure of classes A, B, C and D is given. A visitor
implements an interface VisitedElement consisting only of the declaration of the
double dispatch method accept(Visitor). The interface Visitor declares a
method visit for each element to be visited. The operation that is to be performed
on the object structure is specified in each implementation of the visitor interface.

In the implementation are different kinds of crosscutting code. First, classes whose
objects are to be visited contain the double dispatch method. Hence, this method
represents static crosscutting code. Furthermore, the interface Visitor contains the
method visit for all classes implementing VisitorElement.

interface VisitorElement {
 public void accept(Visitor v);
}
class A implements VisitorElement {
 public void accept(Visitor v) {
 v.visit(this);
 }
 ...
}
class B implements VisitorElement {...}
class C implements VisitorElement {...}
interface Visitor {
 void visit(A node);
 void visit(B node);
 void visit(C node);
}
class ConcreteVisitor implements Visitor {
 void visit(A node) {.....}
 void visit(B node) {.....}
 void visit(C node) {.....}
}

Figure 3-8. Visitor implementation in Java.

AspectJ permits up to version 1.1 to modularize the double dispatch method by
introducing it to the interface VisitorElement. That means every class
implementing this interface will automatically possess such a method (Figure 3-9
illustrates the corresponding implementation). Since version 1.1 this approach is no
longer possible because it is not possible to apply member introductions to a number of
different classes directly. The only possibility to do so is to perform the corresponding
container introduction. In such a case, the type of this is bound to the container’s
type and the double dispatch characteristic is not fulfilled any longer.

Moreover, AspectJ does not permit (in no version) to handle the different visit
methods in the visitor interface. So the interface has to be adapted by hand. As a
consequence, a new method has to be defined in VisitorElement for every class
that is added to the object structure.

Hyper/J does not permit to modularize the visitor implementation in any way. The
compose relationship cannot be used since the double dispatch method requires the
dispatch method to be physically present in the target class rather than being inherited.

3 - Sally – Specifying Generic Aspects 45

An equate relationship needs to create a new class containing the dispatch method
for every visited class. Hence, this does not modularize the crosscutting code.

interface VisitedElement {}
interface Visitor {
 visit(A node);
 visit(B node);
 visit(C node);
}
class ConcreteVisitor implements Visitor{
 ...
}
aspect VisitedElementLoader {
 public void VisitedElement+.accept(Visitor v)
 {v.visit(this);}
}
aspect VisitedElementConnector {
 declare parents: A implements VisitedElement;
 declare parents: B implements VisitedElement;
 declare parents: C implements VisitedElement;
}

Figure 3-9. Visitor implementation in AspectJ (up to version 1.1).

3.3.3 Decorator implementations

A decorator [GHJV95] is used to extend the functionality of a single object during run-
time. The typical implementation of a decorator in Java for a given class A is shown in
Figure 3-10. An interface is extracted from A and an abstract decorator implements that
interface. The abstract decorator has an instance variable of the implemented interface to
which all incoming messages are forwarded to. Concrete decorators extend the abstract
decorator and override the methods they need to adapt.

If more than one class is decorated in an application (which is the usual case) all
occurring decorators in Java look like this. Hence, the static crosscutting code consists
of the following elements: The extracted interface of the decorated class and a class that
implements the interface and forwards all messages. The concrete decorators are
application specific and, therefore, usually differ from application to application. Hence,
concrete decorators are not part of the static crosscutting code.

The problem with decorator implementations is that although they contain a lot of
static crosscutting code, they do not contain any fixed implementation. The interface
Component consists of the public methods of the decorated class. Moreover, the type
of the component within the abstract decorator depends on the class to be decorated.
Although it is known that an abstract decorator is supposed to only forward all
incoming messages to the component, the corresponding signatures are not known
since any arbitrary class can be decorated.

In AspectJ, it is not possible to define a decorator aspect independently of the classes
to which it is applied. A mechanism is needed that adds the public methods of a class to
an interface and adds default implementations to a class that implements this interface.

46 3 - Sally – Specifying Generic Aspects

Since AspectJ does not permit to bind method names nor types at weave time, the
introduction implementation is not sufficient to perform such a task24.

class A implements Component {
 public void doSomething() {...}
}
interface Component {
 void doSomething();
}
class AbstractDecorator implements Component {
 public Component component;
 public void doSomething() {
 component.doSomething();
 }
}
class ConcrDecorator extends AbstractDecorator
{

}

Figure 3-10. Decorator implementation in Java.

The argumentation why Hyper/J does not permit to modularize a decorator
implementation is similar. Hyper/J cannot extract an interface out of a class and
introduce a default implementation of methods with unknown signatures.

3.3.4 Summary so far

The previous examples illustrated typical occurrences of crosscutting code in object-
oriented programs. The examples have in common that the crosscutting code varies
every time it occurs (cf. [HaUn02a] for a further discussion). In the singleton example
the return types vary, in the visitor example the parameter types of the visit methods
vary and the number of introductions depends on the number of visited classes. In the
decorator example method signatures vary. However, it has been argued why
occurrences of such variations are still part of crosscutting code and, thus, are to be
modularized using aspect-oriented techniques.

It has been shown that neither the introduction implementation in AspectJ nor the
implementation in Hyper/J is sufficient to separate the crosscutting code in single
modules. Instead, both implementations force the developer to spread pieces of code
over different modules. Thus, neither AspectJ nor Hyper/J follow the principle of
separation of concerns. Nevertheless, there are numerous situations where both
implementations satisfy the needs at hand. Hence, an extension of the current
implementation mechanisms is needed that permits to perform introductions in the
known way and furthermore solves the mentioned problems.

24 It should be noted here that the mechanism for dynamic crosscutting offered by AspectJ permits to
decorate classes in a different way by using the reflection API for dynamic crosscutting. However, this
approach is highly complex and more a work-around than an acceptable solution.

3 - Sally – Specifying Generic Aspects 47

3.4 Sally
Sally [HaUn03a] is a general-purpose aspect language extending the programming
language Java. It is designed to overcome the previously discussed problems. The main
focus of Sally is to handle the problem of reusability: Sally gives developers the
opportunity to specify reusable aspects to a certain extent. Reusability of aspects means
to specify aspects in one single module which can be woven to a number of different
situations or applications. For example, according to the previous section, the intention
of Sally has been to develop a system that provides language features that permit to
specify a reusable visitor: A visitor implementation that can be bound to a number of
different class hierarchies without the need to implement redundant code. Sally permits
to specify aspects which are generic enough to be applied to different situations. This
thesis describes this by the term generic aspect.

The design of Sally was highly inspired by AspectJ and shares a number of properties
with it. Sally provides

• The composition of aspects, which is completely performed at compile-time,

• The adaptation of method calls as well as method definitions, and

• Language constructs similar to AspectJ’s pointcut language, which permit to
specify join points in a declarative manner.

On the other hand Sally also differs in a number of details from AspectJ:

• Sally does not provide a new language construct (like aspect) that serves as
container for the new languages constructs and that provides its own namespace.
Instead, in Sally all new language constructs are embedded into the language
construct class.

• Pointcuts in Sally serve to specify crosscutting of behavioral as well as structural
adaptation. I.e. there is no distinction of join point descriptions that are used for
advice and introductions.

• Sally does not provide object-specific pointcuts like for example the this
pointcut in AspectJ.

• Sally provides some variabilities within the specification of advice and
introduction as well as in the pointcut definition.

The pointcut language permits to specify queries on the application using a query
language based on a logical programming language. Thereto, the pointcut language relies
on information available at compile-time.

In contrast to other general purpose approaches like for example AspectJ, the
pointcut language of Sally is used in order to select structural elements as well as
behavioral elements that crosscut the application. I.e. the pointcut language of Sally is
used to specify those types to which additional declarations should be added to as well
as to specify those locations where certain behavior needs to be executed. So, the
pointcut language works on a structure reflecting on the static elements of the program.
A similar approach can be found for example in OpenC++ [Chib95] and its
corresponding Java implementation in OpenJava [TCIK00], which both adapt an
application based on its static elements. The pointcut language of Sally permits to select
join points not only based on properties that are directly available at such join points,

48 3 - Sally – Specifying Generic Aspects

but also based on the relationship between different join points. For example a method
definition join point can be selected based on its (statically computed) calls occurring
within a different method declaration.

In contrast to other aspect-oriented approaches like for example AspectJ, Sally does
not provide the specification of dynamic properties within its pointcut language: If
runtime specific information is needed to determine whether or not aspect-specific code
is to be executed, programmers needs to specify this on their own using ordinary
language constructs provided by Java. Furthermore, the pointcut language of Sally only
provides static information to the aspects. As a consequence, the mechanism of context
exposure in Sally works quite different from AspectJ: In Sally there is no runtime system
passing objects to aspects and advice.

3.4.1 Decomposition of the Underlying Application

Sally decomposes the application into a number of join points that represent the
syntactical elements given by the grammar of the programming language Java and the
additional language constructs provided by the grammar of Sally (which extends the Java
grammar). I.e. the syntactical elements in the application represent the information
which can be potentially used for the specification of those join point which are to be
adapted. However, Sally provides only API support for a few of them. These elements
correspond to the most frequently used elements in AspectJ. All other elements can also
be used within the pointcut specification, however less comfortably.

In addition to the pure syntactical information, Sally also provides the available
typing and scoping information for each element. To do so, the Sally compiler extracts
all static type and scoping information and permits to access them in corresponding
pointcut expressions. The main difference to approaches which provide compile-time
reflection (like for example OpenJava [TCIK00]) is that Sally reflects not only on the
structure of elements like classes or method (which is known as structural reflection
[Maes87]) but also on inner elements like method calls or new calls.

Figure 3-11 illustrates in a simplified way how an application of the observer design
pattern [GHJV95]25 is decomposed into its join points in Sally. The application consists
of a class Person which has just one field name of type String and a class
PersonViewer. Person extends the abstract class Subject, which permits to
attach and detach observer instances by providing corresponding methods attach
and detach. After assigning a new object to field name, the method
notifyObservers is invoked which informs observers about the new state. Class
PersonViewer extends class Observer and defines the method update declared
in Observer. The method simply prints a person’s name on the screen.

The resulting graph consists of multiple nodes, each representing an element as it
appears in the abstract syntax tree (AST). In fact, each node is an object, i.e. each node
has its own object identity and each expression has a corresponding type which can be
used for comparing join points as well as reflecting on a join point’s characteristics. For

25 A typical implementation of the observer design pattern in Java does hardly make use of extends
relationships since Java provides only single inheritance. See [Gran98] for an exhaustive discussion on
typical implementations of the observer in Java.

3 - Sally – Specifying Generic Aspects 49

reasons of simplicity the object identity is skipped in Figure 3-11 and is just represented
by three dots in front of each object’s type. Furthermore, some of the direct
relationships between the objects in the graph do not exist directly: For example a field
assignment is not directly referred by a method declaration, but indirectly via an object
of type MethodBody.

Subject

public void attach(Observer o) { ... }
public void detach(Observer o) { ... }
public void notifyObervers() {...}

PersonViewer
public void update(Subject s) {

System.out.println((Person) s.getName);
}

Person
String name

… : ClassDecl

… : CompilationUnit

… : ClassDecl … : ClassDecl
name = Observer
isAbstract = true
extends = Object
...

name = Person
extends = Subject
...

name = Subject
extends = Object
...

… : MethodDecl
name = update
pTypes = {Subject}
...

...

...

...

Observer
public void update(Subject s);

Observer[] observers = ...

public void setName(String name) {
 this.name = name;
 this.notifyObservers();
}
public void getName() { return name; }

...

… : MethodDecl
name = attach
pTypes = {Observer}
...

...

… : MethodDecl
name = detach
pTypes = {Observer}
...

...

… : MethodDecl
name = notifyObservers
pTypes = {}
...

...… : FieldDecl
name = observers
type = Observer[]
...

...

… : MethodDecl
name = getName
pTypes = {}
...

… : Param
name = name
type = String

...
… : FieldAccess

target = this
...

targetField
...

...

...

...… : MethodDecl
name = setName
pTypes = {String}
...

...

… : FieldAssign
target = this
type = String

… : FieldADecl
name = name
type = String
...

......

targetField

...

...
...

assignedObj

… : ClassDecl
name = PersonViewer
extends = Observer
...

...

… : MethodDecl
name = update
pTypes = {Subject}
...

...

...

...

...

… : MethodCall
target = this
type = void
...

...

targetMethod
...

...

Figure 3-11. Decomposition of a simple Observer implementation.

The type of each object is given by the grammar definition of the underlying
programming language. In Sally the type of each node is defined by a corresponding
Java grammar element. For example an object which represents a class declaration is of
type ClassDecl, an object representing a method declaration is of type

50 3 - Sally – Specifying Generic Aspects

MethodDecl, an object representing a field declaration is of type FieldDecl, a
field assignment is of type FieldAssign, a formal parameter is represented by an
object of type Param and a method call is represented by a method of type
MethodCall. There is one object (of type CompilationUnit) from which all
nodes in the graph can be reached.

Most of the relationships in the graph come directly from the syntax definition. For
example the object relationship between a class declaration and a method declaration
can be directly deduced from the programming language’s syntax. However, there are
also relationships between objects due to the static type system and the single
dispatching in Java (cf. for example [Bruc02] for a discussion on single dispatching in
general, and [CLCM00] for dispatching in Java). For example, there is a node
representing the method call inside the method setName defined in class Person to
the method notifyObservers. Due to single dispatching the target method of the
method call is statically computed because of the target object’s static type and the static
types of its parameters. The target object is the self-reference this which has the static
type Person because the method is defined in class Person. There are no parameters
passed to the method. Class Person does not declare a method
notifyObservers. Hence, the target method is the method declaration whose
signature corresponds to the statically computed signature which is declared in the
nearest class extended by Person. Since class Person extends Subject (which
itself extends Object) and Subject contains a method declaration (and definition)
matching the signature as computed before, this method is determined to be the target
method of the method call. In correspondence, the object representing the method call
has a reference to the object representing the method notifyObservers in class
Subject. Due to single dispatching, and since Java does not permit covariant return
types in overriding methods (cf. [Bruc02]), the return type of the method call is known
to be void. As a result of dynamic binding, the actual executed method may vary
during the execution of a program. The method notifyObervers in Subject is
not declared to be final. Consequently, this method might be overridden in
subclasses of Person. In case notifyObservers is invoked on an instance of
such a subclass, the overriding method is invoked.

In the same way as explained above every node representing an expression (i.e. which
has a type) has statically computed type information that can be used by the pointcut
language to reason on the application. Hence, all expressions in Java like method calls,
type casts, or field and variable assignments have corresponding type information stored
in the graph resulting from the decomposition.

Java’s scoping information is being used in order to determine relationships between
join points referring to certain objects. For example, the relationship between the field
assignment in method setName and the field name is being established from the
underlying scope information.

3.4.2 Pointcut Specification

In Sally, the design of the pointcut language was mainly influenced by the approach of
logical meta programming (cf. for example [DVDH99, Wuyt01]): A pointcut is a
logical rule whose body refers to other pointcuts or system predicates applied to join
points. On the implementation level Sally makes use of TyRuBa [DV98] which is a

3 - Sally – Specifying Generic Aspects 51

Prolog-like logical programming language (see [StSh94] for an introduction into Prolog).
A pointcut specifies a selection of join points that can be adapted by aspects. Pointcuts
export parameters to those units that adapt the corresponding join points.

<abstractPointcutDeclaration> "abstract" "pointcut" <pointcutHeader>

<pointcutDeclaration> (<abstractPointcutDeclaration> | <pointcutDefinition>) ";"

<pointcutHeader> <pointcutIdentifier> "(" [<logicalVarList>] ")"

<pointcutIdentifier> <javaIdentifier>

<logicalVarList> <logicalVariable> { "," <logicalVariable> }

<pointcutDefinition> ["final"] "pointcut" <pointcutHeader>
"=" <pointcutExpression>

<pointcutExpression> <disjunction>

<target> "thisClass" | <fullQualifiedType>

<disjunction> <conjunction> { "||" <conjunction> }

<conjunction> <simpleExpression> { "&&" <simpleExpression> }

<simpleExpression> "(" <pointcutExpression> ")" | <simplePointcutExpr> |
<negation> | <findallExpr>

<simplePointcutExpr> [<target> "."] <pointcutIdentifier>
"(" [<termList>] ")"

<term> <logicalVariable> | <constant> | <list>

<termList> <term> { "," <term> }

<list> "[" [<listBody>] "]"

<listBody> <termList> ["|" <term>]

<negation> "!" <pointcutExpression>

<findAllExpr> "FINDALL" "("<simplePointcutExpr> "," <term> "," <term>
")"

<pointcutBody> <pointcutExpression>

Figure 3.1. Syntax of Pointcut Definitions.

3.4.2.1 Syntax of Pointcuts

Pointcuts are declared inside classes, i.e. pointcuts are syntactically defined on the same
level like methods or fields. The syntax of pointcut declarations is defined according to
the context-free grammar as specified in Figure 3.1 using the keyword pointcut. A
pointcut may be declared abstract, i.e. the pointcut is declared but not defined. Also, a
pointcut may be concrete, i.e. a pointcut is declared as well as defined within its
surrounding class.

Each pointcut has a pointcut header consisting of an identifier and a parameter list.
The identifier is a simple Java identifier used by other language constructs to refer to the
pointcut. The parameter list is a (possibly empty) list of logical variables. The syntax of
logical variables is similar to the syntax of logical variables in TyRuBa: A logical variable
begins with a question mark followed by a Java identifier. To ease the use of pointcut
Sally provides furthermore a special logical variable that simply consists of a question
mark. This variable cannot be referred to by other pointcuts within a pointcut

52 3 - Sally – Specifying Generic Aspects

expression and is not considered for unification. According to the terminology of logical
programming languages, the number of pointcut parameters is called the pointcut’s
arity. The name of a pointcut and its arity represent a pointcut’s signature, which is
used to validate and evaluate a pointcut.

Pointcut definitions have a pointcut body in addition to their (abstract) declarations.
The pointcut body is a combination of simple pointcut expressions. A simple pointcut
expression consists of a target class (which is according to the Java syntax a fully
qualified type), a pointcut identifier, and a list of terms. A term is a logical variable, a
constant, or a list, whereby the syntax of all these constructs corresponds to the syntax
of logical variables, constants, and lists in TyRuBa.

Simple pointcut expressions can be combined via disjunction (“||”), conjunction
(“&&”), or cuts (“!”), which comply with the corresponding operators in logical
programming languages like TyRuBa or Prolog. The syntactical definition of the
FINDALL construct corresponds to the FINDALL predicate in logical programming
languages (cf. e.g. [StSh94]): A FINDALL expression consists of the keyword
FINDALL, followed by a simple pointcut expression and two terms. The semantics of
conjunction, disjunction, and FINDALL corresponds to the semantics in Prolog. The
semantics of negation corresponds to the semantics of cuts in Prolog.

3.4.2.2 Validation of Pointcuts

In Sally pointcuts are class members which are evaluated at compile time. According to
the grammar specified in Figure 3.1, a pointcut declaration is either abstract, i.e. the
pointcut specifies only the name of the pointcut and its arity, or concrete. A concrete
pointcut consists of a number of pointcut expressions, which typically consist of simple
pointcut expressions (see Figure 3.1). Such simple pointcut expressions refer to other
pointcut declarations. These pointcut declarations are either built-in pointcuts (which
will be described in the following sections) or user-defined pointcuts which are defined
within the inheritance hierarchy of the corresponding class. Alternatively, a simple
pointcut expression can refer to global pointcuts which are defined in a class outside the
inheritance hierarchy of the current pointcut definition.

In Sally there are two different ways of how pointcuts can be addressed: Either
pointcuts are addressed absolutely or relatively. An absolutely addressed pointcut is a
pointcut expression where the target includes a fully qualified type (i.e. the type is
identified by its package name and type name). A relatively addressed pointcut refers to
a pointcut which is defined in the same class hierarchy as the surrounding pointcut. The
target of a relatively addressed pointcut is specified using the keyword thisClass or
by simply not specifying a target26. This thesis uses the term target for both, the fully
qualified class in an absolutely addressed pointcut and thisClass in a relatively
addressed pointcut.

After parsing and type checking a Sally application the validity of pointcuts is
checked. This validity check is a static analysis of the Sally construct pointcut, which
restricts the usage of pointcuts in a number of ways similar to the known type-checking

26 This corresponds to the use of this in languages like Java where messages which do not have an
explicit target are assumed to have this as target. In contrast to this, thisClass refers to a class
and not to an object.

3 - Sally – Specifying Generic Aspects 53

rules in Java. Such restrictions pertain on the one hand to the declaration and definition
of pointcuts, i.e. they are related to pointcut signatures. On the other hand, the
restrictions are related to pointcut expressions.

The first restrictions (or static rules) related to the declarations and definitions of
pointcuts are similar to the restrictions of member declarations and definitions in the
programming language Java.

1. It is not allowed to declare two pointcuts with the same signature, i.e. with the
same name and the same arity defined in the same class. The reason for such
restrictions lies in the way of how pointcuts are evaluated which will be explained
later in this chapter (see section 3.4.2.4).

2. If a class contains an abstract pointcut, the class also has to be declared abstract.
This prevents programmers from accidentally addressing a pointcut outside the
inheritance hierarchy, which is not already fully specified, i.e., which does not
refer exclusively to defined (and not only declared) pointcuts.

3. Pointcuts that are declared as final cannot be overridden. I.e. it is not possible
that a subclass of the one containing the pointcut definition contains a pointcut
with the same signature as the one declared as final.

4. A class has to be declared abstract if there is at least one abstract pointcut in one
of its superclasses, which is not overridden along the inheritance path.

The following restrictions pertain to the validity of pointcut expressions inside a
pointcut definition. A pointcut definition is valid, if it corresponds to the restrictions
above, and if each pointcut expression occurring in the pointcut definition’s body is
valid. The validity of pointcut expressions is restricted as follows.

5. A pointcut expression that addresses a pointcut absolutely is valid, if the target
class exists (i.e. if there is a class declaration whose name matches the fully
qualified type), the target class is not abstract, and either the target class or one of
its superclasses defines a pointcut whose signature corresponds to the pointcut
used in the pointcut expression.

6. A relatively addressed pointcut is valid, if the target class or one of its
superclasses contains a pointcut declaration with the same signature as used in
the pointcut expression. According to rule 2 this implies that if the
corresponding pointcut is declared but not defined in the class itself or its
superclass the class itself has to be declared abstract.

The consequence of these rules is that a class, which is not abstract, always contains
pointcuts that are not abstract themselves. I.e. if a pointcut is absolutely addressed by a
pointcut expression in this class, there is a pointcut definition in the class or its
superclasses. The rules correspond to the usual subtyping rules in statically typed
languages like Java. The intention is to prevent developers from accidentally referring to
undefined pointcuts.

3.4.2.3 Built-In Pointcuts

Sally contains a number of predefined pointcuts (or system predicates) which permit to
reason on the application which is about to be woven. The predefined pointcuts are
members of the class BuiltinRules (which represents the API of predefined
pointcuts).

54 3 - Sally – Specifying Generic Aspects

In general, pointcuts refer to declaration units like class, method or field declarations,
or expressions like method calls. In order to ease the use of pointcuts, Sally typically
assigns the same pointcut identifier to more than one pointcut of the same kind, each
with a different arity. One essential characteristic of all predefined pointcuts is that they
provide a value representing a join point’s identity: This identity refers to the objects
from the application’s decomposition.

typeDeclaration(?typeID,?typeName)
classDefinition(?cID,?typeName)
interfaceDefinition(?cID,?typeName)
The pointcut typeDeclaration with arity 2 determines all type declarations where
the id corresponds to ?typeID and the type name corresponds to ?typeName. If
?typeID is bound, ?typeName is bound to the type name of that identity. Types in
Java are either class definitions or interface definitions27. The corresponding pointcuts
classDefinition and typeDefinition bind the corresponding variables to
class definitions and interface definitions.

declaredSuperClass(?cID,?scID)
superClass(?cID,?scID)
The pointcuts declaredSuperClass and superClass determine the super-
classes defined for a class identified by ?cID. The pointcut declaredSuperClass
binds the variable ?scID which is declared to be the direct superclass of the one
identified by ?cID. The pointcut superClass binds the id of every super-class of
the class identified by ?cID to the variable ?scID.

declaredInterface(?typeID,?iID)
interface(?typeID,?iID)
The pointcuts declaredInterface and interface determine the interface for
a given type. If ?typeID is bound to a class or an interface, the first pointcut binds
?iID to the identifier of those interfaces extended (in case ?typeID is bound to an
interface) or implemented (in case ?typeID is bound to a class) directly by ?typeID.
The pointcut interface binds the variable ?iID to all interfaces which are directly
or indirectly implemented or extended by the type identified by ?typeID.

methodDeclaration(?mID,?cID)
methodDeclaration(?mID,?cID,?name)
methodDeclaration(?mID,?cID,?name,?rID,?pIDs)
methodDeclaration(?mID,?cID,?name,?rID,?pIDs,?pNames)
There are four built-in pointcuts methodDeclaration with the arities 2, 3, 5 and
6. The first pointcut has two parameters. The first one describes a method identifier, the
second one a class identifier. If the second parameter is bound, the pointcut binds
?mID to all method identifiers of those methods which are declared in the class
identified by the bound variable ?cID.

27 This statement neglects primitive types in Java and is only related to Java since version 1.4 because Sally
is built on top of Java 1.4. Since Java version 1.5 provides generic types. These constructs permit types
to be instantiated from corresponing generic types.

3 - Sally – Specifying Generic Aspects 55

The pointcut with arity 3 determines all methods which are identified by ?mID
having the method name ?name declared in all classes identified by ?cID. Hence, if
?cID is bound the pointcut binds all method identifiers for methods declared in ?cID
to the variable ?mID and their corresponding names to the variable ?name. If variable
?name is bound the pointcut binds the variables ?mID and ?cID to all method
identifiers and class identifiers where the classes declare a method having the
corresponding name.

The pointcut with arity 5 determines all methods with the id ?mID, the name
?name, the return type with id ?rID, and the parameter types ?pIDs that are
declared in class ?cID. The parameter types are delivered as a list where the position in
the list corresponds to the position in the parameter list as defined in the base program.

The last pointcut with arity 6 binds the parameter names to the list ?pNames.

methodCall(?callID,?methodID)
methodCall(?callID,?cID,?mName)
methodCall(?callID,?cID,?mName,?rTypeID,?pIDs)
The pointcut methodCall determines method calls within the application. These
method calls are determined by the semantics of the underlying programming language
Java, i.e. under consideration of single dispatching. As a consequence, the target
method of a method call is determined by the static types of the participating
expressions. MethodCall does not expose any of the participating expressions, nor
the static types of the expressions which participate in the method call. Instead, only the
statically computed target method is determined.

The pointcut methodCall with arity 2 determines for each method call having id
?callID the method ?methodID being invoked by the call.

The pointcut with arity 3 determines all method calls with id ?callID which
invoke a method with name ?mName in class ?cID.

The pointcut methodCall with arity 5 determines all method calls with id
?callID that call a method with name ?mName which return a type identified by
?rTypeID with the parameter types ?pIDs in the class ?cID. The parameter types
?pIDs are a list of object identities.

callExpressionTypes(?id,?tTypeID,?mName,?pTypeIDs)

The pointcut callExpressionTypes exposes all static types on the caller side of a
method call. The first parameter ?id is bound to the id of the call expression. The id
corresponds to the id used in the pointcut methodCall. I.e. by combining a
methodCall pointcut with a callExpressionTypes pointcut it is possible to
determine how the types in the client code relate to the types in the method declaration.
The second parameter is bound to the type’s id of the target expression. ?mName is
bound to the method name and the list ?pTypeIDs binds the static types of the call
parameters.

callExpression(?cExprID,?tExpID,?mName,?pExpIDs)

In contrast to the pointcuts methodCall and callExpressionTypes the
pointcut callExpression exposes the expressions which participate in a method
call (as target expressions or parameter expressions). The pointcut binds the id of a call

56 3 - Sally – Specifying Generic Aspects

expression to ?cExprID, the id of each target expression to ?tExpID, the method
name to ?mName, and the expression which represents the parameters in the method
call to the list ?pExprIDs. The id given by the variable ?cExprID corresponds to
the id of the method call as provided by the pointcuts methodCall and
callExpressionTypes.

constructorDeclaration(?id,?cID)
constructorDeclaration(?id,?cID,?pIDs)
Similar to the methodDeclaration pointcut the pointcut
constructorDeclaration determines for a given class its constructor
declarations. The pointcut with arity 2 binds the variable ?id to the id of the
constructor and the variable ?cID to the identity of the corresponding class
declaration.

The pointcut with arity 3 additionally binds the declared parameter type identities to
the variable ?pIDs.

fieldDeclaration(?fID,?cID)
fieldDeclaration(?fID,?cID,?name,?typeID)
Similar to methodDeclaration the pointcut fieldDeclaration refers to
field declarations within class declarations. The pointcut fieldDeclaration with
arity 2 determines all field declarations having id ?fID that are declared in a class (or
interface) with id ?cID.

The pointcut with arity 4 additionally refers to the field name ?name and the field’s
type ?typeID.

fieldGet(?id,?fID)
fieldGet(?id,?fID,?cID)
fieldGet(?id,?fID,?cID,?mID)
The pointcut fieldGet determines reading accesses to fields in the application. The
pointcut with arity 2 binds the id of the corresponding expression to ?id and the id of
the field which is about to be read to ?fID. The pointcuts with arity 3 and arity 4
additionally bind the id of the class where the reading of the field is defined in to ?cID
and the method which contains the reading access to the variable ?mID.

The target field of the expression representing the reading access of the field is
determined by the underlying programming language Java, i.e. based on its type system.

fieldSet(?id,?fID)
fieldSet(?id,?fID,?cID)
fieldSet(?id,?fID,?cID,?mID)
The pointcuts fieldSet determine writing accesses to fields. The pointcut with arity
2 binds the id of the corresponding expression to ?id and the id of the field which is
about to be written to ?fID. The pointcuts with arity 3 and arity 4 additionally bind the
id of the class containing the assignment to the variable ?cID and the method
containing the assignment to ?mID.

3 - Sally – Specifying Generic Aspects 57

fieldSetTypes(?id,?fID,?targetTID,?assignedTID)

Similar to the methodCall, pointcut fieldSet neither exposes any information
about the type of the object which is assigned to a field nor the type of the object to
whose field an object is assigned to. I.e. it is not possible to determine whether the static
type of the assigned object corresponds to the field’s type or whether the static type of
the assigned object is a subtype of the field’s type.

The pointcut fieldSetType determines for a field assignment the static type of
the assigned object as well as the static type of the object to whose field an object is
assigned. The static type corresponds to the static type as determined by the type system
of Java. The variable ?id is bound to the same id as the corresponding fieldSet
pointcut. The variable ?targetTID is bound to the id of the static type of the object
owning the field. The variable ?assignedTID is bound to the static type of the
object which is assigned.

3.4.2.4 Evaluation of Pointcuts

The evaluation of the known logical constructs like concatenation, disjunction, or
negation works in the same way as in logical programming languages (like for example
explained in [StSh94]).

On the other hand, pointcuts are (similar to the pointcut language in AspectJ)
declared in constructs which potentially participate in an inheritance relationship, i.e.,
pointcut can be inherited along an inheritance structure. In contrast to AspectJ, Sally
does not provide any special construct for the declaration of aspects; in Sally pointcuts
are declared and defined in classes. The reason for not introducing a new language
feature lies in the complexity of the resulting language; in AspectJ the new language
construct aspect comes with a number of new mechanisms which need to be
understood and therefore increase the complexity of the language (cf. for example
[HBU01, HaUn01]).

The main difference between ordinary logical terms and pointcuts in Sally is that
pointcuts potentially participate in an inheritance relationship to permit an incremental
modification pointcuts28. Pointcut expressions can refer to pointcut declarations in the
inheritance hierarchy which are not yet defined (but declared) or which are defined in a
subclass by addressing a pointcut relatively. The intention is to permit developers to
specify aspects incrementally: An aspect having a number of pointcuts can be specified
as complete as possible but leaving some hooks to the developer. I.e. it is possible to
specify an abstract aspect without knowing all details of how and where the aspect
contributes to the application. Also, an incompletely defined aspects permits to weave
an aspect to different join points without the need to perform destructive changes on
the aspect, i.e. without the need to modify the source code of the aspect. As a
consequence, aspects can be specified in one place containing all features belonging to
that aspect and the code which connects the aspect to the application can be specified in
a different location.

A pointcut definition is evaluated by evaluating its body that consists of a logical
term which itself consists of a number of simple pointcut expressions. Since the

28 Another distinction is of course that a pointcut header only is permitted to contain logic variables.

58 3 - Sally – Specifying Generic Aspects

combination of pointcut expressions, i.e. concatenation, disjunction, and negation of
pointcut expressions correspond to the usual way of evaluating logical terms, this is not
discussed in this chapter (see e.g. [StSh94]).

Pointcut Definitions:

class A {
 pointcut pc1(?id) = typeDeclaration(?id, ClassX);
 ...
}

class B extends A {
 pointcut pc(?id) = pc1(?id);
 ...
}

class C extends B {
 pointcut pc1(?id) = typeDeclaration(?id, ClassY);
 ...
}

Evalutation of pc(?id) in C :

class A { … }

class B extends A { … }

class C extends B {
 pointcut pc(?id) = pc1(?id);
 pointcut pc1(?id) = …
 ...
}

binds variable ?id to node identity
of class definition ClassY

Figure 3-12. Pointcut definition and evaluation of pointcut pc in C.

However, the way simple pointcut expressions are evaluated differs from the way
logical terms are evaluated. A pointcut is evaluated for a concrete class. According to the
validation rules described in section 3.4.2.2 a concrete class contains only concrete
pointcuts.

Once a pointcut for a concrete class is evaluated, the corresponding concrete class
becomes an implicit parameter of the pointcut expression: Each relatively addressed
pointcut becomes evaluated with this implicit parameter. The pointcuts to be chosen for
each relatively addressed pointcut are those pointcuts that match the corresponding
signature and that are defined last in the inheritance hierarchy. This kind of pointcut
binding corresponds to the binding of object members in object-oriented systems.

Figure 3-12 illustrates a pointcut definition with the corresponding pointcut
evaluation. The pointcut pc1 in class C overrides the pointcut pc defined in class A.
Consequently, when the pointcut pc in class C is evaluated (which relatively addresses
pointcut pc1 in class B) the pointcut pc1 is being evaluated. Hence, the variable ?id
in pointcut pc is bound to the identity of the node representing the type definition of
ClassY.

3.4.3 Join Point Wrappers

Join point wrappers are constructs for defining the adaptation of the base application’s
behavior and can be (to a certain extend) compared to advice in AspectJ. They can be
applied to method definitions, method calls, field accesses and field assignments. For
each of those different kinds of join points Sally defines corresponding wrapper
constructs.

Syntactically, join point wrappers are method-like constructs consisting of a header
and a body. The header consists of a modifier (in correspondence to the access
modifiers public, private, and protected in Java), the keyword around, a

3 - Sally – Specifying Generic Aspects 59

name, a parameter list (representing static parameters of the corresponding pointcut)
and a corresponding pointcut.

class MyWrapper {
 pointcut pc(?mID) =
 methodDeclaration(?mID, ?cID, m)
 classDeclaratation(?cID, MyClass)
 public around mWrapper<?mID,?args> pc(?mID) {
 System.out.println(“before“);
 System.out.println(“first argument: “ + ?args#1);
 wrap<?mID>(?args);
 System.out.println(“after“);
 }
}

class MyClass {
 public void m(int i) {
 System.out.println(“m“);
 }
}

 Figure 3-13. Method defininition wrapper for method m.

Join point wrappers have three different kinds of parameters. First, there is one
special parameter (which is the first parameter) that represents the target join point that
is to be wrapped. Second, there are parameters that represent inherent parameters of the
corresponding join points. Such inherent parameters are for example parameters of
method calls or the assigned value of a field assignment join points. Third, there are
parameters that explicitly come from the corresponding pointcut.

Within the wrapper body, all parameters can be used and are replaced when the
aspect is woven to the target. This within the wrapper body corresponds to this as it
occurs in the position in the source code where the join point occurs. Furthermore,
within the wrapper body the special keyword wrap followed by a logical variable
represents the join point being wrapped as well as a parameters list of the corresponding
wrapped join point. This wrap is being replaced at compile time by a corresponding
method call to a method representing the original join point. The number of arguments
being passed to wrap corresponds to the number of arguments of the corresponding
kind of join point. Furthermore, it is possible to pass a logic variable as arguments. The
compiler then passes the corresponding list represented by the variable as argument to
the wrapped join point.

Figure 3-13 illustrates a method wrapper definition for method definition join points.
The wrapper has the name mWrapper and refers to the pointcut pc with arity 1. The
pointcut’s first variable is bound to the variable ?mID. The corresponding pointcut
selects all method definitions with the name m in class MyClass. Since there is only
one method with such a name in the corresponding application, the pointcut binds just
one single identity to the corresponding variable ?mID.

The variable ?mID is being passed as the first variable to the wrapper. Hence, the
values of this variable represent the targets of this wrapper. The second parameter
?args is a parameter representing the arguments of the method. The argument
?args is an ordered list of arguments. Within the body, each element of the list can be
used by explicitly referring to its position in the list. In Figure 3-13 the first argument of
the method is being used: The notation # followed by a number n represents the n-th
argument in the list. Consequently, the expression ?args#1 represents the first

60 3 - Sally – Specifying Generic Aspects

argument of method m, which is of type int in the example. The variable ?args is
being used as argument for wrap. Consequently, the effect of the wrapper mWrapper
is that it prints out the string before as well as the value of the method’s first
argument, then the original method is executed, and finally it prints out the string
after.

class MyWrapper2 {
 pointcut pc(?sID) =
 fieldDeclaration(?fID, ?cID, i, ?typeID) &&
 classDeclaratation(?cID, MyClass2) &&
 fieldSet(?sID, ?fID, ?cID);
 public around setWrapper<?mID,?this,?val> pc(?mID) {
 System.out.println(“before“);
 wrap<?mID>(?val + 1);
 System.out.println(“after“);
 }
}

class MyClass2 {
 int i;
 public void m(int i) {
 this.i = i;
 }
}

Figure 3-14. Field set wrapper for field i.

Figure 3-14 illustrates a field setter wrapper definition. The corresponding pointcut
selects all field sets of field i defined in class MyClass2. Since there is only one
assignment to field i (defined in class MyClass2) the pointcut binds just one single
identity to the corresponding variable ?sID. In contrast to method definition wrappers,
field set wrappers receive 3 inherent join point parameters. The first one represents the
field set identity, the second one represents the object whose field is being changed, and
the third one represents the object that is being assigned to the field. In Figure 3-14
before and after are being printed out before and after the field access. The
wrapper increases the integer that is assigned to the field by one within the wrap
expression.

class MyWrapper3 {
 pointcut pc(?sID) =
 fieldDeclaration(?fID, ?cID, i, ?typeID) &&
 classDeclaratation(?cID, MyClass3) &&
 fieldGet(?sID, ?fID, ?cID);
 public around getWrapper<?mID,?this> pc(?mID) {
 System.out.println(“before“);
 int val = wrap<?mID>(?this);
 System.out.println(“read value: “ + val);
 return val;
 }
}

class MyClass3 {
 int i;
 public int m() {
 return i;
 }
}

Figure 3-15. Field get wrapper for field i.

Field access wrappers differ from field set wrappers: There is no third parameter
being passed. Figure 3-15 illustrates the definition of such a field access wrapper. The
second variable represents the target object whose variable is being read. The wrapper

3 - Sally – Specifying Generic Aspects 61

prints out the string before. Then the wrapper executes the original join point that
returns an int and assigns this value to the variable val. Finally, the wrapper prints
out and returns the field’s value.

Method call wrappers are the forth kind of join point wrappers. They are similar to
method definition wrappers: They have a variable representing the arguments of the
method call (which is the third variable). The second variable represents the target
object to which a message is being sent. Figure 3-16 illustrates the declaration of a
method call wrapper. The pointcut pc refers to all method calls to method m defined in
class MyClass4. Since there is only one such method call in the example, the variable
?cID is bound to that corresponding identity. The parameter ?target refers to the
target object of the method call, the parameter ?args represents the ordered list of
arguments passed to the method call. The wrapper simply prints out the first argument
(i.e. the value 10) and executes the original method.

class MyWrapper4 {
 pointcut pc(?cID) =
 methodCall(?cID,?tID,m) &&
 classDeclaratation(?tID, MyClass4);
 public around cWrapper<?cID,?target,?args> pc(?cID) {
 System.out.println(“first argument: “ + ?args#1);
 return wrap<?cID>(?args);
 }
}

class Caller {
 public void call() {
 MyClass mc = new MyClass();
 mc.m(10);
 }

class MyClass4 {
 public void m(int i) {
 ...
 }
}

Figure 3-16. Method call wrapper for call to m in MyClass.

3.4.4 Introductions

Introductions are constructs designed to perform adaptation of types and type
hierarchies. Introductions permit to add new method declarations or definitions to types
and permit to add new elements to type hierarchies.

In Sally, introductions are members of classes, and as such they consist of a header
and a body. The header consists of the keyword introduction followed by an
identifier, a number of parameters, and a referenced pointcut. The body defines the
members that are to be introduced and looks like a usual class body. An introduction’s
body corresponds to a class body with the exception that logic variables from the header
are permitted. Furthermore, the additional extends keyword can be used in order to
introduce additional parent relationships to the target types.

The replacement of the logic variables within introductions corresponds to the
replacement as explained for wrappers in the previous section: The variables are
replaced with their corresponding values when the aspect is woven. The only exception
is the use of variables representing lists in the header of signatures: If two list parameters
are being used within method headers, one list represents the list of type names, the
other one represents the list of parameter names. In correspondence to join point
wrappers, the first parameter of the introduction represents the target class.

62 3 - Sally – Specifying Generic Aspects

In Figure 3-17 the class MemberIntroduction contains an introduction named
newMembers that has a single parameter ?class and a corresponding pointcut
targetClass. In the example the introduction body consists of the instance variable
newString and the method doSomething (for reasons of simplicity the method’s
body is not shown).

class A {
 ...
}

class MemberIntroduction {
 pointcut targetClass(?cID) =
 classDefinition(?cID,A);
 introduction newMembers<?cID> targetClass(?cID) {
 public String newString;
 public void doSomething() {...}
 }
}

Figure 3-17. Member introduction in Sally.

The pointcut targetClass binds the parameter ?cIS to the class A using the
pointcut classDefinition with arity 2. Consequently, class A is the target of the
introduction, i.e. the class to whom the members newString and doSomething
are introduced.

class A {
 ...
}

class IFIntroduction {
 pointcut targetClass(?cID) =
 classDefinition(?cID,A);
 introduction newIF<?cID> targetClass(?cID) {
 extends I;
 }
}

interface I {
 ...
}

Figure 3-18. Parent introduction in Sally.

Parent introductions in Sally are declared in the body of an introduction (in its first
line) with the help of the keywords extends followed by the name of the type being
introduced as a supertype or a logic variable. In case the target type is a class and the
type being introduced refers to an interface, then a corresponding implements
relationship is added to the target class. In case the target type is an interface and the
introduced type is an interface, a corresponding extends relationship is added to the
target interface29.

Figure 3-18 illustrates the application of a parent introduction. The introduction’s
body declares that the interface I should be added to the target class A. Consequently,
after weaving class A is a subtype of type I.

29 Sally does not permit to introduce classes as supertypes. Hence, it is neither possible to add an extends
relationships to a class, nor to add a class to the inheritance relationship of an interface.

3 - Sally – Specifying Generic Aspects 63

3.4.5 Weaving

Weaving in Sally is achieved at compile time via source code transformation. Weaving of
introductions is performed in a straightforward way, i.e. new members as well as
additional extends and implements relationships are simply added. Hence, this
will not be discussed in further detail.

class A {
 public void m(X x, Y y, Z z) {
 // do Somehing
 }
}

class MAdapter {
 pointcut pc(?jp) =
 methodDeclaration(?jp,?cID, m) &&
 classDeclaration(?cID,A);
 wrapM wrap<?jp,?arg> pc(?jp) {
 wrap<?jp>(?arg);
 System.out.println(“after….“);
 }
}

weaving

class A {
 public void m(X x, Y y, Z z) {
 aWrapperMethod(x, y, z);
 }
 public void aWrapperMethod(X _p1, Y _p2, Z _p3) {
 aWrappedMethod(_p1, _p2, _p3);
 System.out.println(“after….“);
 }
 public void aWrappedMethod(X x, Y y, Z z) {
 // doSomething
 }
}

Figure 3-19. Weaving a method wrapper wrapM to method m in class A.

Weaving join point wrappers is slightly more complex. Here, weaving of the method
definition wrappers and method call wrappers will be explained in more detail. Since
field access as well as field assign wrappers can be explained in terms of call wrappers
(since both wrappers simply differ with respect to the provided parameters) they will
not be discussed here.

3.4.5.1 Method definition wrappers

Weaving a method definition wrapper results in the construction of two new methods
in the same class that defines the corresponding method.

1. The original method becomes the wrapped method (with the same signature) by
copying the whole method. The signature and the parameter types stay the same and
the method name is specified by the system. The system chooses the name in a way
that naming collisions are avoided. This prevents the new generated method from
accidentially changing the behavior of the woven application.

64 3 - Sally – Specifying Generic Aspects

2. The join point wrapper is translated into a wrapping method that contains the
body of join point wrapper. The signature of the wrapping method corresponds to
the signature of the wrapped method. For all parameters passed to the method
wrapper, the system generates a new identifier. The identifiers are chosen in a way
that they do not occur within the body of the wrapper in order to prevent the
wrapper to accidentially changing them.

3. Inside the wrapping method all occurrences of logic variables are replaced.

4. The wrap statement (which corresponds to the proceed statement in AspectJ) is
translated to a method call to the wrapped method.

class A {
 public void m(X x, Y y, Z z) {
 ...doSomething...1...
 x.set(y.getClass(), z);
 ...doSomething...2...
 }
}

class MAdapter {
 pointcut pc(?jp) =
 methodCall(?jp,?tID, set) &&
 classDeclaration(?tID,X) &&
 wrapM wrap<?jp,?args> pc(?jp) {
 wrap<?jp>(?args);
 System.out.println(“after…“);
 }
}

weaving

class A {
 public void m(X x, Y y, Z z) {
 ...doSomething...1...
 aWrapperMethod(x, y.getClass(), z);
 ...doSomething...2...
 }
 public void aWrapperMethod(X _p1, Class _p2, Z _p3) {
 aWrappedMethod(_p1, _p2, _p3);
 System.out.println(“after...");
 }
 public void aWrappedMethod(X _p1, Class _p2, Z _p3) {
 _p1.set(_p3, _p4);
 }
}

Figure 3-20. Weaving a call wrapper wrapM to a set call in class A.

Figure 3-19 illustrates the weaving of wrapper wrapM to a method m in class A. The
signatures of the resulting methods are the same (all containing the parameter types X, Y
and Z). The wrapped method still contains the same code as it did before. The wrapping
method invokes the wrapped method with the parameters that have been passed to
itself (the parameters _x, _y, and _z).

3.4.5.2 Method Call Wrappers

Method call wrappers work similar to method wrappers. The only difference is that a
method call has different parameters. A method call exposes the calling object, the
called object, as well as the parameters of the method call.

3 - Sally – Specifying Generic Aspects 65

1. The original method call is wrapped by a wrapped call method. The parameters
consist of the called object and the parameters passed by the method call. In case
the method call appears from within a static method or the called method is static,
the corresponding parameters are not part of the signature.

2. The join point wrapper is translated into a wrapping method that contains the
body of join point wrapper. The signature of the wrapping method corresponds to
the signature of the wrapped call method. For all parameters passed to the method
wrapper the system generates a new identifier. The identifiers are chosen in a way
that they do not conflict with any other parameter.

3. Inside the wrapping method all occurrences of logic variables are replaced.

4. The wrap statement is translated into a method call to the wrapped method.

Figure 5-1 illustrates the weaving of wrapper wrapM to a method m in class A. Note
that within the wrapped method the parameters passed to the original method call are
simply variables: The corresponding expressions (in the example, the method call
getClass() to the variable y) still reside in the original method.

3.5 Applying Parametric Introductions
The main motivation for providing the generic constructs in Sally was caused by the
problem that introductions in AspectJ and Hyper/J do not permit to modularize a
number of crosscutting concerns. Hence, this sections illustrates how the generic
constructs are able to solve this problem.

Parametric introductions receive parameters during weave-time. The main
motivation for this idea is the observation that sometimes static crosscutting code varies
when it is woven to different types. The code that is to be introduced contains variables
that are bound by the weaver.

public static ?class
 instance = new ?class();

Introduction Module

public static A
 instance = new A();
...

...

A

A

weaving:
?class :=

A

Figure 3-21. Parametric introductions.

Figure 3-21 illustrates an example of a parametric introduction that is motivated by
the singleton implementation from section 3.3.1. The introduction specifies a field
instance to be introduced to a target class. The type of the field is a variable.
Furthermore, the variable is initialized with a new object whose class is determined by

66 3 - Sally – Specifying Generic Aspects

the variable. The parameter used within that introduction is described by the identifier
?class. This introduction specifies that whenever the field is introduced to a class,
the type of the field and the type of the class to which the new operator is applied are
the same. In Figure 3-21, the weaver assigns the target class to the parameter ?class.

Parametric introductions require a mechanism to assign values to its parameters in
order to enable the weaver to determine the actual woven code. Moreover, it is
sometimes useful to be able to specify introductions without specifying the target
classes. This permits to define libraries of introductions that can be adapted to target
classes during application development without the need to perform invasive
modifications in the introduction module. Furthermore, the motivating examples in the
section 3.3 showed that it might be necessary to apply an introduction to target classes
more than once with different parameter value pairs.

Parametric introductions are implemented in the aspect language Sally as explained in
the previous sections. In the following, parametric introductions are applied in order to
overcome the problems described in the beginning of this chapter. Thereto, different
uses of parametric introductions are explained.

3.5.1 Concrete Parametric Introductions

Sally permits to use the parameters passed to the introduction within the introduction
body. This means, for example, that types can be passed to an introduction where they
can be used as parameters. A concrete parametric introduction is an introduction where the
corresponding introduction and pointcut is non-abstract but where the code to be
introduced contains variables passed from the pointcut specification.

ASingleton
...

BSingleton
...

SingletonIntroducer

 pointcut targets(?cID,?cName) =
 (
 classDefinition(?cID,ASingleton) &&
 classDefinition(?cID,?cName)) ||
) || (
 classDefinition(?cID,BSingleton) &&
 classDefinition(?cID,?cName)
);

 introduction sIntro<?cID> targets(?cID, ?cName) {
 private static ?cName instance = new ?cName();
 public static ?cName getInstance() {
 return instance;
 }
 } +instance

+getInstance()

Figure 3-22. Singleton implementation in Sally (concrete
parametric introduction).

Figure 3-22 illustrates a singleton implementation in Sally. Class
SingletonIntroducer contains an introduction sIntro. That refers to the
pointcut targets. The pointcut binds the identities of the class definition join points
for class SingletonA and SingletonB to the variable ?cID and the class names
to the variable ?cName. Consequently, the pointcut describes two tuples: One

3 - Sally – Specifying Generic Aspects 67

consisting of ASingleton’s identity and its name, and one consisting of
BSingleton’s identity and its name.

The target of the introduction is the parameter ?cID. Furthermore, the introduction
has the parameter ?cName from the corresponding pointcut that can be used within its
body. The introduction body contains the known methods from the singleton
implementation. The type of the instance variable and the return type of the introduced
method are determined by the values of the parameter ?cName.

When the application is compiled, the parameters are replaced by their values and the
introductions are performed on the target classes. Consequently, the classes
ASingleton and BSingleton receive the class variable instance and a
corresponding class method getInstance(). In both cases the appropriate types
are being introduced: ASingleton for the type of the class variable and the return
type of the class method in the first case, BSingleton for the class variable and the
return type of the class method in the second case.

ASingleton
 private static ASingleton instance =
 new ASingleton();

 public static BSingleton getInstance() {
 return instance;
 }

 ...

BSingleton
 private static BSingleton instance =
 new BSingleton;

 public static BSingleton getInstance() {
 return instance;
 }

 ...

Figure 3-23. Woven target classes.

Figure 3-23 illustrates the impact of the singleton introduction on the target classes
ASingleton and BSingleton.

3.5.2 Abstract Parametric Introductions

The applicability of introductions can be increased substantially if it could be left open
at introduction definition time to what classes the introductions are to be applied to.
This permits to define libraries of introductions independently of their application. The
main benefit is that the introduction can be applied in a different module than its
definition. Thus, its application avoids the execution of destructive modifications in the
introduction module. This permits a higher level of reusability of aspects.

In AspectJ, such an abstract introduction is achieved by the container introduction.
In Hyper/J such a separation of introduction definition and application is much more
natural since the members to be introduced are normal Java members while the
introduction application is defined within a hypermodule.

Like AspectJ, Sally permits to define abstract pointcuts that can be overridden in a
subclass. That means that the abstract pointcut in a superclass does not refer to any
point in the program, while the overriding pointcut does. Introductions can be abstract
by leaving the pointcut that the introduction refers to abstract. For the singleton
example, such a specification of abstract parametric introductions is desirable: Since the
singleton-specific elements are often required features of different classes in different

68 3 - Sally – Specifying Generic Aspects

projects, it is desirable to specify such introductions within one module without directly
specifying the target classes.

AbstractSingleton

abstract pointcut targets(?cID,?cName);

introduction sIntro.....

 pointcut targets(?cID,?cName) =
 (
 classDefinition(?cID,ASingleton) &&
 classDefinition(?cID,?cName)) ||
) || (
 classDefinition(?cID,BSingleton) &&
 classDefinition(?cID,?cName)
);

SingletonConnector

...

...

Figure 3-24. Abstract parametric introductions for singletons.

Figure 3-24 illustrates the application of an abstract introduction for the singleton
example. Class AbstractSingleton is specified as in Figure 3-22 except that the
pointcut is declared abstract. Hence, this class does not perform any introduction for a
given application. Class SingletonConnector overrides the pointcut and binds
the parameter ?cID to the identities and ?cName to ASingleton and
BSingleton. By that, the introduction becomes concrete and is applied at compile-
time. The benefit of this kind of introduction is that the module that defines the
introduction (SingletonIntroducer) does not need to be modified if the
introduction is applied to different classes. In order to apply the introduction to other
classes than the ones mentioned here either SingletonConnector has to be
modified or another subclass of SingletonIntroducer has to be created.

The impact of the abstract parametric introduction on the target classes is the same
as described in the previous section.

3.5.3 Parametric Multi-Introductions

The visitor example motivated the necessity to apply an introduction more than once to
a target class: The method visit needs to be introduced to the interface Visitor,
however, each time with different parameter types. Furthermore, the double dispatch
method needs to be introduced to all classes whose instances can be visited. In Sally
introductions are woven as long as there exist different values for the introduction
parameters.

Figure 3-25 illustrates the corresponding implementation of the visitor example in
Sally. The class AbstractVisitor contains the introduction addDispatcher
that introduces the double dispatch method as well as the interface
VisitedElement to each class to be visited. Since the referring pointcut
visitedClass is abstract, the classes need to be defined in a subclass which
overrides this pointcut.

3 - Sally – Specifying Generic Aspects 69

The introduction addVisit receives two parameters from its pointcut visits.
The parameter ?vID determines the target interface and ?cName represents the name
of each type that should be visited. Thus, addVisit makes use of a parametric
introduction and introduces a method visit for each class to be visited to the visitor
interface with the corresponding type. The pointcut visit binds the parameters ?vID
to the interface Visitor and ?cName to each class defined in visitedClass.
Since visitedClass is declared abstract, target does not bind any variables as
long as visitedClass is not defined.

AbstractVisitor
abstract pointcut visitedClass(?cID,?cName);

abstract pointcut visitedElement(?cID,?cName);

abstract pointcut visitor(?vID,?vName);

pointcut disp(?cID, ?vName, ?veName) =
 visitedClass(?cID,c?Name) &&
 visitor(?vID, ?vName) &&
 visitedElement(?veID,?veName);

pointcut visits(?vID, ?cName, ?vID) =
 visitedClass(?cID,c?Name) &&
 visitor(?vID, ?vName);

introduction addDispatcher<?cID> disp(?cID,?vName, ?veName) {
 extends ?veName;
 public Object accept(?vName visitor) {
 return ?visitor.visit(this);
 }
}

introduction addVisit<?vID> visits(?vID,?cName) {
 public Object visit(?cName target);
}

VisitorConnector
abstract pointcut visitedClass(?cID,?cName) =
 (
 classDefinition(?cID,A) &&
 classDefinition(?cID,?cName))
) || (
 classDefinition(?cID,B) &&
 classDefinition(?cID,?cName)
) || (
 classDefinition(?cID,C) &&
 classDefinition(?cID,?cName)
);

pointcut visitor(?vID,?vName) =
 interfaceDefinition(?vID,Visitor) &&
 interfaceDefinition(?vID,?vName);

pointcut visitedElement(?vID,?vName) =
 interfaceDefinition(?vID,VisitedElement) &&
 interfaceDefinition(?vID,?vName);

A
...

B
...

C
...

<<interface>>
Visitor

<<interface>>
VisitedElement

Figure 3-25. Visitor implementation in Sally (multi-introduction).

70 3 - Sally – Specifying Generic Aspects

Class VisitorConnector extends VisitorIntroducer, overrides the
abstract pointcut visitedClass, and binds the parameters ?cID and ?cName to
identities and class names of the classes A, B, and C. Furthermore, the abstract pointcut
visitedElement refers to the interface VisitedElement that represents the
common type for all classes whose objects can be visited. The pointcut visitor
defines the target visitor interface that should be used. Hence, from the connector’s
point of view, all pointcuts are concrete and bind variables, and thus the aspect can be
defined concrete.

Consequently, the introduction addDispatcher is applied to the target classes A,
B, and C and the method accept is added to each of these classes. The introduction
addVisit uses the first parameter as the target class. Variables of disp belong to the
same target class (the interface Visitor), but differ in the value of their second
parameter and third parameter. Hence, the introduction is applied three times to
Visitor, always with different parameters. Because ?vName is used as a parameter
within the introduction, VisitorConnector adds three additional visit methods
to the visitor interface that differ in their parameter types.

3.5.4 Unnamed Introductions

Section 3.3.3 (implementation of the decorator pattern) motivated why methods need to
be introduced to interfaces whose signatures are not known at introduction definition
time. The problem in the context of the decoration implementation is twofold: First, at
introduction definition time it is unknown how many methods are to be introduced, and
second, the signatures of the methods to be introduced are unknown. The first problem
can be handled by the previously introduced introductions. The latter is solved by
introducing unnamed methods. These are method introductions whose signatures are
determined at weave-time by corresponding queries on the base application.

Figure 3-26 schematically illustrates a decorator implementation in Sally. For reasons
of simplicity the Figure only concentrates on the introduction of unnamed methods to
the component interface and ignores the rest of the implementation.

DecoratorIntroducer contains two abstract pointcuts to declare the class to
be decorated as well as the component interface. The concrete pointcut fwMethods
determines all methods included in the decorated class. The introduction dMethodFW
uses the passed parameters to create the method signature that will be introduced to the
component interface.

Special attention has to be paid to the handling of the parameters of the method:
Only two introduction parameters are used here (?pTypes and ?args). Sally
generates a corresponding list from the parameters from both lists. Consequently, a list
of parameters is generated that has the same signature as the corresponding method. In
this concrete example, Sally tests if the lists bound to ?pTypes and ?args have the
same length and introduces a list of parameter type and value pairs.

The concrete DecoratorConnector overrides decoratedClass and
componentIF. Hence, the introduction cMethodIntro can be actually applied.

Consequently, by providing parametric introductions that permit to use weave-time
parameters it is possible to handle all problems that resulted from the restricted ability
to specify introductions in AspectJ and Hyper/J.

3 - Sally – Specifying Generic Aspects 71

DecoratorIntroducer

abstract pointcut decoratedClass(?cID);
abstract pointcut componentIF(?cID);

pointcut fwMethods(?cIFID,?ret,?name, ?pIDs, ?pNames) =
 decoratedClass(?cID) &&
 componentIF(?cIFID) &&
 methodDeclaration(?mID,?cID,?name,?rID,?pIDs, ?pNames);

introduction dMethodFW<?cIFID>
 fwMethods(?cIFID,?ret,?mName, ?pTypes, ?args) {
 ?ret ?mName (?pTypes ?args);
}

DecoratorConnector
pointcut decoratedClass(?cID) = classDefinition(?cID, A)

pointcut componentIF(?cID, ?cName) =
 interfaceDefinition(?cID,AInterface) &&
 interfaceDefinition(?cID,?cName);

....

A
...

<<interface>>
AInterface

...

Figure 3-26. Extract of the Decorator implementation in Sally
(unnamed introduction).

3.6 Related Work
So far parametric introductions were directly compared with the corresponding
mechanisms in AspectJ and Hyper/J. However, other concepts and mechanisms were
introduced that are usually not referred to in the context of aspect-oriented
programming but are quite similar to aspect-oriented introductions.

3.6.4.1 Generic Types

Parametric introductions as implemented in Sally on top of the programming language
Java are mainly used to pass types as parameters to introductions. Thus, they look quite
similar to generic types [BOSW98] or parametric types [MBL97] in Java that also permit types
to be passed as parameters. The most obvious difference between both approaches is
that an introduction has a direct impact on the target class, i.e., it directly extends the
existing target class with additional members while generic types are new types that need
to be instantiated and do not influence the existing type structure. Thus, generic types
are preplanned while parametric introduction permit an unanticipated evolution.

3.6.4.2 Roles

Roles [Pern90] are temporary views on objects30. A role's properties can be regarded as
subjective and extrinsic properties of the object the role is assigned to. During its

30 The relationship between roles and aspect-oriented systems in general will be explained in more detail in
Chapter 6, section 6.8.

72 3 - Sally – Specifying Generic Aspects

lifetime an object is able to adopt and abandon roles. Thus, an environment of an object
can access not only its intrinsic, but also its extrinsic properties. Because of this
characteristic, roles provide a mechanism that can be compared to introductions (see
[HaUn02b] for a comprehensive discussion of aspects and roles). There are numerous
different implementations of the role concept that make use of the composition
mechanisms of the underlying programming language. For example, [Knie96] proposes
an implementation based on object-based inheritance, [GSR96] uses the Smalltalk-
specific handling of incoming messages, [NeZd99] a language mechanism called per-object
mixins and [HaUn02b] dynamic proxies. The major difference between roles and aspect-
oriented introductions is that a role works on a single object, i.e., a role does not extend
the interface of a class, but the interface of the object they are assigned to. As an
exception, [NeZd99] also provides a mechanism called per-class mixin that permits to add
roles to classes. Thus, the interface of the class is extended. Nevertheless, this
mechanism does not permit to declare any variability within the role that is “vitalized”
when the role is assigned to the target class. Furthermore, since this concept is provided
by an untyped programming language it is hard to compare it to aspect-oriented
introductions based on typed programming languages.

3.6.4.3 Aspect-oriented logic meta programming

[DVDH99] proposes aspect-oriented logical meta programming as a mechanism for
modularizing concerns. Aspect-oriented logic meta programming means to write logical
programs that reason about aspect declarations. Aspect declarations can be accessed and
declared by logical rules. So, the weaver is constructed in a logical programming
language that provides a number of rules for generating the woven code. The logical
programming language proposed in [DVDH99] for weaving is called TyRuBa (in fact,
the here proposed mechanism is implemented using TyRuBa, too).

In TyRuBa, quoted code blocks can be declared that permit to use pieces of Java code as
terms in logical programs. These code pieces may contain logical variables that are
substituted during weaving. In fact, this mechanism, in conjunction with the weaver,
provides parametric introductions. The difference between both approaches is that the
proposed implementation in Sally is an extension of the programming language Java
while TyRuBa handles logical programming separately from object-oriented
programming. The weaver implementation in TyRuBa is not connected to the object-
oriented programming language but generates object-oriented code. That means, before
weaving, no checks are performed, neither on the involved classes nor on the involved
introductions. So it is not even determined if quoted code blocks contain Java code at
all. This makes software development in TyRuBa error prone. In Sally all classes and
introductions are parsed before weaving and type-checking is performed on the
involved classes31.

3.7 Chapter Summary and Conclusion
This chapter identified introductions as an important mechanism to modularize static
crosscutting code in aspect-oriented programming languages. It showed common

31 Of course, with the exception of parameterized introductions.

3 - Sally – Specifying Generic Aspects 73

examples of static crosscutting code in which the introductions of AspectJ and Hyper/J
fail to modularize those examples.

As a solution, parametric introductions have been proposed, i.e., introductions that
receive parameters during weave-time. This chapter gave a detailed overview of Sally’s
language features (especially its pointcut language, wrappers, and introductions), which
permits to specify generic aspects via logic variables that can be used within an aspect’s
body. This chapter demonstrated how parametric introductions (generic aspects that
make use of logic variables within the introduction body) solve the inadequacies of
Hyper/J and AspectJ by applying parametric introductions to the examples where the
introductions of AspectJ and Hyper/J failed.

Parametric introductions are a powerful mechanism that increases the modularization
of crosscutting code. The proposed usage of connecting introductions and the pointcut
language in conjunction with an inheritance relationship between classes containing
introductions increases the reusability of introductions.

Since the work on Sally has been published at the 2nd international conference on
aspect-oriented software development (cf. [HaUn03a]), it is valid to call it an aspect-
oriented approach. However, the question what key characteristics aspect-oriented
systems have still remains. Furthermore, the underlying design issues of Sally (a quite
different kind of pointcut language) seem to differ noteworthy from the systems like
AspectJ, Hyper/J, and AspectS. Consequently, it is desirable to find abstract
descriptions of aspect-oriented systems that also permit to describe the characteristics of
Sally in an abstract way.

A first step toward this direction is already done throughout this chapter: The
identification of introductions as one possible way of adapting class definition join
points – an observation that is essential for identification of constructive adaptations
in Chapter 5 (which will be introduced in section 5.5.2). Furthermore, the capability to
parameterize an introduction or a wrapper is identified in Chapter 5 as a special design
dimensions - the parameterization of join point adaptations (see section 5.5.3).

4

MORPHING ASPECTS – CONTINUOUS
WEAVING FOR ASPECT-ORIENTED
SYSTEMS

4.1 Introduction
The mechanism for integrating aspect modules with an application is called weaving. A
weaver is responsible for adding all aspects to the application. In order to specify such
integration, aspect-orientation makes use of a concept called join point. In [KHH+01],
join points are introduced as principled points in the execution of a program. A typical example
of a join point is a method call.

Conventionally, the developer starts the weaving process at a certain point in time
and for a number of aspects to be integrated. Thereto, the weaver determines and
adapts all locations in the base system that represent join points at runtime where
potentially or for sure aspect-specific code needs to be executed. In [MKD03], locations
in the code that represent join points during runtime are called join point shadows. In
the following this chapter refers to shadows whose join points always lead to an
execution of aspect-specific code as unconditional join point shadows, and those
whose join points lead only under some circumstances to aspect-specific behavior as
conditional join point shadows. For conditional shadows the weaver adds runtime
checks determining whether or not aspect-specific code needs to be executed (this thesis
refers to these runtime checks as join point checks). If such a check succeeds, the aspect-
specific code (the advice code according to AspectJ terminology [KHH+01]) is executed.

One property of this conventional approach to weaving is that the set of join point
shadows associated with a woven aspect remains the same for the aspect's lifetime. In
the following, this thesis refers to this kind of weaving as complete weaving. Complete
weaving is a process that determines and adapts all join point shadows including the
creation of corresponding join point checks upfront and in advance. After weaving, all
shadows in the application where aspect-specific code might be executed are adapted.
Consequently, the set of join point shadows associated to an aspect is fix and does not
change at runtime. Aspect-oriented systems like AspectJ, Hyper/J, and Sally [HaUn03a]
that provide pure static weaving, i.e. weaving at compile time, necessarily need to perform a

76 4 - Morphing Aspects

complete weaving since all join point shadows to be adapted have to be determined at a
certain point in time (at compile time32).

In more complex applications complete weaving can lead to a huge number of
adapted join point shadows whose join point checks fail and just produce runtime
overhead. Especially shadows with join points that rarely trigger the execution of aspect-
specific code in the execution of the program are useless time-consumers because most
of the time the corresponding join point checks do not succeed and with that do not
invoke an aspect's advice. In the worst case an aspect adapts a large number of join
point shadows that never invoke an aspect’s advice. In such cases the adapted shadows
cause runtime overhead without ever accomplishing any benefit at all.

A large number of conditional shadows that rarely or never lead to an advice’s
execution are often not tolerable, especially not in performance critical parts of the
system. Thus, it is desirable to reduce the number of conditional join point shadows as
much as possible to reduce the number of failing and with that unnecessary join point
checks.

In order to reduce the number of conditional join point shadows this chapter
introduces the concept of morphing aspects which are incompletely woven aspects in
combination with continuous weaving, an extension of dynamic weaving [Hirs02, PGA02].

The next sections, two typical examples of aspects based on complete weaving are
provided that illustrate the necessity of handling the problem of conditional shadows
whose join points rarely or never execute an aspect’s advice. Section 4.3 introduces the
concept of morphing aspects. There, dependency relationships among join points are
discussed and the way they can be used to adapt join point shadows at a later point in
time are described. Section 4.4 discusses implementation issues of morphing aspects by
proposing an implementation in AspectS. An overview and a discussion of some
experiments with morphing aspects are illustrated in section 4.5. After comparing
morphing aspects to related work in section 4.6, section 4.7 summarizes and concludes
this chapter.

4.2 Examples
According to for example [Hirs02, Lope04, GyBr03, SHU02, VeHe03] tracing and subject-
observer implementations are well-known and accepted candidates for discussions and
illustrations of aspect-oriented programming. Because of its popularity this thesis uses
AspectJ in those examples to better illustrate the problems associated with complete
weaving33.

32 It should already be emphasized here that the term complete weaving is not equivalent to static
weaving. A form of complete weaving also occurs in systems that provide dynamic weaving. This will
be discussed in more detail in section 6.

33 Please note that the intention here is neither to discuss AspectJ in detail nor to compare the here
proposed approach with AspectJ. The intention here is to discuss the impact of complete weaving on
the number of join point checks in the woven application.

4 - Morphing Aspects 77

4.2.1 Tracing

A woven tracing aspect captures messages sent to or from particular objects, e.g. to a
log file. Usually, developers want to trace the control flow starting at a certain point in
the execution of a program. For example, a developer wants to capture the behavior of
critical modules in order to analyze their behavior either later or right at runtime.

<<aspect>>
TraceComputation

cf
lo

w
 s

ta
rti

ng
 a

t s
t
a
r
t

pointcut pc():
 cflow(execution(
 void ComplexComp.start()))
 && execution(* *.*(..));
before(): pc() {
 ... log message ...
}

ComplexComp

void start() {
 step1();
 if (aCondition)
 step2();
}
void step1(){;}
void step2(){step21();}
void step21(){...}

Figure 4-27. Tracing aspect in AspectJ logging methods in the
control flow starting at method start in
ComplexComp.

A typical approach to implementing tracing in AspectJ is to use the cflow pointcut
designator [KHH+01]. Figure 4-27 shows the corresponding code in AspectJ where a
tracing aspect TraceComputation logs all messages once the control flow passes
the method start in class ComplexComp that starts a complex computation34. One
advantage of this implementation is the declarative pointcut definition that describes all
join points where the tracing aspect needs to execute some advice. Hence, developers
do not need to examine the code on their own, i.e. they do not need to determine what
methods are potentially called within the control flow starting from method start in
class ComplexComp.

However, this implementation has some drawbacks due to complete weaving. In
general, the exact computation of methods that are executed within a certain control
flow is impossible. For example, it is hard to compute upfront whether the condition in
method start will ever be satisfied and methods step2, and step21 (and
methods invoked by step21) will ever be invoked from the control flow passing
start. To guarantee the correct behavior of the aspect the weaver must consider these
methods in addition to methods start and step1, which will be definitively invoked
in the control flow. For all these methods the weaver has to determine whether they can
also be executed in control flows that do not pass method start. In such cases the
weaver needs to decorate shadows with join point checks that check at runtime if the
current method is part of the control flow to be traced or not. If a large number of
different control flows in the application use methods of ComplexComp (other than
start) the join point checks fail most of the time and only cause runtime overhead. If

34 This use of the cflow construct for implementing tracing corresponds (with minor changes) to the
implementation like for example proposed in [SLL03]. A similar use for a different purpose can be
found for example in [CHJ03].

78 4 - Morphing Aspects

the condition in method start is never satisfied, the join point checks at method
step2 and step21 only cause runtime overhead when they are invoked from
different methods without ever executing the advice in TraceComputation at all.
The problem becomes even bigger if bar21 executes a large number of other methods.
The corresponding shadows would also never invoke the advice in
TraceComputation.

ComplexComp

public void m() {

 step1();
 if (aCondition) bar2();
}
public void step1() {

}
public void step2() {

 step21();
}
public void step21() {

 ...
}

A

public void aMethodInA() {

 ...
}
...

= shadow adaptation

B

public void aMethodInB() {

 ...
}
...

= shadow adaptation that
 never invokes advice
= join point check

startCFlow();
if(isInCFlow()) advice();

if(isInCFlow()) advice();

if(isInCFlow()) advice();

if(isInCFlow()) advice();

if(isInCFlow()) advice();

if(isInCFlow()) advice();

Figure 4-28. An illustration of the woven tracing aspect including
additional classes A and B.

In AspectJ the situation is somewhat different. AspectJ hardly analyzes control flows.
For the example from Figure 4-27 AspectJ determines all methods matching the last
part of the pointcut, i.e. (execution(* *.*(..))), and creates corresponding
join point checks. Since this matches every existing method, AspectJ creates checks for
every existing method in the entire system (except for those in system libraries). Figure
4-28 illustrates the code woven by AspectJ, not only for class
ComplexComputation but also for two additional classes A and B also present at
weave time. Before executing the original code of any method in the system, join point
checks are performed. The benefit of this approach is that no cost-intensive
computation is necessary which would slow down the compilation process. On the
other hand the performance of the whole system decreases in the presence of the
woven aspect. This implies that the performance decreases even in classes like A and B
whose methods will never be executed in the control flow of interest. Performance
measurements in [BHMO04] showed that a single woven cflow substantially
decreases the overall performance of the system.

The overall problem in the tracing examples is that it is usually not fully computable
at weave-time what methods are invoked within the control flow of interest.
Consequently, a large number of conditional shadows exist in the system whose
execution causes runtime overhead but rarely lead to an execution of the aspect specific
code.

4 - Morphing Aspects 79

4.2.2 Subject-Observer Protocol

Perhaps the most frequently used example in the area of aspect-oriented programming
is the implementation of the observer design pattern [GHJV95] as discussed for
example in [GyBr03, SHU02, VeHe03]. The pattern permits a set of objects (called
observers) to be attached and detached to and from other objects (called subjects) to
become informed about their state changes.

Subject <<aspect>>
SubjectLoaderIntroduced members:

+ observers
+ attachObserver(Observer o)
+ detachObserver(Observer o)
+ notifyObservers() { …

pointcut stateChanges(Subject s):
 set(* Subject+.*) &&
 target(s) &&
 !(set(* Subject+.observers));
after(Subject s): stateChanges(s) {
 s.notifyObservers();
}

Foo

<<aspect>>
SubjectConnector

declare parents:
 (Foo || GenericObject)
 implements Subject;

GenericObject

C1 C3
...

+container

+container

introduced
container

fooField1

goField

c1Field c3Field

goRef

C2
c2Field

C4
c4Field

Figure 4-29. A subject-observer implementation in AspectJ.

Observers are interested in state changes, i.e. changes of fields associated with a
subject. This includes fields that are directly part of the subject as well as fields of
objects, which are directly or indirectly referenced by the subject (see for example
[HHUK03, GyBr03], see also section 1.2.2.1 for a more detailed discussion of the
observer pattern).

Figure 4-29 illustrates a typical implementation of the subject-observer protocol in
AspectJ based on the container introduction idiom ([HSU03], see also section 3.2.1).
SubjectLoader states that observers can be attached to and detached from
instances of Subject by introducing appropriate fields and methods to Subject.
The aspect's pointcut stateChanges and the corresponding advice define that an
assignment to any field declared in Subject (i.e. an assignment to a field declared in a
class implementing Subject) yield the notification of observers. The pointcut
language of AspectJ does not permit to declare the state change of every referenced
object for a given subject (cf. [HHUK03,GyBr03] for further discussion). So, developers
have to enumerate explicitly every class whose objects should inform observers about
state changes (in SubjectConnector). In order to permit the observation of Foo
instances and its referenced objects of type GenericObject, the developer connects
Subject to both classes (Figure 4-29).

Again, the implementation suffers from some drawbacks resulting from complete
weaving. In general, it is not completely possible to determine what instances are ever
referenced by subjects. For example, it is usually not computable if instances of class
C1, C2, etc. are ever referenced by an instance of Foo at runtime. Consequently, join

80 4 - Morphing Aspects

point checks need to be created that check at runtime at every field assignment, whether
the current object is referenced by an instance of Foo. These checks become
problematic if a class is frequently used in the application, whose instances are in fact
never referenced by a Foo at runtime.

void methodA() {
 Foo f = new Foo();
 f.fooField1 = ...;
 ...
 for (…) {
 C1 c1 = new C1();
 c1.c1Field = ...;
 ...;}
 }
} ...

void methodB() {
 ...
 C2 c2 = new C2();
 c2.c2Field = ...;
 C3 c3 = new C3();
 c3.c3Field = ...;
 C4 c4 = new C4();
 c4.c4Field = ...;
 ...
} ...

W
eaving

void methodA() {
 Foo f = new Foo();
 f.fooField1 = ...;

 ...
 for (…) {
 C1 c1 = new C1();
 c1.c1Field = ...;

 ...;}
 }
} ...

void methodB() {
 ...
 C2 c2 = new C2();
 c2.c2Field = ...;

 C3 c3 = new C3();
 c3.c3Field = ...;

 C4 c4 = new C4();
 c4.c4Field = ...;

 ...
} ...= shadow adaptation

advice(..);

advice(..);

advice(..);

advice(..);

advice(..);

Figure 4-30. Application using observed classes.

In AspectJ the problem is slightly different. Since AspectJ's pointcut language does
not permit to specify classes whose objects are referenced by Foo, developers need to
add the subject functionality to each class manually (compare to Figure 4-29). As a
result, advice activations are inserted for each state change of instances of
GenericObject as well as for its subclasses35. Figure 4-30 illustrates an application
with a woven subject-observer aspect. Advice activations are created for each
assignment of fields declared in GenericObject and its subclasses, even in those
cases where the instances are not referenced by an instance of Foo. None of the objects
on the right hand side are referenced by a Foo instance since the objects are newly
created. Hence, advice execution is futile. If subclasses of GenericObject are
frequently used in an application the performance decreases perceivably as every single
assignment leads to the execution of the corresponding advice. Typical examples of

35 Due to limitations of its pointcut language, AspectJ’s shadows are unconditional. However, the
shadows have to be conditional logically because it must be checked whether an object is referenced by
a subject or not.

4 - Morphing Aspects 81

such-often used classes are collection classes or classes that serve as root classes in large
frameworks.

The overall problem in the subject-observer examples is that the set of classes whose
instances are referenced by subjects is usually not computable upfront. Hence, a
complete weaver adapts shadows for field assignments of all classes whose instances are
potentially referenced by a subject. If such classes are frequently used in the application
while their instances are never referenced by a subject, the shadows just cause a runtime
overhead. In the worst case, there is no observed object in the runtime system at all, yet
still a large number of failing join point checks are executed.

4.3 Morphing Aspects and Continous Weaving
Morphing aspects are a new approach to reduce the number of join point checks by
reducing the number of adapted shadows. In contrast to the conventional way of
complete weaving used by known AO systems, morphing aspects are incompletely woven
aspects. Morphing aspects are not entirely woven to an application by a weaving process
that begins and ends at a certain point in time, computing and adapting shadows whose
join points possibly execute aspect-specific code. Instead, the necessary shadows to be
adapted are continuously computed and adapted (or released) by the aspects itself at
well-defined points in the execution of the program, i.e. at certain join points. When a
morphing aspect is woven it starts with a small set of initial join point shadows and
dynamically adapts or releases shadows just when they are needed. Hence, the number
of shadows associated with a morphing aspect changes during the aspect's lifetime. This
thesis calls this process of computation, adaptation, and release of an aspect's shadows
morphing. This thesis refers to the whole weaving process, i.e. initial weaving of
morphing aspects, the morphing during their lifetime, and unweaving as continuous
weaving.

Figure 4-31 illustrates a morphing aspect and its set of join point shadows at runtime.
The ovals represent all join point shadows that are potentially associated with an aspect
during its lifetime, as they would have been computed during complete weaving. The
ovals within the aspect's border represent shadows adapted for the aspect. As long as
the aspect is not woven, there are no shadows adapted for the aspect (Figure 4-31a).
Initially, when the developer weaves the morphing aspect, a relatively small number of
join point shadows is adapted by the aspects (Figure 4-31b). The set of actually adapted
shadows changes during the aspect's lifetime. At a later point in time (Figure 4-31c), the
aspect has nine more shadows in addition to the original join points. Even later (Figure
4-31d), five more shadows were adapted and most of the previous ones were released.
In contrast to this, a completely woven aspect adapts all shadows that are potentially
associated with an aspect (and creates corresponding join point checks), i.e. all ovals in
Figure 4-31 right from the beginning. Morphing aspects adapt fewer shadows in the
system. Hence, morphing aspects cause less runtime overhead due to failing join point
checks as there are fewer join point checks in the system.

As a key characteristic of morphing aspects, they themselves determine at runtime at
what points in the execution of the program the adaptation or release of join point
shadows is necessary. Hence, join points in morphing aspects serve two different
purposes. On the one hand the aspect's functionality (like logging, or notification of

82 4 - Morphing Aspects

observers) is invoked, on the other hand the morphing process is started whenever
particular join points are reached.

For the specification (and implementation) of morphing aspects and the
corresponding morphing processes, developers are confronted with the following
questions: What are the join points the aspect gets initially woven to, i.e. what shadows
need to be adapted initially? When does the morphing process need to be carried out?
How should the new set of join point shadows be determined?

Morphing
Aspect

Morphing
Aspect

Morphing
Aspect

= shadows initially adapted at t0= potentially associated shadow

(a) (b)

(c) (d)

= shadows adapted at t2= shadows adapted at t1

Figure 4-31. A morphing aspect that changes its set of associated
join point shadows during runtime.

In the following section dependencies among join points and shadows are discussed.
Those dependencies determine a minimal set of shadows that need to be initially
adapted. Furthermore, these dependencies determine what join point shadows can be
adapted at some later point in time. Afterwards, it is described how these properties can
be utilized to specify the morphing process.

4.3.1 Join Point Dependencies

In order to determine when new shadows need to be adapted or can be released,
developers of a morphing aspect have to analyze how those join points (and their
shadows) which are relevant for the aspect to be specified depend on each other.
Dependencies among join points describe that a certain join point associated to an
aspect (the dependent join point) can only be reached if another join point associated with
the same aspect has been reached before. This thesis calls the corresponding shadows

4 - Morphing Aspects 83

dependent shadows. All join points that do not depend on any other join point are
independent (and are represented by independent shadows). On the technical level a
dependency between join points expresses that join point checks of dependent shadows
fail as long as the join points they depend on have not been reached before.
Consequently, shadows for dependent join points do not need to be adapted as long as
the join points they depend on have not been reached yet. This allows the adaptation of
dependent shadows to be shifted to a later point in time. This situation is different for
independent shadows. Their join points potentially occur in the execution of a program
independently of any other join point associated to the same aspect and the adaptation
of their shadows cannot be shifted to a later point in time. Hence, when the morphing
aspect is initially woven at least all independent join point shadows need to be adapted.

In the following, the dependencies among join point shadows for the examples
presented in section 4.2.1 and 4.2.2 are illustrated. A potential join point shadow is
illustrated by an oval whereby an oval's label describes the shadow. A directed edge
from a shadow A to a shadow B represents a dependency relationship which expresses
that the join point represented by shadow A depends on the join point represented by
shadow B. This also implies that shadow A depends on shadow B. The edge's label
describes the kind of dependency. A shadow without any outgoing edge is an
independent shadow, while a shadow with at least one outgoing edge is a dependent
shadow.

execution of
CC.start()

execution of
CC.step1()

execution of
CC.step2()

execution of
CC.step21()

invoked
by

...
independent
join points
shadows

dependent join points shadows

invoked
by

invoked
by

invoked
by

CC = class ComplexComp

Figure 4-32. Dependencies in the tracing example.

Figure 4-32 illustrates the dependencies among join points shadows for the tracing
example introduced in section 4.2.1. The execution of method step1 or the execution
of step2 only needs to lead to an execution of aspect-specific code, if method start
in class ComplexComp is executed and start invokes either step1 or step2:
The join point checks for the shadows at step1 and step2 fail as long as method
start has not been executed and has not been invoked step1 or step2. Hence,
both shadows directly depend on the shadow for method start. For the same reasons
the shadow at step21 depends directly on the shadow at step2 and the shadows for
all methods that are eventually invoked by step21 depend on the shadow at step21.
In the tracing example, all join point shadows either directly or indirectly depend on the
shadow representing the join point for the execution of method start. The shadow at
start does not depend on any other shadow, i.e. this is an independent shadow. On a
more abstract level, shadows of all methods that are either directly or indirectly invoked
by start depend on the shadow for start.

The dependencies of join points in the subject-observer aspect are slightly more
complex (Figure 4-33). The join points (and their shadows) to be handled by the aspect
are the state changes of subjects (instances of Foo) and their referenced objects. So, all

84 4 - Morphing Aspects

assignments to fields declared in Foo, GenericObject, and subclasses of
GenericObject are join point shadows, which are potentially associated with the
aspect. Those assignments execute aspect-specific code only if there is at least one
object observing a Foo instance. This in turn depends on invocations of method
attach which registers observers. Hence, all shadows for fooField and goRef
assignments depend on the shadow at method attach36. The same is true for
assignments to fields declared in GenericObject and its subclasses. However, their
dependency is more complex. First, when an observer is attached, those shadows need
to be adapted only for classes whose instances are referenced by a Foo. For example, as
long as no GenericObject instance is referenced by a Foo instance no goField
assignments need to be adapted. Second, assignments to goField depend on the
goRef assignment since an instance of GenericObject becomes referenced by an
instance of Foo by assigning it to goRef. For the same reason, all further assignments
to fields declared in subclasses of GenericObject depend on the goRef
assignment.

dependent join points shadows

independent
join point shadow

Invocation of
Foo.

attach(Observer)

Foo.fooField
assignment

GenericObject.
goField assignment

C1.c1Field
assignment

Foo.goRef
assignment

...

l1 = A Foo has observer

l1

l1

l2

l3

l2 =

l3 = An observed Foo refers to a C1

l2

l3

... ...

An observed Foo refers to a
GenericObject

Figure 4-33. Dependencies in the subject-observer example.

As exemplified in Figure 4-33 the only independent join point is the one for the
invocation of method attach. In the subject-observer example the different natures
of join points associated to the subject-observer aspect becomes manifest: The field
assignments depend on a join point which does not lead to an execution of the aspect-
specific code because field assignments depend on the execution of method attach.
A field assignment join point informs the observers about a state change, while the join
point at method attach does not. In order to emphasize that fact, the attach
shadow is rendered using a different style (Figure 4-33).

36 For the same reason, field assignments depend on method detach because after invoking detach
no object observes Foo anymore and no aspect-specific code need to be executed. For reasons of
simplicity this dependency is omitted in Figure 4-33.

4 - Morphing Aspects 85

4.3.2 Specifying the Morphing Process

Once the dependencies are determined, developers have to decide how to utilize them
for the specification of a morphing aspect's morphing process. First, developers have to
specify what shadows that involve join point checks are to be initially handled. Next,
developers have to specify what initial join points start the morphing process. Then,
developers have to define the morphing process itself.

At least all independent join point shadows have to be initially adapted because they
do not depend on any other shadows. Hence, it is not possible to utilize their
dependencies for a late shadow adaptation. Additionally, the developer can decide to
adapt some additional dependent shadows at initial weave time: In case the dependent
join points are reached very often, the developer may not want to adapt their shadows
during the weaving process but right from the beginning.

The morphing process consists of the following parts. First, the process has to
determine a number of dependent shadows to be adapted (or to be released). For that
purpose, the morphing process can make use of reflection [Maes87]: The process reflects
on the join points starting the morphing process and computes the dependent shadows.
Second, the morphing process specifies the join point checks for all shadows to be
created. Third, it has to be determined for each newly adapted shadow whether it’s join
points invoke aspect specific code and/or the morphing process.

In the following two reasonable specifications of the morphing process for the
tracing and subject-observer examples are illustrated based on the discussion of join
point dependencies from section4.3.1. The morphing processes proposed here are kept
as simple as possible to illustrate how to utilize join point dependencies.

initial weaving step1()start()

Tracing Aspect
CC.start()

CC.step2()

CC.step21()
CC.step1()

...

start()
cc: ComplexComp

CC.start()

CC.step2()

CC.step21()
CC.step1()

Tracing Aspect Tracing Aspect
CC.start()

CC.step2()

CC.step21()
CC.step1()

cc: ComplexComp

... ...

Figure 4-34. Morphing tracing aspect after initial weaving, after
execution of start, and after execution of step1.

For the tracing aspect (Figure 4-34) at least one (independent and unconditional)
shadow at method start in ComplexComp has to be initially adapted. For reasons
of simplicity, it was decided to adapt only this shadow to keep the number of join point
checks low and to adapt all dependent shadows as late as possible. Hence, Figure 4-34
illustrates that only one shadow is initially adapted for the tracing aspect.

86 4 - Morphing Aspects

Once a join point of this shadow is reached, the tracing code is executed and the
morphing process starts. The morphing process determines all methods that potentially
are invoked by the method enabling the process. The shadows for all these methods are
adapted. The corresponding join point checks examine if the method is invoked within
the control flow being traced37. If the join point check succeeds, the tracing code is
executed and the morphing process starts once again. Whenever a method within the
control flow is no longer executed, all dependent shadows are released. So, if a
ComplexComputation receives a message start (and the message is logged), the
morphing process computes all methods that are potentially invoked by start and
adapts the corresponding shadows (step1 and step2) (in the middle of Figure 4-34).
When step1 is invoked by start the method is logged and the morphing process
starts once again. Since no other methods are potentially invoked by method step1 no
further shadows are created. If step2 is not invoked and start is no longer executed
the shadows at step1 and step2 are released (right hand side of Figure 4-34). So, as
long as the condition in method start does not lead to an execution of step2, no
shadows for step21 (and methods invoked by step21) are created.

For the subject-observer aspect at least one unconditional shadow for method
attach needs to be initially adapted38 (see left hand side of Figure 4-35). Similar to the
previous example it was simply decided to adapt only this shadow to keep the number
of adapted join point shadows low (and to simplify the morphing process). An
invocation of the method attach in class Foo starts the morphing process.

A simple morphing process for this aspect works as follows. First, the process adapts
shadows for all assignments to the fields fooField and goRef whose execution
leads to notifications of observers. Second, the process reflects on the Foo instance
whose join point started the morphing process. It determines the referenced object and
adapts the field assignment shadows for notifying observers. And finally, the morphing
aspect adapts the goRef join point to start the morphing process.

Figure 4-35 illustrates the above-described morphing process. After an observer is
attached the morphing process adapts shadows for all assignments to fields declared in
Foo. Furthermore, the morphing process determines the object referenced by
goField of object foo. Since in Figure 4-35 foo does not refer to any
GenericObject, no further shadows are adapted. When an instance of C1 is
assigned to foo, the morphing process starts once more (because assignments of
goRef start the morphing process). The process determines the fields of the assigned
object. Since c1 is an instance of C1, shadows are adapted for all assignments to
goField (declared in GenericObject) and c1Field (declared in C1).

37 There are different ways to implement such a condition. In AspectJ the current thread is stored when
the control flow starts, and each join point check determines whether the current thread is stored.
Languages like for example Smalltalk permit to analyze the call stack to determine whether the current
method occurs in the control flow of interest.

38 Like in the previous section this thesis skips for reasons of simplicity the discussion about method
detach here which is also an independent shadow.

4 - Morphing Aspects 87

4.4 Implementation Example
In this section an exemplary implementation of a morphing aspect in AspectS [Hirs02]
is introduced. AspectS is an aspect-oriented system providing dynamic weaving in the
Smalltalk dialect Squeak. This section concentrates here only on the implementation of
the tracing aspect. See [HHUK03] for a morphing implementation of the subject-
observer implementation.

Subject Observer

Foo.attach(..)

foo: Foo
fooField =

aValue

initial weaving

fooField
assignment

goField
assignment

c1Field
assignment

goRef
assignment

c2Field
assignment

...

Foo.attach(..)

fooField
assignment

goField
assignment

c1Field
assignment

goRef
assignment

c2Field
assignment

...

Foo.attach(..)

fooField
assignment

goField
assignment

c1Field
assignment

goRef
assignment

c2Field
assignment

...

Subject Observer Subject Observer

attach(Observer)
aFoo: Foo

attach(Observer)
aFoo: Foo

goRef = aC1

foo: Foo
fooField =

aValue

aC1: C1
goField = value1
c1Field = value2 goRef

Figure 4-35. Subject-observer as a morphing aspect at initial weave
time, after observer attachment, and after assigning an
instance of C1.

AspectS is based on method wrappers [BFRJ98] (see section 2.4). A shadow for a
method execution join point or a method call join point is adapted by wrapping the
receiving method. The method to be wrapped is specified by a join point descriptor,
which refers to a class and to a method selector. Advice directives in AspectS are
runtime objects that refer to a pointcut. Pointcuts are collections of join point
descriptors. If advice directives are installed at runtime, all methods referenced by the
join point descriptors are wrapped. The wrappers handle the execution of qualifiers
(which correspond to join point checks) and the execution of the advice. Advices are
implemented by blocks (see section 2.4).

88 4 - Morphing Aspects

MorphingTraceAspect

MorphingAspect
joinPointDescriptorsFrom: cMethod

| jpds |
jpds := Set new.
cMethod messages do: [:sel |
 (self implementorsOf: sel) do: [:class |
 jpds add: (JoinPointDescriptor targetClass: class targetSelector: sel)].
^ jpds.

Aspect

installAdvice: anAdvice pointcut: aPC
 “weaves advice anAdvice to pointcut aPC“
...

install
 self installAdviceAt: (self initialPointcut)
morphingAdvice
 ^ AsBeforeAfterAdvice new;
 qualifier: (...); pointcut: (...);

 beforeBlock: [:receiver :args :aspect :client |
 ...“some caching code“...
 self startMorphingFor: (self currentJoinPoint)];
 afterBlock: [:receiver :args :aspect :client :return |
 self cleanupMorphs: (self currentJoinPoint)].

startMorphingFor: jpd
| jpds clientMethod|
clientMethod := (jpd targetClass) compiledMethodAt: (jpd targetSelector).
jpds := self joinPointDescriptorsFrom: clientMethod.
self installAdviceAt: jpds.
... “some caching code“...

installAdviceAt: jpds
jpds do: [:jpd |
 ... “some caching code“...
 self installAdvice: morphingAdvice pointcut: { jpd };
 installAdvice: tracingAdvice pointcut: { jpd }].

...

initialPointcut
tracingAdvice

implementorsOf: aSymbol
| implementors |
implementors := OrderedCollection new.
Smalltalk allBehaviorsDo: [:class |
 (class includesSelector: aSymbol) ifTrue: [

 implementors add: class]].
^ implementors.

...

Figure 4-36. Tracing as a abstract morphing aspect in AspectS.

Tracing aspects based on morphing aspects are subclasses of the (abstract) class
MorphingTraceAspect (Figure 4-36). MorphingTraceAspect contains the
abstract method initialPointcut that returns the set of join point descriptors
specifying the independent join points whose shadows need to be initially adapted.

4 - Morphing Aspects 89

The aspect refers to two advice objects, both returned by corresponding methods
tracingAdvice and morphingAdvice. The (abstract) method
tracingAdvice returns the advice to be executed during tracing;
morphingAdvice provides the advice starting the morphing process. Our morphing
advice contains two blocks which are invoked before and after the corresponding join
point is reached. The before block starts the morphing process at the given join point
by invoking method startMorphingFor. Method startMorphingFor
determines the runtime-object for the invoked method and computes all join point
descriptors that depend on that method (see methods
joinPointDescriptorsFrom: and implementorsOf: in class
MorphingAspect in Figure 4-36). A shadow is adapted for each of those join point
descriptors that invokes the morphing advice as well as the tracing advice (method
installAdviceAt:pointcut:). In order to use the morphing trace aspect
developers have to extend MorphingTraceAspect and override
initialPointcut and tracingAdvice. Figure 4-37 illustrates a sample class
MorphingComplexComputationStartTracer. A tracing aspect is initially
woven by instantiating the corresponding class and invoking method install.

MorphingTraceAspect

MorphingComplexComputationStartTracer
initialPointcut
 ^ OrderedCollection
 with: (JoinPointDescriptor
 targetClass: ComplexComp targetSelector: #start)
tracingAdvice
 ^ AsBeforeAfterAdvice new

 qualifier: (...); pointcut: ...;
 beforeBlock: [:rec :args :aspect :client |
 “Write message on screen“].

Figure 4-37. Concrete tracing aspect as a morphing aspect.

Creating and integrating shadows (i.e. method wrappers) in AspectS is a time-
consuming task, yet to be optimized. Hence, it is typically not desirable to start the
morphing process at every possible join point. For example, if the methods to be traced
are executed quite often, the time consumed for the morphing process can be higher
than the benefit of dismissed join point checks. Therefore, the implementation of the
tracing aspect in AspectS uses lazy morphing by default. Dependent shadows are adapted
whenever the join points they depend on are reached and the morphing process did not
already start at these join points. Lazy morphing does not release shadows during
morphing. Instead, shadow adaptations reside in the system until the developer
uninstalls the whole aspect. So, every execution of the morphing process potentially
increases the number of adapted shadows for the aspect, but does not delete any.

The use of lazy morphing turned out to be practical in a number of experiments.
Those experiments showed that the number of shadows adapted by lazy morphing is
still significantly smaller than a complexly woven trace aspect.

90 4 - Morphing Aspects

4.5 Experimental Results
Table 4-38 summarizes a number of performance measurements in AspectS on a
Pentium 4.2 GHz with the Squeak Virtual Machine version 3.4.4. The Smalltalk image
contained the Comanche Http Server39 as well as the Squeak CommandShell40.
Overall, the image contained more than 2,200 classes with more than 35,000 compiled
methods. For 100,000 times the execution time was measured for the adaptation and
release of shadows, the execution time for (empty) methods and the execution time for
methods with adapted shadows whose join point checks always pass as well as with
shadows whose checks always fail. The adapted shadow was implemented with the
successful join point check by an empty around advice whose join point condition
immediately succeeds without any additional computation. The adapted shadow with
the failing join point check was implemented by a join point condition that immediately
fails without any additional computation. The measurement showed that the execution
of an unconditional shadow (which always executes the advice without a corresponding
join point check) was approximately 90 times (0.0368 ms / 0.0004 ms, see row 4 and 3
in Table 4-38) slower than the execution of an empty method. The execution of a dead
shadow (i.e. a shadow whose join point check always fails) was about 9 times slower
(0.3269 ms / 0.0368 ms, see row 5 and row 4 in Table 4-38) than the execution of an
unconditional shadow41.

Single shadow adaptation
Average Mininum Maximum

Method execution (ME) without adapt.
Single shadow adaptation

ME with successful join point check
ME with failing join point check

0.19980.1813 0.1756
0.34450.3113 0.1259
0.00050.0004 0.0002

0.0368
0.32820.3269 0.2555
0.03710.0346

Table 4-38. Experimental Results for shadow creation, deletion and
method execution time (in ms) in AspectS.

Next, a single (lazy) morphing tracing aspect was created to trace the execution
commands in the command shell. The corresponding advice simply wrote all messages
to the screen. The initial weaving of the tracing aspect just adapts a single join point
shadow and took 0.45 milliseconds. As soon as the method to be traced has been
invoked for the first time, the morphing process started for 35 times creating 253
shadows. This process took about 9.5 seconds. Starting the control flow afterwards did
not lead to any additional execution of the morphing process. From then on the
execution of the method to be traced took about 2.5 seconds.

39 Comanche http server, version 6.1, http://squeaklab.org/comanche/
httpserver/

40 CommandShell for Squeak - Version 3.0.1, http://minnow.cc.gatech.edu/
squeak/1914

41 The reason for the slow execution of dead shadows lies in the way how wrappers and wrapped methods
are implemented. Wrappers store the wrapped method in a field. When a join point check fails the
original method is executed by calling the time-consuming value: method.

4 - Morphing Aspects 91

This result was compared with a corresponding complete weaving (see Table 4-39).
The computation of all potentially invoked methods was not practicable (the
computation took more than 3900 seconds). Hence, the same approach like AspectJ was
done to weave the aspect to all existing methods in the image (except some system
methods). To do so, the aspect was woven to more than 35000 methods. This complete
weaving took about 6.8 seconds. The control flow execution afterwards took the same
time like the morphing tracing aspect.

Morphing Tracing Aspect, Initial Weaving
Adapt.

1st cflow execution in Morphing Aspect

Complete Weaving with Shadow computation
0.45 ms1

7930

Time

3949 s
6.82 s35852
9.54 s

1st cflow execution in Non-Morphing Aspect
cflow execution in Morphing Aspect
cflow execution in Non-Morphing Aspect

2.51 s
253

253

Complete Weaving (no Shadow computation)

35852

35852
2.51 s
2.51 s

Table 4-39. Tracing in an experimental environment as morphing
aspect and completely woven aspect.

As a result, this experiment showed that the initial weaving of the morphing aspect
and the first tracing of the control flow took about 9.54 seconds while the completely
woven aspect and a first execution of the control flow took about 9.33 seconds (Table
4-40). The difference of 0.19 seconds is the price for using a morphing aspect instead of
a completely woven one. However, the number of adapted shadows by using a
morphing aspect is only 1 % of the number of adapted shadows of the completely
woven aspect. These shadows decrease the performance of the whole system, because
each shadow whose join point check fails causes a runtime overhead of more than 0.3
milliseconds (according to Table 4-38). Because of that, as soon as in the average more
than about 640 ((9.54 – 9.33) / 0.0003269) methods with an unsuccessful join point
check caused by imprecise join point shadow computation are invoked, the approach of
morphing aspects turns out to improve the performance of the overall system.

Complete Weaving and 9.33 s
first cflow execution: (=6.82 s + 2.51 s)
Incomplete Weaving and 9.54 s
first cflow execution: (=9.54 s + 0.45 ms)

Time

Table 4-40. Consumed Time for tracing control flow in a
completely, and an incompletely woven aspect.

Preliminary experiments showed for example that the response time of the http
server contained in the image was a few hundred times slower than before weaving the
tracing aspect. This is because weaving the tracing aspect according to the weaving
strategy of AspectJ adapted a large number of shadows even in those classes that will
never be invoked in the control flow to be traced.

92 4 - Morphing Aspects

4.6 Related Work
Dynamic weaving in combination with just-in-time aspects as proposed in [PGA02, PGA03]
is closely related to morphing aspects. Just-in-time aspects are dynamically woven to the
system when they are really needed. Furthermore, just in time aspects are woven to the
application in one atomic step (see [PGA03], page 101). Consequently, just in time aspects
do not perform any additional join point checks as long as they are not woven. In that
way just in time aspects overcome the problem of unnecessary shadows in comparison
to static weaving. Nevertheless, just-in-time aspects are woven completely because of
the atomicity property. Hence, after dynamically (and completely) weaving an aspect the
problem of unnecessary shadows arises just like in static woven systems.

Another approach that relates to our work on morphing aspects is the selective just-in-
time weaver as proposed in [SCT03], an extension to the work of just-in-time aspects. The
(Java based) selective weaver permits developers to choose between two different kinds
of join point shadows: Either as breakpoints in the JVM or as statically embedded
hooks. While breakpoints can be created much faster, their execution is time consuming
(see [SCT03] for a detailed discussion on the performance issues). Embedded hooks on
the other hand execute faster while their creation is quite slow in comparison to that of
breakpoints. Selective just-in-time weavers try to overcome the performance overhead
caused by frequently executed shadows by embedding such shadows statically. From
that point of view, a selective weaver and morphing aspects are similar. The selective
weaver causes a performance overhead for embedding hooks in order to achieve a
performance advantage for the further execution of the program. Similarly, the
morphing process executed by morphing aspects causes a performance overhead to
achieve a performance advantage for the further execution of the program. However,
the main difference between both approaches is that a selective weaver does not reduce
the number of conditional shadows.

The virtual machine Steamloom [BHMO04] belonging to the aspect-oriented language
Caesar [MeOs03] also tackles the problem of time-consuming join point checks.
Steamloom implements join point checks and advice invocations at the virtual machine
level. In [BHMO04] the performance of advice making use of the join point checks on
VM level and the statically woven aspects in AspectJ based on the cflow construct is
measured. The result shows that the Steamloom VM has a significant performance
advantage over the completely woven approach of AspectJ. The intention of
Steamloom and morphing aspects is very similar since both tackle the performance
overhead caused by join point checks. The difference between Steamloom and the
implementation of morphing aspects as proposed in this paper is that while weaving in
Steamloom is performed by redirecting messages at the VM level our AspectS-based
implementation carries out changes to the runtime representation of methods at the
application level.

Besides the approaches that provide pure dynamic weaving there are also approaches
that remove unnecessary runtime checks based on a static analysis. For example
[MKD03] describes a partial evaluator based on the definitional interpreter specified in
[WKD02] to reduce the number of unnecessary join point checks. In [SeMo04] a
reduction of join point checks is achieved by a static analysis of the call stack. Currently,
there are experimental results that compare the number of failing join point checks
caused by these approaches with the number of failing join point checks caused by
morphing aspects within an experimental environment.

4 - Morphing Aspects 93

4.7 Chapter Summary and Conclusion
This chapter addressed the problem of unnecessary join point shadows caused by
complete weaving. The problem was motivated by illustrating two typical examples for
aspect-oriented programming and their implementation in the aspect language AspectJ.
The chapter proposed morphing aspects to overcome the problem of unnecessary join
point checks. Morphing aspects are incompletely woven aspects that change their set of
join point shadows at runtime based on a continuous weaving process.

With incomplete weaving, not every shadow within the base system whose join
points potentially execute aspect-specific code is adapted. Instead, morphing aspects
utilize dependencies among join points and their shadows that permit to delay the
adaptation of shadows just to the point when join points they depend on are reached.
As a result, the number of adapted shadows of a morphing aspect is much smaller in
comparison to that of completely woven aspects. This is because dependent join point
shadows are not adapted initially, but at a later point in time when they are actually
needed. Experiments with morphing aspects in the aspect-oriented system AspectS
showed that by using morphing aspects the number of join point shadows is
significantly reduced. In that way, the performance overhead caused by failing join point
checks is reduced, too. However, it should be noted that the performance overhead of
join point checks in AspectS is quite high as shown in section 4.5. Hence, the benefit of
morphing aspects is much higher in a system where the costs of join point checks are
rather expensive than in systems where join point checks are less expensive.

The benefit of realizing an aspect as a morphing aspect depends on a number of
influencing factors. In general, a prerequisite for the successful application of morphing
aspects is a large number of failing join point checks during the execution of a program.
According to the examples in section 4.2, such a prerequisite is fulfilled if, for example,
a tracing aspect is to be implemented in an application with a large number of threads
that never invoke the method where tracing should begin. In addition, such a
prerequisite is fulfilled if instances of a class are only very rarely observed during the
execution of a program. The prerequisite is usually not fulfilled if the aspects in the
system hardly rely on join point checks, i.e. if the woven application mainly consists of
unconditional join point shadows.

The morphing process needs additional time to determine and create dependent join
point shadows. Developers must trade-off between the runtime overhead caused by
unnecessarily introduced runtime checks caused by unnecessary adapted shadows and
the overhead caused by the morphing process itself.

Morphing aspects impose a number of requirements on the underlying aspect-
oriented system. This restricts their application to a number of systems. The most
fundamental requirement is that the underlying system must permit dynamic weaving,
i.e. weaving of aspects during runtime. A number of systems such as PROSE [PGA02,
PGA03], AspectS [Hirs02], JAC [PSDF01], Object Teams [VeHe03, Herr02], or Caesar
[MeOs03] fulfill this requirement while systems like AspectJ [KHH+01] or Sally
[HaUn03a] do not. As another requirement morphing aspects typically require the
computation of dependent shadows at runtime, i.e. the shadows to be associated with an
aspect are statically not known. However, not every system providing dynamic weaving
permits the computation of join points at runtime. For example, Object Teams assumes
that the shadows are statically declared.

94 4 - Morphing Aspects

The contribution of this chapter for the whole thesis is mainly that morphing aspects
are a special way of specifying aspects. The reflective characteristics of the underlying
programming languages are utilized in order to determine join points and the
characteristic of dynamic weaving is utilized in order to achieve continuous weaving.
The approach is not really a new system in the sense that a software framework is
provided. Instead, a conceptual framework is provided that determines how to specify
morphing aspects.

Obviously, morphing aspects represent a very special form of aspect-oriented system
that relies on a special kind of weaving. The design dimensions that are described in the
following chapter identify the underlying design decision as a special kind of aspect-
oriented system in respect to weaving (see section 5.6.3).

5

DESIGN DIMENSIONS OF ASPECT-
ORIENTED SYSTEMS

5.1 Introduction
There is already a large number of systems which are (commonly accepted) called
aspect-oriented systems. However, no commonly accepted definition is available which
precisely determines whether a certain system is aspect-oriented. As a consequence,
whenever a new system appears it is difficult to determine whether it is legitimate to call
such a system aspect-oriented. Furthermore, it is difficult to compare different aspect-
oriented systems because underlying criteria for such a comparison are missing.

The main problem that needs to be addressed is formulated in [Film01]: Answering
the question “Is X an AOP system where the answer is not based on whether the creator of the
system called it AOP”.

Nowadays, the only possibility to determine whether or not a system is aspect-
oriented is to trust on an author who proposes a new system and calls it aspect-oriented,
or to trust the program committee of conferences like the International Conference of
Aspect-Oriented Systems (AOSD, [Kic02, Aks03, Lieb04]) that accepts papers (or
demonstrations) about systems which contribute to the aspect-oriented community.
However, this is far from being satisfying because it simply delegates the analysis of a
system with respect to its aspect-orientedness, but it does not provide any differentiating
attributes that can be used for such an analysis.

Although there are a number of systems that are called aspect-oriented, it turns out
that some systems are more appropriate to modularize a given crosscutting problem
than other ones (see for example section 3.3). Actually, certain systems are even
inappropriate to modularize a given crosscutting problem.

From a developer’s perspective such a situation is not satisfying because it is not
possible to determine on an abstract level what characteristics a system needs to provide
in order to solve a given problem. Instead, a detailed knowledge about system-specific
features is needed in order to determine a system’s adequacy. For example, if developers
need to determine whether AspectJ permits to solve the crosscutting problem caused by
a tracing feature, they need to study the language features of AspectJ: The mechanisms
and the underlying terminology of AspectJ need to be understood in detail in order to
determine whether AspectJ permits to solve the problem. In case the system turns out
to be inappropriate, they need to study the language features of for example Sally. In

96 5 - Design Dimensions of Aspect-Oriented Systems

case Sally turns out to be inappropriate, it is necessary to study Hyper/J, etc.
Consequently, developers need to study in detail a large number of systems that claim to
modularize crosscutting concerns. In the worst case, they study all systems that claim to
be aspect-oriented and finally might conclude that there is no system that permits to
modularize their crosscutting concern in a desired way.

The same problematic situation arises for developers who want to build their own
aspect-oriented system. They need to study those features of existing systems that
address the modularization of crosscutting concerns. Since there are no system-
independent characteristics for aspect-oriented systems available, developers need to
study a large number of systems in detail and analyze on their own the impact of a
certain feature in order to modularize a crosscutting concern. If such developers have a
certain crosscutting problem in mind, they need to analyze on their own a) if there is a
system that solves this problem and b) what features of this system are responsible for
solving this problem. Finally, developers need to select all desired features and analyze
whether such features can be added to a new system in parallel. Currently, this process
cannot be shortened because high-level abstractions of aspect-oriented systems are
missing; therefore, a detailed analysis of each aspect-oriented system is necessary.

In order to address the previously described problems, high-level abstractions of
aspect-oriented systems are needed that describe

• The inherent characteristics of aspect-oriented systems in order to analyze a
system with respect to its aspect-orientedness,

• The distinguishing variations of aspect-oriented systems in order to compare
existing systems, and

• The distinguishing variations in order to demonstrate the different alternatives
for the design of new systems.

Furthermore, it is desirable to characterize a given crosscutting problem in terms of
an abstract problem description. This permits to map a given problem to systems that
potentially solve the problem without relying on system-specific mechanisms and
terminologies. The benefit of such an abstract description is that problems can be
classified into different categories and mapped to different aspect-oriented systems
without the need to have a detailed knowledge about system-specific features.

5.1.1 Aspect, Join Point, and Weaving

In the aspect-oriented literature, in general, as well as in the papers describing the
approaches discussed in the previous chapters, there are three commonly used terms:
Aspect, join point, and weaving.

• An aspect (on the programming language level) is a modularized unit containing
elements, which would crosscut the base program if not handled by an aspect-
oriented system. From the implementation’s point of view, if the aspect-specific
code would be factored out into known language constructs, there would be a
number of code redundancies in the base system. From a more abstract point of

5 - Design Dimensions of Aspect-Oriented Systems 97

view (see for example [SGC02], [McHs03]), an aspect represents a unit that
modularizes a crosscutting concern42.

• The term join point is defined in [KHH+01] as a principled point in the execution of a
program. Aspects potentially affect the base system at a number of such join
points. A weaver that composes a number of aspects with the base system
achieves this affection.

• Weaving describes the process of integrating aspects with the application (the
base system). In order to weave a number of aspects, a weaver determines those
join points in the base system the aspects refer to. At those join points the weaver
establishes the connection to aspect-specific code.

Figure 5-1 schematically illustrates the integration of two aspects with the base
system. The base system provides a number of join points the aspects refer to (the join
point are not explicitly illustrated). The weaver takes the base system and the aspects as
input parameters and composes the woven system – a system that contains the aspects
in addition to the base system.

Base
System

Aspect 1

Aspect 2

Woven
System

Figure 5-1. Schematical illustration of weaving two aspects to a
base system [HSU03].

Although from this generic point of view there seems to be some agreement on these
terms, the terms are differently used in different situations. For example, the conceptual
model of join point differs in different aspect-oriented systems, the way an aspect
describes its join points differs, and the way the weaving process is implemented in
different aspect-oriented systems differs, too. The differences in implementations of
different aspect-oriented systems has a large impact on how the systems can be applied
and how appropriate a system is in order to solve a given crosscutting problem.
Furthermore, the terms aspect, join point, and weaver are not well defined. It is
necessary to determine the characteristics of aspects, join points, and weavers and their

42 Filman noted in [Film01] that this definition contains some circularity, because once a crosscutting
concern is handled by an aspect-oriented system it is no longer a crosscutting concern. [LLM99] uses
the term aspectual paradox to describe the same problem of circularitiy in the defintion.

98 5 - Design Dimensions of Aspect-Oriented Systems

commonalities and differences in known approaches. For example, it is necessary to
study whether a class-construct known from class-based object-oriented programming
languages is able to fulfill the characteristics of aspects. Although there is some
agreement in the literature that known language constructs like classes cannot represent
aspects, it is not clear on what observation this agreement is based on.

The previously introduced terms do not permit to distinguish between different
kinds of aspect-oriented systems: Whether or not two systems are able to modularize
the same kinds of crosscutting concerns cannot be characterized by these terms, because
such terms only represent some commonalities among aspect-oriented systems.

Consequently, the previous terms represent a first common vocabulary for aspect-
oriented systems, but they are not sufficient to distinguish aspect-oriented and non-
aspect-oriented systems, to distinguish between different aspect-oriented systems, or to
analyze a system with respect to its appropriateness to solve a crosscutting problem.

5.1.2 Quantification and Obliviousness

On a more abstract level (that leaves out the terms aspects, join points and weaving) a
large number of authors agree on quantification and obliviousness as described in
[FiFr00] as the core elements of aspect-orientation (see for example [TuKr03,
KHH+01, Nord01] among many others).

Quantification describes the capability of aspect-oriented systems to make quantified
statements about which code is to execute under which circumstances [FiFr00]. This corresponds to
the previously explained idea that aspects influence an application at a number of join
points: Join points are the circumstances; the code to be executed under these
circumstances is the aspect-specific code for such join points.

Obliviousness describes the capability of aspects to extent an application without the
need to preplan such an extension43: The developer of a certain module or application
does not need to consider additional concerns that might influence the code.
Consequently, the developer does not need to provide explicit hooks that can be used
later on for supplementing additional concerns to the code. Instead, aspects specify on
their own those hooks in the application to determine where aspects contribute to the
original module. An alternative term for obliviousness (or oblivious extension) is the
term unanticipated reuse [Knie00] (see also [USE04]).

However, although the terms quantification and obliviousness are appropriate to give
a general impression of aspect-oriented software development, they are too general and
too closely related to existing approaches in order to represent distinguishing
characteristics that separate aspect-oriented from non-aspect-oriented systems. For
example, inheritance in object-oriented programming languages like Java can be
regarded as a language construct providing oblivious extensions that make quantified
statements about the class hierarchy (see for example [FiFr00, ClLe03]). Each method
defined in a superclass can be used by all subclasses and by all clients that access such

43 The preplanning problem was addressed for example by [CzEi00]. However, it should be noted that
there are some authors that do not agree on obliviousness as a core characteristic of aspect-oriented
system. For example [RaCh03] argues that there are aspects that need to be explicitly addressed within
the application and which are in that way not completely oblivious.

5 - Design Dimensions of Aspect-Oriented Systems 99

subclasses (or objects of the corresponding types). A superclass can be compiled later
on after its subclasses are compiled. Hence, adding a new method to a superclass
represents a “quantified extension”.

Figure 5-2 illustrates a simple class hierarchy in Java. A class Superclass provides
a method m that can be used by all clients accessing instances of the subclasses A, B and
C. However, the message n is not accepted by such instances. After adding a new
method n and recompiling Superclass, this method is available for all instances of
A, B and C. Spoken in aspect-oriented terms: The new method crosscuts all subclasses.
From the quantification point of view a method definition in a superclass is a quantified
statement for all instances in the subclass. The corresponding statement is “whenever an
object that is instantiated by a class subclassing Superclass receives a message n, execute the
corresponding method defined in Superclass”44.

Superclass

 m()

A B C

Superclass

 m()
 n()

Recompilation
with new

method n()

Valid calls:
A a = new A(); a.m();
B b = new B(); b.m();
C c = new C(); c.m();

Invalid calls:
A a = new A(); a.n();
B b = new B(); b.n();
C c = new C(); c.n();

A B C

Valid calls:
A a = new A(); a.m(); a.n();
B b = new B(); b.m(); b.n();
C c = new C(); c.m(); c.n();

Figure 5-2. Quantified and oblivious extensions via superclass
recompilation.

Obviously, the intention of aspect-orientation is not to reinvent new terms for
already existing mechanisms. Hence, it seems rather undesirable to call the previously
described extension an aspect-oriented approach. Furthermore, it seems clear that
changing a class definition in an invasive way and recompiling the class cannot seriously
be regarded as a new approach: The extension of the original class is not supported by
extension mechanisms of the underlying language. However, the previous example can
be described by the terms obliviousness and quantification. Hence, those terms seem to
be rather inappropriate to describe inherent characteristics of aspect-oriented systems.

44 It should be noted that there are reasons why such an approach is rather problematic. Since Java is a
stronlgy typed programming language, classes that include invocations of the the new method n in type
Superclass cannot be compiled as long as the new method is not included in Superclass.
Consequently, classes using n must be compiled after recompiling Superclass.

100 5 - Design Dimensions of Aspect-Oriented Systems

5.1.3 This Chapter’s Outline

This chapter provides an conceptual description of aspect-oriented systems by
providing so-called design dimensions aspect-oriented systems are based on. These
dimensions are extracted by comparing similar points of view in the aspect-oriented
literature on the core ingredients of aspect-orientation, and by comparing the systems
introduced in previous chapters. Each aspect-oriented system can be described in terms
of how each design dimension is applied. Consequently, different systems can be
compared with respect to how each dimension is met in the aspect-oriented systems.

As pointed out by some authors (see for example [RaSu03]), AspectJ is a relatively
rich aspect-oriented system. Therefore, a number of design decisions of an aspect-
oriented system can be explained in terms of AspectJ. Since AspectJ is currently the
most popular aspect-oriented system, the proposed design dimensions will be
exemplified in AspectJ whenever possible.

Section 5.2 discusses briefly the core ingredients of aspect-oriented systems. This
section introduces those elements of aspect-oriented systems whose design dimensions
are introduced more deeply in the following sections. Section 5.3 introduces different
design dimensions of join points, and section 5.4 introduces different design dimensions
of join point selection constructs. In section 5.5 the kinds of join point adaptations are
described, and section 5.6 discusses different design alternatives for weavers. Section 5.7
discusses the relationship between the design dimensions and their implementations.
Section 5.8 critically discusses the term design dimensions chosen to describe the
approach in this chapter. Finally, this chapter is concluded.

5.2 A Model for Aspect-Oriented Systems
The introduction gave a first impression of the elements of aspect-oriented systems:
Aspects are modules that are woven to the base application at certain join points. So,
the intention of aspect-oriented systems is to add new concerns to the base system.
However, it does not clearly determine the tasks an aspect-oriented system has to
perform and the ingredients an aspect-oriented system consists of.

In an aspect-oriented system, developers have to specify aspects in a way that
expresses:

1. Where the aspects are woven to the base system, and

2. How the aspects adapt the base system.

The “where” inside this specification is expressed in terms of join points, i.e.
developers depend on some features provided by the underlying system to describe
those join points the aspect should be woven to. For specifying the “how” developers
also depend on features provided by the underlying system which permit to describe
exactly how each chosen join point is to be adapted.

As a consequence, the aspect-oriented system must provide the following elements:

1. A join point representation of the base system,

2. Language constructs that permit developers to select join points,

5 - Design Dimensions of Aspect-Oriented Systems 101

3. Language constructs that permit developers to specify how selected join
points are to be adapted, and

4. A weaver that composes the resulting system.
A join point representation is a specific view on the base system, which needs to

be extracted directly from the base application itself: It is the aspect-oriented system’s
task to decompose the base application into a number of join points as illustrated by
means of cycles in Figure 5-3. Therefore, developers of an aspect-oriented system need
to decide what elements of the base application represent join points. This decision is
based on what join point model the aspect-oriented system is based on. The design
dimensions of join point models are discussed in section 5.3.

Base
application

Join Point
Representation

Join Point
Selection and

Adaptation

Decomposition

2. Composition (Weaving)

Woven Application

1.
based on
 - Join Point Model
 - Join Point Encoding

based on
 - Join Point Selection
 - Join Point Adaptation

Aspect Specification

Figure 5-3. Schematical illustration of the ingridients and tasks of
an aspect-oriented system.

Developers must be able to select join points. This means the aspect-oriented system
must provide a selection language that permits to address those join points the base
system is decomposed into. The selections are user-defined elements that refer to the
system’s join point representation as illustrated by means of triangles referring to the
cycles in Figure 5-3. Furthermore, this implies that the system must equip join points
with a number of characteristic marks or properties that permit the developer to decide
whether or not a join point is to be selected. These characteristics are used for the join
point representation, i.e. when the base application is decomposed the selection
language is provided to the developer to address this representation. The extraction of
characteristic marks of join points is called join point encoding in this thesis and is
discussed in conjunction with characteristics of join point selection languages in
section 5.4.

The aspect-oriented system needs to provide developers with language features that
refer to a join point selection and that specify how the selected join points are to be

102 5 - Design Dimensions of Aspect-Oriented Systems

adapted. Such join point adaptations are user-defined elements as well as illustrated by
means of pentagons referring to the triangles in Figure 5-3. The design dimensions of
the corresponding language constructs are discussed in section 5.5.

Finally, the aspect-oriented system needs to weave the resulting system based on the
user-defined selections and adaptations and based on the modules in the base-
application. Thereto, the weaver uses the base system, its join point representation, and
the aspect specifications and composes a woven system. The different alternatives of
weaving are discussed in section 5.6.

Consequently, this thesis regards a system to be aspect-oriented, if it provides a join
point model, constructs for selecting join points, constructs for adapting join points,
and a weaver that composes a resulting system.

5.3 Join Points
Join point is the central concept that underlies all aspect-oriented techniques.
Nevertheless, there are different interpretations of the join point concept which result in
different implementation techniques for aspect-oriented systems.

The term join point originates from Kiczales et al in [KLM+97] who define join
points as those elements of the component language semantics that the aspect programs coordinate
with45. However, the phrase “elements of a semantics” is quite imprecise. It could refer
to an evaluation rule in the programming language, like a beta-reduction rule in the
lambda calculus (see [Bare84] for a detailed introduction into the lambda calculus). Or,
it could refer to the rules that define in the programming language Java how expressions
are evaluated. Likewise, only certain ingredients of such rules could represent join
points.

It is difficult to get a common understanding of the term join point from this
definition. Programming languages and their semantics differ widely. For example, in
statically typed languages like Java the static types that are assigned to every expression
in the application are used by the semantics of the programming language: Static types
of parameters (i.e., types that result from a static analysis of the program) are used to
compute methods used for the single dispatching46. From that point of view, static types
of expressions could represent join points. However, in untyped languages like
Smalltalk, expressions do not have any static types. Because of that, such types cannot
represent join points in an application written in an untyped base language.

Consequently, the term join point as introduced in [KLM+97] does not really help to
understand what a join point actually is. Developers of new systems face the problem
again and again to investigate on their own what a join point is and what design
alternatives for join points exist. For developers that simply want to use an aspect-
oriented system, this definition is not satisfying because it does not clearly determine
what a join point is. Consequently, the decision of whether or not a certain system is

45 The term component language describes the language that is used to specify the base program.
Hence, this thesis uses in the following the term base language.

46 See for example [Bruc02, CLCM00] for descriptions of the single dispatching of Java.

5 - Design Dimensions of Aspect-Oriented Systems 103

able to handle a given crosscutting problem cannot be determined from this vaguely
described term.

Based on the ingredients of an aspect-oriented system as introduced in section 5.2, it
is possible to define join points with respect to their role within the system.

Join Point: A join point is an element within an aspect-oriented system that can
be selected by the underlying join point selection constructs (specified in a
separate module) and that can be adapted by the underlying adaptation
mechanisms.

This join point definition has some similarity to [WKD02] where the authors state
that a join point is “[…] an event in the execution of the program at which advice may run”.
According to this definition, the ability of being modifiable (and previously selectable) is
an inherent characteristic of join points. However, the join point definition leaves open
what kind of element is selectable and adaptable because different aspect-oriented
systems differ with respect to the nature of join points. This will be discussed in the
following sections.

5.3.1 Static and Dynamic Join Points

In [KHH+01] Kiczales et al present a slightly more specific interpretation of the term
join point (which focuses on AspectJ): Join points are principled points in the execution of a
program. From this point of view, runtime-specific actions like the evaluation of
expressions are join points. Static properties that do not have a runtime representation
like static types of expressions in programming languages similar to Java or C++ are no
join points according to this point of view.

A different interpretation of the term join point that does not rely on any specific
implementation can be found in [Film01]. There, Filman describes join point as systematic
loci in an application. Similar interpretations can be found by Aßman and Ludwig in
[AßLu99] who describe join points as points in a component where aspects are integrated or by
Batory in [Bato03] who describes a join point simply as an element of a program. Also, a
similar interpretation of the term join point by Ossher can be found in [EAK+01] who
states (from the Hyper/J perspective) that join points are elements in a hyperslice
(whereby each element is a class, method, or field declarations). According to this
definition, join points are deemed to be static elements of an application. Such static
elements might be method or class definitions as well as method calls (i.e., those
syntactical elements in the application that represent a method call) or even operators
(i.e., those syntactical element in the application which represent the application of
operators).

The main difference between the interpretation of join points as “principled points in
the execution of a program” or as “systematic loci” lies in their implications with respect
to the computability of join points. The latter interpretation extracts all join points from
the underlying code base; join points have a direct correspondence in the base
application’s code. As a consequence, all existing join points can be determined by
examining the application and decomposing it into its elements. Considering that an
application’s code has a finite length, the decomposition leads to a finite number of join
points.

104 5 - Design Dimensions of Aspect-Oriented Systems

The “principled execution point” interpretation of join points does not permit to
statically determine all existing join points because join points appear not before runtime
and cannot be statically computed upfront in general. In case the application does not
terminate, there are potentially an infinite number of join points.

The difference between these interpretations of join points is illustrated in Figure 5-
4. The method main in class Main repeats the while loop as long as the user input
(retrieved by the class method call getInt in Input) is not 0. Every time the loop is
executed and the user input is not 0, the method call to increment is executed.

name = Main

... : MethodDef

… : New

... : whileLoop

... : Expr

… : MethodCall

... : ClassDef

name = main
isAbstract = true

... : VarDef
name = counter

methodName =
 getInt

... : MethodCall

Main Input

counter: Counternew

getInt

increment

methodName =
 increment

getInt

increment

a) b)

public class Main {
 public static void main(String[] args) {
 Counter counter = new Counter();
 while(Input.getInt()!=0) {counter.increment();}
 }
}

Join points

Join points

static
decomposition

dynamic
decomposition

Base system

Figure 5-4. Decomposition of a simple Java application into join
points using a) a static decomposition and b) a dynamic
decomposition.

In this example the interpretation of join points as systematic loci means that all loci
in the application represent join points. Figure 5-4 a) illustrates a possible static
decomposition of the application according to its syntactical elements: The class Main
is decomposed into its syntactical elements class definition, method definition, variable
definition (and initialization), loop, expression, and method call (which is typically a
specialized expression). Each element in the diagram represents a locus in the

5 - Design Dimensions of Aspect-Oriented Systems 105

application and each locus in the application represents a join point. The number of join
points is statically computable (i.e. prior to runtime) and does not change during an
application’s runtime.47 Furthermore, for a given element in the code it can be
determined whether it represents a join point. For example, single keywords like class
do not have a representation in the given decomposition. Hence, they do not represent
a join point48.

Figure 5-4 b) illustrates the interpretation of join points as principled points in the
execution of a program. This is done by a message-sequence-chart. Each message, as
well as the creation of objects, represents a join point in the message-sequence-chart.
For example, the first invocation of the new operator is one join point, and each
invocation of method getInt, as well as method increments is an additional (and
new) join point. Since it cannot be statically computed how often the loop inside the
application will be executed, the number of join points in the application cannot be
computed before runtime49.

A number of authors use the term dynamic join point to refer to the “principled
point in the execution” interpretation of the term join point (see for example [ClLe03,
CHMB03, Läm03, MKD03, WKD02]). However, no common definition for this term
is provided that is precise enough to characterize the underlying interpretation of join
point. For example, dynamic join points are described as runtime actions [MKD03], runtime
events [ClLe03] or nodes in the runtime call-graph [ClLe03]. However, such definitions are
not appropriate to describe the difference to join points as systematic loci because each
runtime event is caused by a corresponding locus in the application. Furthermore, there
are runtime actions that are usually not considered join points. For example, garbage
collection in systems like Java enforces a number of runtime actions. However, these
actions are typically not enforced by the underlying application base, but by the
underlying programming language.

The interpretations of join points as “principled points in the execution of a
program” and “systematic loci” are not unrelated. Some loci in the application
potentially represent a number of points in the execution of a program. The term join
point shadow [MKD03] is used to map both views (see also Chapter 4 for a detailed
discussion of join point shadows). According to [MKD03], a join point shadow is an
element within the code that represents a number of join points at runtime. The term
join point shadow cannot be applied to loci in an application that does not have a direct
correspondence in the application’s runtime. In its easiest case, such loci are syntactical
elements like white spaces in the Java syntax that are extracted during parsing and that
do not influence the runtime behavior of the system. In other situations, some code

47 This assumes than the underlying language is not reflective (see [Maes87]). For example, Java is not
completely a reflective language although it is introspective (i.e. the intercessional characteristics is
missing, see for example [Chib00] for a detailed discussion of both terms).

48 This decomposition of the application into a number of join point corresponds to the decomposition of
applications into static metaobjects as realized by static metaobject protocols like for example
OpenC++ [Chib95] or OpenJava [TCIK00].

49 This concrete example is due to the unknown input by the developer. In general, it is due to the
haltproblem formulated by A. Turing and discussed in many books on theoretical computer science
like [HMU01].

106 5 - Design Dimensions of Aspect-Oriented Systems

elements are replaced by other elements for optimization reasons. Consequently, the
original loci in the source code may not exist.

This thesis distinguishes between two different kinds of join points. This distinction
is based on their dynamicity, i.e. on how they are represented in the base application’s
code. This thesis distinguishes between static join points and dynamic join points.

Static Join Point: A static join point is a selectable and adaptable item that
represents an element in the base program’s code.

Dynamic Join Point: A dynamic join point is a selectable and adaptable runtime-
element from the application’s execution context. Dynamic join points are
represented by elements in the code, which are called join point shadows.

The definition of static join point relies on the phrase “element in the base program’s
code”. Such an element may be either a pure syntactical element that can be extracted
while parsing the application’s sources, like parse nodes defined by the base language’s
grammar or single tokens in the base application’s sources. Alternatively, such elements
can be parts of an application’s binaries (assuming a compiled language) or (static)
metaobjects (assuming an underlying language providing metaobjects).

Examples for dynamic join points are method calls from one specific object to
another one. In class-based languages like Java objects do not have any direct
correspondence in an application’s code but are represented by classes and variables. In
this case, objects themselves could represent dynamic join points in class-based
programming languages.

5.3.2 Structural and Behavioral Join Points

In [EAK+01] Ossher discusses the interpretation of join points as structural elements
of an application. As an example he names classes, interfaces, methods, and variables
(i.e. abstraction constructs of the underlying programming language) as join points.

For example, within a Java application a certain class might represent a join point.
The underlying language provides the class construct and it is up to the developer to use
this construct in its concrete application. Class definitions represent building blocks50
that structure the underlying code and define an interface for its objects. In the same
way, methods in class-based object-oriented languages represent such building blocks
on a finer level of granularity since in such languages methods are part of classes.

This differs from the interpretation of join points as a node in the dynamic call graph
as argued by Lieberherr in [EAK+01] and which is closely related to [KLM+97].
Method calls appear at runtime (i.e., they represent nodes in the call graph). They do not
represent a structural abstraction in the underlying programming language but are
encapsulated within method definitions. In a number of programming languages like
Java or C++, method calls are completely hidden from the developer. In such

50 cf. [Meye98], pp. 165

5 - Design Dimensions of Aspect-Oriented Systems 107

languages, it is not possible to reflect on method calls that are potentially performed by
a certain object51.

name = Main

... : MethodDef

... : ClassDef

name = main
isAbstract = true

a) b)

… : New

... : enteringWhileLoop

... : ExprEvaluation

… : MethodCall

... : VarInitialization
name = counter

methodName = getIntUserInput

... : MethodCall
methodName = increment

target = Counter

structural
decomposition

behavioral
decomposition

public class Main {
 public static void main(String[] args) {
 Counter counter = new Counter();
 while(Input.getInt()!=0) {counter.increment();}
 }
}

Join points Join points

Figure 5-5. Decomposition of a simple Java class into (a) structural
and (b) behavioral join points (based on static join
points).

Obviously, both views on the term join point differ widely – while Ossher considers
structural elements that encapsulate and hide information as join points, Lieberherr
focuses on elements representing the encapsulated behavior. This thesis identifies a
design dimension of join point models that permits to distinguish between both. The
underlying criterion for this distinction is the level of abstraction. This thesis uses the
term structural join point to describe the interpretation of join points as structural
elements of an application and behavioral join points to describe the interpretation of
join points as elements that represent the behavior of an application.

Structural Join Point: A structural join point is a selectable and adaptable element
that represents a structural abstraction within the application based on an
abstraction provided by the underlying programming language.

Behavioral Join Point: A behavioral join point is a selectable and adaptable
element in the application that represents a part of the application’s behavior that is
encapsulated by corresponding structural building blocks.

51 The reflective capabilities of Java permit only to introspect classes and methods, but no expressions
within methods.

108 5 - Design Dimensions of Aspect-Oriented Systems

Examples of potential structural join points within class-based, object-oriented
programming languages are class definitions, method definitions, or objects. Examples
of behavioral join points are method calls, field assignments, and operators.

Figure 5-5 illustrates the difference between structural and behavioral join points in a
simple Java application. The illustration is based on a static decomposition of the
application (i.e., it makes use of the static join point interpretation) as discussed in the
previous section52. Structural join points decompose the application according to
structural elements, (e.g. classes and methods). Accordingly, in Figure 5-5 (a) the
application is decomposed into a representation of the class Main and a representation
of the method main. In contrast to that decomposition, behavioral join points
decompose the application into all elements that represent the behavior of the
application (e.g. expressions that are evaluated at runtime). For example, in Figure 5-5
(b) such elements are the initialization of the variable counter, the entry into the
loop, or the invocation of method getInt in class Input.

Whether a certain kind of join point is behavioral or structural can be derived from
the underlying language, because the base language’s specification clearly specifies what
constructs encapsulate behavioral elements and what elements represent behavioral
elements that do not structure the application’s code.

5.3.3 Orthogonality of Design Dimensions

The dimensions level of abstraction and dynamicity can be applied independently of
each other, i.e. both dimensions are orthogonal. As a consequence, join point models
underlying aspect-oriented systems can be divided by both dimensions at the same time.

dynamic
join points

static
join points dy

na
m

ic
ity

level of abstraction

behavioral
join points

structural
join points

1

2

3

4

Figure 5-6. Orthogonal dimensions of join point models.

Both orthogonal dimensions are illustrated in Figure 5-6. On the one hand there is
the axis representing the criteria of dynamicity of join points separating static and
dynamic join points. The other axis represents the level of abstraction separating
behavioral and structural join points. As a result, there are four models of join points in
aspect-oriented systems:

52 Obviously, the decomposition of the base application in Sally shares this view on static join points (see
section 3.4.1 for further discussion).

5 - Design Dimensions of Aspect-Oriented Systems 109

• The dynamic and behavioral join point,

• The static and behavioral join point,

• The dynamic and structural join point, and

• The static and structural join point.

In the dynamic and behavioral join point model, an application is decomposed into a
number of behavioral elements (like for example method calls in the (dynamic) control
flow of the application). In the static and behavioral joint point model the application is
decomposed into its static elements (e.g. method calls in the syntax tree). Each node in
the resulting graph that contributes at runtime to the application’s behavior represents a
join point. The model of dynamic and structural join points decomposes the application
at runtime into its structural elements (e.g. objects), but also dynamic types where each
of these elements represents a join point. The model of static and structural join points
decomposes an application before runtime into its structural elements that represent
join points.

This thesis uses the term abstract join point model to refer to an aspect-oriented
system’s interpretation of the join point concept.

Abstract Join Point Model: The term abstract join point model describes the
conceptual join point model underlying an aspect-oriented system. The abstract join
point model describes the underlying join point concept with respect to its
dynamicity and its level of abstraction.

The phrase “system A has a static join point model” describes that the system
provides only static join points (which might be structural or behavioral). The phrase
“system B has a structural join point model” describes that the system provides only
structural join points (which might be static or dynamic).

However, a system’s abstract join point model does not necessarily need to be a
single point in the matrix of Figure 5-6. It can combine different kinds of join points.
For example, it is possible that an aspect-oriented system provides static structural join
points (like class definitions) and dynamic behavioral join points (like method calls) at
the same time. This thesis refers to a single point in the 2x2 matrix as an abstract join
point model element.

5.3.4 Concrete Join Point Models

The previous sections introduced different kinds of join points abstracted over concrete
programming language constructs. For example, the term behavioral join point simply
states that a join point is an encapsulated element that represents parts of the
application’s behavior. However, it does not automatically mean that two aspect-
oriented systems are equal because they are based on the same join point model (e.g.,
behavioral join points). There is still a large variety of what elements potentially
represent join points. What concrete join point model is to be chosen depends not only
on the design of the aspect-oriented system, but also on base language’s design.
Consequently, different aspect-oriented systems can be based on behavioral join points
and can still vary considerably.

110 5 - Design Dimensions of Aspect-Oriented Systems

Aspect-oriented systems based on the same programming language and the same join
point model possibly provide different kinds of join points. For example one aspect-
oriented system based on behavioral join points possibly provides just method calls as
behavioral join points (i.e., those elements in the AST representing method calls) while
another system potentially provides operators as join points (i.e., nodes in the AST
representing the application of an operator).

If two aspect-oriented systems are based on different programming languages they
can provide different join points because of the different abstractions and mechanisms
provided by the underlying languages. This is obvious in case the underlying languages
are based on different paradigms because language constructs of one language do not
necessarily have a correspondence in the other language. For example, an aspect-
oriented system based on Java (like AspectJ) can provide different join points than an
aspect-oriented system based on C (like AspectC [CKFS01]) since both languages are
based on different paradigms. In Java, method definitions represent static structural
building blocks that can be provided as structural join points. Objects represent
dynamic building blocks that can be provided as structural join points as well. In C,
function pointers are dynamic structural building blocks that can be provided as
structural join points.

Join Point (JP)

Behavioral JPStructural JP

Class
Declaration

Method
Declaration

Field
Declaration

Object

Procedure
Definition

...

Instance Creation

Method Call

Operation
Evaluation

Loop Entrance

Exception
Throwing

...

Figure 5-7. Join points classes.

Even if two languages are based on the same paradigm they can provide different
abstractions and mechanisms. For example, an aspect-oriented system based on C++
could provide operator overloading as structural join points. Since Java does not
permit to overload operators, such constructs cannot be provided as join points.
Another example from the Java-C++ world (up to Java 1.5) are templates in C++,
which are potentially structural join points but which do not have any correspondence
in Java. In the same way, inner classes in Java can represent structural join points. Due
to the absence of such constructs in Smalltalk, aspect-oriented systems for Smalltalk
cannot provide such join points.

The elements that represent join points can be classified in all known aspect-oriented
systems by a small number of classes. This thesis uses the term join point class53 to

53 In [WKD02] the term kind of join point is used. This thesis uses the term “class” instead of “kind”.
From our point of view the term “class” is more intuitive because of its use in the object-oriented
literature.

5 - Design Dimensions of Aspect-Oriented Systems 111

describe a particular classification for a number of join points. Figure 5-7 illustrates
different classes of join points. An example of a class of join points provided by an
aspect-oriented system is method call or instance creation, as well as class or
method declaration. A join point class can be directly extracted from the base
language’s syntax and semantics: Method call join points can be provided because the
underlying language provides the method call construct (and corresponding method
definitions), field assignments can be provided because the underlying language provides
the field construct. Thus, the programming language itself already describes the possible
set of join points.

This thesis refers to the set of join point classes as the concrete join point model.

Concrete Join Point Model: The term concrete join point model describes all
classes of join points provided by an aspect-oriented system grouped into the
dimensions defined by the abstract join point model.

For example, a simple concrete join point model for a Java-based aspect-oriented
system could consist only of the static and behavioral join point class “Method Call”,
where method calls (i.e., the syntactical elements that represent method calls) can be
selected and adapted by the aspect-oriented system.

5.3.5 Incomplete and Complete Coverage

The abstract and concrete join point models provide a first foundation for the
comparison of aspect-oriented systems. Two aspect-oriented systems can be compared
by comparing their abstract and concrete join point models. However, such a
comparison is problematic if the comparison turns out that the abstract and concrete
models are not equal because the consequences of “being not equal” are not clear.

Concrete join point models can be characterized by how they cover the base
language. For example, if the base language provides only class definitions, method
definitions, and field definitions as structural elements (this corresponds for example to
Featherweight Java [IPW99] which is a small subset of the Java language), an aspect-
oriented system’s concrete join point model can consist with respect to static and
structural join points of at most all those three classes. If the (class-based) base language
provides only object creation, field assignments, field accesses, method invocations, and
if-constructs as expressions, an aspect-oriented system can provide at most five static
and behavioral join point classes.

Obviously, if an aspect-oriented system covers all elements from the base language as
join points, it is “more complete” than systems that do not cover all elements from the
base language. Furthermore, an aspect-oriented system that extends an existing system
by simply adding a new join point class can be considered to be more complete than the
extended system. For example, [Pras03] proposes an extension of AspectJ that adds
typecasts as a new join point class to AspectJ. Consequently, the extension includes all
join point classes the original system includes and provides an additional join point class.
Hence, the new system has a higher coverage of the base language than the original
system.

Consequently, for comparing aspect-oriented systems the completeness of the
underlying join point models is a valid qualitative criterion. The term coverage and
completeness can be applied to each single element in the 2x2 matrix described in

112 5 - Design Dimensions of Aspect-Oriented Systems

Figure 5-6 (i.e. to each abstract join point model element). For example, an aspect-
oriented system’s static join point model can cover all expressions of the underlying
language, but cover only some parts of the structural elements provided by the base
language. Consequently, the static behavioral part of the join point model completely
covers the base language and the static structural part of the join point model covers the
base language incompletely.

Complete Join Point Model: An aspect-oriented system’s concrete join point
model is complete with respect to an abstract join point model element, if there is a
corresponding join point class for each construct of the base language.

Incomplete Join Point Model: An aspect-oriented system’s concrete join point
model is incomplete with respect to an abstract join point model element, if there is
for this element at least one construct in the base language that is not covered by
the concrete join point model.

Since the characteristics of completeness can be applied to all elements in the 2x2
matrix, the completeness represents a new design dimension – the level of coverage -
for aspect-oriented systems as illustrated in Figure 5-8.

dynamic

static

dy
na

m
ic

ity

level of abstraction

behavioral structural

level of coverage

complete
incomplete

Figure 5-8. Three design dimensions of abstract join point models.

As discussed above, this third dimension differs noteworthy from the dynamicity and
the level of abstraction. With respect to the dynamicity and the level of abstraction, this
thesis identifies two different ways of how join point models can differ. With respect to
the level of coverage, different aspect-oriented systems can vary between incomplete
and complete coverage because there are systems that provide for a given base language
more join point classes than other ones.

In principle, it is possible to determine a numerical value for the level of coverage. It
is possible to divide the number of join point classes provided by a certain system with
the number of expressions provided by the base language. For example, a base language
possibly provides only object creation, field assignments, field accesses, method calls,
and if-constructs as expressions. One aspect-oriented system provides only if-
constructs as join points, while another one provides only method calls as join points.
Both systems cover the same “number” of join point classes (which means 1/5
coverage). However, such a number is almost meaningless: Whether or not a certain

5 - Design Dimensions of Aspect-Oriented Systems 113

aspect-oriented system is able to modularize a given crosscutting problem does not
depend on the number of join point classes, but on the appropriateness of join point classes.

5.4 Join Point Selection
Because of the quantification property [FiFr00], the intention of aspects is (typically) not
to adapt only a single join point per aspect. Also, aspects do not adapt every existing
join point of the whole system. Instead, typically a (small) subset of all join points in the
base-system are to be adapted by an aspect. When developers specify an aspect they
have to specify at what join points the aspect contributes to the application. This
selection is typically specified using declarative constructs of the underlying system.

Main Input

counter: Counter...

getInt

increment

join point properties:
 join point class: static method call
 location: Main.main(String[])
 target: static Integer Input.getInt()

join point properties:
 kind: static method call
 location: Main.main(String[])
 target: void Counter.increment()

join point
decomposition

public class Main {
 public static void main(String[] args) {
 Counter counter = new Counter();
 while(Input.getInt()!=0) {counter.increment();}
 }
}

Base system

Figure 5-9. Join point properties (subset) in a sample AspectJ
application.

In [KHH+01] the term pointcut is used to specify such a selection of join points or
the language constructs for specifying such a selection. The term pointcut language is
also frequently used (see for example [GyBr03] or [Hirs02]) to describe the language
constructs for selecting join points. However, this thesis uses the term join point
selection to describe the selection of join points specified by the developer, and the
term join point selection language (JPSL) to describe the constructs of the aspect-

114 5 - Design Dimensions of Aspect-Oriented Systems

oriented system that permit developers to specify a join point selection. The reason for
avoiding the term pointcut is twofold. First, the term pointcut is closely related to
AspectJ and is often not used in other aspect-oriented systems. For example, the
original paper on aspect-oriented programming [KLM+97] does not use the term
pointcut. Second, the use of pointcut language as a synonym for join point selection in a
sense as used by AspectJ is slightly misleading because in AspectJ the target of an
introduction also represents a join point because new methods, interfaces, or
superclasses can be added to an existing class. However, the target of an introduction in
AspectJ is not specified using pointcuts (see section 2.2.1).

Join Point Selection Language (JPSL): The term join point selection language
describes all language constructs provided by an aspect-oriented system in order to
specify the selection of join points.

In order to select join points, each join point class must have a number of
distinguishing characteristics in order to discriminate one join point from another. For
example, if an aspect-oriented system’s concrete join point model provides (static and
behavioral) method calls and field accesses as join points, it is desirable from the
developer’s perspective to distinguish in general between method calls and field access
join points, as well as between specific method calls and field accesses. Aspect-oriented
systems provide for each join point class a number of predicates or properties the join
point selection language’s constructs refer to. Developers use these language constructs
to select those join points which are to be adapted by certain aspects.

Figure 5-9 illustrates a number of join point properties in AspectJ for method call
join points from the example introduced in section 5.3.1. Each method call join point
has the property location that contains the signature of the method containing the
method call and the property target that contains the signature of the method which is
about to be invoked.

The properties provided by the aspect-oriented system for a certain join point
depend on the design of the aspect-oriented system (i.e. the design of the join point
selection language) itself, and also on the available information of the elements in the
application. For example, if the underlying programming language is (statically or
dynamically) typed, typing information can be used to provide properties for certain join
points (e.g. method calls). If the programming language (or the underlying IDE) permits
to annotate certain elements, such annotations can be used to provide corresponding
properties for these elements54. In general, the more information from the application is
available the more properties can be potentially assigned to a certain join point; i.e. a
statically typed base language permits in general to provide more information for join
points than an untyped base language.

Join point property: A join point property is a join point’s characteristic which is
provided by the aspect-oriented system to permit developers to select join points

54 For example, in [BCDM02] such annotations (which are not directly supported by the language, but by
the IDE) are used to determine certain places in the code.

5 - Design Dimensions of Aspect-Oriented Systems 115

according to such characteristic55. A join point property has a name which
represents the kind of information underlying the property and a value which
describes the information itself.

Different aspect-oriented systems differ widely with respect to how they permit to
select join points. For example, AspectJ provides a number of pointcut designators.
They can be combined with operators to select join points to be adapted by an aspect.
AspectJ permits also to address classes to perform introductions. Hyper/J permits to
select classes and operations of a certain concern to be composed with other concerns
(see section 2.3). In the same way, AspectS permits to select join points using join point
descriptors (see section 2.4). Also, different aspect-oriented systems with the same join
point model potentially have different kinds of join point selection languages. For
example, the (abstract and concrete) join point model of AspectJ hardly changed since
version 0.6. Nevertheless the join point selection language (i.e. the pointcut language in
AspectJ terminology) increased substantially by introducing the + operator, for example.

The way that join points are selected is probably the most essential part of aspect-
oriented systems. Hence, to make different aspect-oriented systems comparable it is
necessary to study the design of join point selection languages and to understand the
different design possibilities, i.e. the different dimensions of join point selection
language design. For the development of new aspect-oriented systems, such design
dimensions illustrate the different design alternatives for selection languages.

aspect MyAspect {
 pointcut pc1(): call(* *.getX()) ||

call(* *.getY());
}

class Point {
 ...
 public Integer getX() {...}
 public Integer getY()) {...}
 ...
}

base application

join point
selection

lexical correspondance

Figure 5-10. Lexical selection of join points in AspectJ.

Since the main goal of the join point selection language is to select exactly those join
points that need to be adapted by aspects, the expressiveness of join point selection
languages is essential (the term richness is also frequently used instead of expressiveness,
see [RaSu03]). Additional essential features of JPSLs are whether the JPSL provides
constructs that permit to specify reusable join point selections, i.e. join point
selections that can be used by a number of different aspects. Furthermore, a topic of
interest is whether the JPSL permits to specify join point selections that are stable
against changes in the base application (cf. for example [HOU03]).

55 Other authors [GBN+03, GyBr03] use the term predicate to describe the same concept. The reason
for using the term property is motivated by its use in the object-oriented literature.

116 5 - Design Dimensions of Aspect-Oriented Systems

This section introduces design dimensions of join point selection languages. In the
next section, some terms from the literature are discussed that already try to distinguish
between different kinds of aspect-oriented systems and it is argued why such terms are
not appropriate. Section 5.4.2 discusses the need for distinguishing between the
properties provided for certain join points and addressing constructs that refer to such
properties. Section 5.4.3 introduces different design dimensions of join point properties,
section 5.4.4 introduces design dimensions of join point addressing constructs. Section
5.4.5 reflects on the relationship between properties and addressing.

5.4.1 Lexical, Property-based, and Semantic Crosscutting

There are already some works which distinguish between different ways join points can
be selected. For example [LLM99] introduces the term lexical crosscutting to describe
the characteristic of aspect-oriented languages that the join points […] consist of names that
appear in the implementation […]. The intention of the term lexical crosscutting is to
describe the dependency of a join point selection and the syntax of the underlying
application. The term property-based crosscutting ([KHH+00, GyBr03]) is frequently
used to describe the same situation.

Figure 5-10 illustrates the meaning of the term lexical crosscutting based on a join
point selection in AspectJ. The aspect MyAspect selects those method call join points
whose called methods have either the name getX or the name getY. This kind of join
point selection is lexical because the addressed join points refer to a method definition
with a certain name (getX or getY) that needs to be specified in the selection (i.e. in
the pointcut definition): There is a lexical correspondence [HOU03] between some
elements in the join point selection and elements in the application’s source code.
Because of this characteristic of the join point selection the authors in [LLM99] argue
that AspectJ is based on lexical crosscutting. However, this view on join point selection
is quite simplified and will be discussed in more detail below.

aspect MyAspect {
 pointcut pc1(): call(* *.*());
}

join point
selection

structural correspondance

class Point {
 ...
 public Integer getX() {...}
 public Integer getY()) {...}
 ...
}

base application

Figure 5-11. Non-lexical selection of join points in AspectJ based
on structural correspondances.

In fact, AspectJ provides different ways to specify the selection of join points that are
not necessarily lexical. Figure 5-11 illustrates the selection of join points in AspectJ
where the join point selection does not contain any lexical element that is also contained
in the base application. The method call join points are selected independent of the
names and return types of the called methods: Method call join points are selected
because the called method does not have any parameters (i.e. the number of parameters

5 - Design Dimensions of Aspect-Oriented Systems 117

is zero). On a more abstract level, this means that join points are selected because of a
structural correspondence of a parameter list in the base application and in the
pointcut specification.

Obviously, this kind of selection has a different quality than the previous one
because a selection based on a structural correspondence is more stable with respect to
simple syntactic changes in the base program than a selection based on a lexical
correspondence. For example, applying the rename method refactoring [Fowl99], i.e.
changing a method’s name, does not have any effect on the selected join points. Hence,
the selection is stable with respect to changes of method names (see also [HOU03]).

Figure 5-12 illustrates a different way of selecting join points in AspectJ. The return
types of the join points to be selected are specified as Number+, which describes all
subtypes of Number (see also section 2.2.2). According to the definition of lexical
crosscutting taken from [LLM99] this kind of selection is lexical, because the type
identifier Number appears in the join point selection and this type identifier also
appears in the base application (or more precisely in the class libraries provided by Java).
However, the quality of the selection obviously differs from the previous selections
because the join points are selected based on some characteristics of the underlying type
system: The identifier in the selection does not correspond to the identifier of the return
type of the selected join point. Instead, the type name corresponds to a different type
name.

aspect MyAspect {
 pointcut pc1(): call(java.lang.Number+ *.*(..));
}

class Point {
 ...
 public Integer getX() {...}
 public Integer getY()) {...}
 ...
}

base application

join point
selection

type correspondance

Figure 5-12. Non-lexical selection of join points in AspectJ based
on type correspondances.

Based on the discussion above it can be concluded that the term “lexical
crosscutting” is not well defined and not precise enough to distinguish between
different kinds of join point selections.

The term semantic-based crosscutting as introduced in [KHH+00] is also
frequently used to describe a certain way a JPSL permits developers to specify certain
join points. The intention of semantic-based crosscutting is to select join points not
because of syntactical properties, but because of the semantics of the underlying
programming language. One example for such semantic join point selection is already
given in Figure 5-12: The join points are not selected due to their syntactical properties,
but because of some properties of the underlying type system. Another typical example
for semantic join point selection is the use of the cflow construct that permits to
select join points according to their position in the control flow of an application.

118 5 - Design Dimensions of Aspect-Oriented Systems

The problem with the term semantic-based crosscutting is that the term is not
precisely defined and it is not clear how it relates to lexical crosscutting. As argued
above, the selection of a method call join point due to the return type is somehow
semantic because the type system is not part of the base program but of the base
program’s language. On the other hand, the type Number is also addressed in a lexical
way. Hence, this kind of join point selection is also in some sense a lexical crosscutting.
The same is true for the cflow construct in AspectJ: On the one hand the join point
occurring in a control flow can in general not be directly computed from the
application’s syntax. However, in AspectJ the cflow pointcut designator has a pointcut
as a parameter. This pointcut can also be addressed lexically (e.g. by selecting a previous
method call by the called method’s name).

5.4.2 Distinction of Join Point Encoding and
Join Point Addressing

The terms lexical crosscutting and semantic-based crosscutting are confusing because it
is not clear what characteristics of the JPSL they address.

In fact, there are many different ways a JPSL possibly permits to select certain join
points. When designing a JPSL for a given join point model (and a given underlying
system), there are two main questions that need to be answered:

• What properties should the JPSL provide for each join point?

• How can these properties be addressed and combined using the JPSL?

The first question simply addresses the problem of what distinguishing characteristics
belong to a join point. For example, it is possible to design an aspect-oriented system in
a way that the only available property of a method definition join point is the method’s
name (like the Hyper/J approach). Another approach (similar to the AspectJ approach)
is to provide also a parameter type list property that permits to select methods because
of their declared parameter types.

In general, the more properties are available for each join point the more possibilities
developers have in order to select exactly the required join points. If a method is only
selectable because of its method name, there may be the problem that developers are
forced either to select all methods having the same method name or to select none. On
the other hand, the more properties are available for a join point the effort of selecting a
join point potentially increases. If the developer has to specify the return type, the
method name, and the list of parameter types for selecting a single method the effort for
specifying such a selection is obviously higher than specifying only the method name.

The second question addresses the language constructs provided by the JPSL that
permit the developer to select certain join points. Similar to the questions of what
properties are available, there are many different possibilities of what language
constructs can be provided. For example, a simple way of selecting a method definition
(whereby the underlying system provides method names as join point properties) is to
specify the method name (this kind of selection corresponds to the previous example of
lexical crosscutting in Figure 5-10). However, as illustrated in Figure 5-12 it is also
possible that the join point selection language permits to specify not only a value of a
join point property like the name, but also how the property is related to other

5 - Design Dimensions of Aspect-Oriented Systems 119

properties. In Figure 5-12, join points are selected due to some type relationships of
type Number.

Obviously, the design decision underlying what join point properties are available for
each join point and the decision of how join point properties are used by the join point
selection language are independent of each other. For example, the previous paragraphs
discussed the use of a method name as a join point property for the method definition
join point class and discussed different ways of addressing such a property.
Furthermore, some examples show that the join point selection language possibly
evolves by extending the join point properties of certain join point classes, or by
extending the means to address join point properties, or both. For example, in [NCT04]
a join point selection language is proposed that includes AspectJ’s JPSL, but provides an
additional join point property that permits to select join points based on the host in
which they occur.

Consequently, this thesis distinguishes between characteristics of join point
properties and means to address such properties. Both are discussed in the following in
separate sections.

5.4.3 Join Point Properties

Different aspect-oriented systems provide different properties for join points. For
example, in AspectJ method call join points can be selected due to the called methods’
signature consisting of the method’s name, return type, and parameter types. Hence,
signature is a property of method call join points in AspectJ, and a specific signature like
void m() represents the value of the signature property for a certain join point. In
Hyper/J, a method definition join point has an operation name property which can be
used by the join point selection language in order to select the corresponding join
points. Consequently, operation name is a join point property and a concrete method
name is the property’s value.

Furthermore, join point properties are closely related to the underlying base
language. For example, properties like return types or parameter types cannot be join
point properties if the underlying language is untyped. Smalltalk is an example for such a
language. Furthermore, method names in languages like C++ and Java substantially
differ from selectors in Smalltalk: A selector in Smalltalk is structured in the sense that
the number of parameters of a certain method can be directly derived from the selector.
Consequently, a selector property for a Smalltalk based system contains more
information about a method than a method name in a Java or C++ based system.

Since the properties potentially available for each join point (and also the underlying
join point classes) differ in most aspect-oriented systems, it is difficult to compare them
because of the available properties for each join point class. For the design of new
aspect-oriented systems it is problematic that join point properties are closely related to
the underlying base language – in case a certain element is not available in a based
system (like static types) such properties cannot be provided.

However, it is observable that different join point properties have a number of
different characteristics. For example, pointcut designators this, target and args
in AspectJ permit to select join points based on dynamic types, while pointcut
designators like call and execution permit to select join points based on static
types, hence static as well as dynamic types represent join point properties in AspectJ.

120 5 - Design Dimensions of Aspect-Oriented Systems

Furthermore, the cflow construct in AspectJ permits to select join points based on
some join points that are already reached in the current control flow. Also, [MaKa03]
introduces the selection of join points based on some characteristics of the dataflow.
Consequently, some join point properties that refer to the dataflow need to be available
at certain join points.

Obviously, the described join point properties have different characteristics. Hence,
similar to the previous sections, this thesis identifies a number of design dimensions of
join point properties. Instead of describing a number of known join point properties for
a given join point class, the design dimensions describe the general characteristics of
these join point properties.

5.4.3.1 Static and dynamic properties

A fundamental difference between join point properties is their relationship to runtime
data in the base system. For example, in Hyper/J method definition join points have
names that can be used for selecting and adapting join points. Sally (see section 3.4)
permits to access return types, method names and parameter types for method
definition join points.

In AspectJ, there are also join point properties whose values appear just at runtime.
For example, pointcut designators like this, target and args refer to dynamic
types of objects that participate in the corresponding join points. In the same way,
pointcut designators like cflow in AspectJ as well as the dflow pointcut designator
as proposed in [MaKa03] refer to runtime specific data in the base application.

One difference between join point properties is their occurrence with respect to their
dynamicity: A property like this in AspectJ is based on dynamic system information
(or some portion of the program state [WKD02]), a property like a parameter of
declaredMethod in Sally is based on static system information (i.e. information that
is available because of a static analysis of the base application). Hence, join point
properties can be distinguished with respect to their dynamicity. This thesis
distinguishes between static properties and dynamic properties.

Static join point property: A join point property is static if the property can be
directly derived from the base system’s code.

Dynamic join point property: A join point property is dynamic if runtime-specific
information is needed in order to provide the corresponding property.

An example of a static join point property is the method name of a (static or
dynamic) method call join point: The method name can be directly derived by analyzing
the source code (i.e. the node in the syntax tree representing the method call). In the
same way static type information (as known from programming languages like Java), e.g.
the static type of a method call join point or the declared return type of a method
definition join point, represent static join point properties.

Section 5.3.1 distinguished between static and dynamic join points. Hence, it seems
obvious that join point properties can be distinguished in the same way. Nevertheless,
there is a difference between the dynamicity of join point models and the dynamicity of
join point properties: A join point describes a base system’s element that can be selected
and adapted by the language constructs provided by an aspect-oriented system. A join
point property describes a join point’s characteristic that a JPSL’s construct refers to in

5 - Design Dimensions of Aspect-Oriented Systems 121

order to select the desired join point. Although a join point is dynamic, it still can have
some static properties. For example, dynamic method call join points in AspectJ have
static join point properties like the method’s name (the method name can be directly
derived from the underlying code).

5.4.3.2 Direct and abstract correspondence

The characteristics of static join point properties is that they can be directly derived
from the base system’s code. Obviously, a declared return type of a method declaration
join point represents a static property because the return type (or the name of the return
type) directly appears in the source code. Such properties are prerequisites for the term
lexical crosscutting as introduced in [LLM99] which says that the join points […] consist
of names that appear in the implementation […].

A property extracted from the base system’s sources does not necessarily need to
have a direct correspondence in the underlying source. Figure 5-13 illustrates some
static join point properties of a method definition join point in a hypothetical aspect-
oriented system. The properties name (which represents the name of the method),
numParams (which represents the number of parameters), and retType (which
represents the return type) can be directly derived from the application’s syntax.

However, there is a difference between name, retType and numParams: The
values of name and retType have a direct correspondence in the application’s syntax,
i.e., there are nodes in the application’s syntax tree having the same value as the
corresponding properties. This is not true for the value of property numParams: The
value represents a statement over a part of the syntax tree: The aspect-oriented system
needs to do some computation in order to provide such a property.

class Point {
 ...
 public Integer getX() {...}
 ...
 ...
}

base application

join point properties:
kind: method definition
name: getX (lexical correspondance)
numParams: 0 (non-lexical correspondance)

 retType: Integer (lexical correspondance)

Figure 5-13. Static join point properties with and without direct
correspondence.

In order to distinguish between those different kinds of properties this thesis
identifies the dimension of directness of property correspondence and distinguishes
between direct and abstract correspondence.

Direct property correspondence: A property has a direct correspondance if the
property can be directly derived from the data available at the corresponding join
point.

Abstract property correspondence: A property has an abstract correspondance if
the property does not directly represent some data available at the corresponding
join point but needs some additional computation by the aspect-oriented system in
order to provide the corresponding property.

122 5 - Design Dimensions of Aspect-Oriented Systems

Examples of direct property correspondence are the previously discussed properties
retType as well as the name. They are nodes in the base program’s syntax that
directly represent the value. On the other hand, the property numParams has no
lexical value correspondence, i.e. it has an abstract value correspondence56.

The directness of property correspondence is not limited to static join point
properties. For a language that supports a variable number of parameters57 or optional
parameters, there is the possibility to provide a property for dynamic method call join
points that simply states how many arguments are being passed.

The term abstract property correspondence simply states that the property is not
directly available at the corresponding join point. However, there is a large variety of
“being not directly available”. The example above showed that “number of parameters”
represents an abstract property because the aspect-oriented system needs to perform
some trivial computation on the syntax tree. However, the computation performed by
the aspect-oriented system might be even more complex. For example, the system could
provide information about method definition join points that state whether the
execution of a method potentially changes the behavior of the corresponding object.
Such a property might be helpful for handling implementations of the observer pattern
[GHJV95] using aspect-oriented techniques.

5.4.3.3 Atomic and structured properties

Properties like method names for method call join points are quite easily to understand
because the property’s value is atomic: The value itself is not structured and addressing
the value is quite easy. Such kinds of properties can be found in almost all aspect-
oriented system.

class MyClass {
 public static void main(String[] args) {
 new MyClass().m(42, 4711, 3)
 }
 void m(int i, int j, int k) {
 ...
 }
}

Join Point properties
(for join point first execution of method m):
 kind: ...
 methodName: ...
 parameterTypes: (int, int, int)
 structured property

Figure 5-14. Structured Property parameterTypes having an
ordered list as the underlying data structure.

However, it is also possible that a single property is structured in a way that it
represents complex data. For example, in AspectJ the formal parameters of method call
join points or method execution join points are represented by a list the JPSL can refer
to. Figure 5-14 illustrates such a structured property parameterTypes for a method
call join point where the underlying data structure is an ordered list and the order

56 Systems like AspectC++ [SpGS02] provide the number of parameters explicitly in a certain variable
which can be referred to within the advice.

57 A number of languages provide such a features (like e.g. TCL [Oster94]). A similar feature is also
included in Java since version 1.5 (cf. [Sun04c]).

5 - Design Dimensions of Aspect-Oriented Systems 123

corresponds to the order of parameters of the method call. In the same way, Sally and
the system described in [GyBr03] provide parameter lists as join points. Considering
this, this thesis identifies the structuredness of join point properties as a design
dimension and distinguishes between atomic join point properties and structured
join point properties.

Atomic join point property: A join point property is atomic if the property’s value
is atomic, i.e. it consists of a single unit.

Structured join point property: A join point property is structured if its value
(potentially) represents more than one atomic value.

A typical example of an atomic join point property is the method name property of a
method call join point: It simply consists of one atomic value. In contrast to that, the
method call join point’s parameter list property is structured because the value of this
property has a list as a data structure. Another example of a structured join point
property in AspectJ is the encoding of the control flow property: The control flow is a
structured join point property because all previous method calls within the control flow
are logically part of a stack58.

A characteristic of a structured property is that its join points are represented by one
single join point class and that the structure of the underlying property potentially varies
among different join points. For example, if the base language provides an infinite
number of parameters in method definitions and an aspect-oriented system wants to
provide a (static) method call join point and a property that represents the parameters
there is a need to have a single property that represents a parameter list of arbitrary
length. In case the underlying language provides a finite length of parameters, it is
theoretically possible to provide a property for each individual parameter. For example,
Java permits at most 255 parameters for methods. Consequently, it would be possible in
Java to provide 255 join point properties representing each a parameter. In Squeak, the
number of parameters is restricted to twelve. Hence, it would be possible to provide
twelve properties, each representing a parameter. However, from the point of usability
such a large number of properties seem to be rather undesirable because it becomes
hard to handle a large amount of properties.

The distinction between atomic and structured properties becomes relevant in the
context of how an aspect-oriented system permits the user to select a certain join point:
If all existing join point properties provided by the system are atomic the JPSL
potentially needs to provide rather simple means to address a property. Structured
properties permit theoretically more advanced means to address a certain join point,
because not only an atomic value is relevant for the selection. However, the distinction
of the structure becomes less important, if the structure of the value of a certain
property is fix. For example, a signature pattern in AspectJ that represents the values of
call properties always has a fix structure consisting of a return type, a class identifier, and
a method name. Conceptually it makes no difference if the corresponding property is

58 However, the implementation of the cflow construct slightly differs from this conceptual point of
view (cf. [HiHu04, p. 29]). Since such an implementation detail is out of the scope of this discussion it is
neglected here.

124 5 - Design Dimensions of Aspect-Oriented Systems

structured or if the system provides three different properties. This is not true for the
parameter property: The number of elements varies for different methods.

5.4.3.4 Local and non-local join point properties

Intuitively, for a given kind of join point class it seems clear what distinguishing
characteristics can be provided. For example, it seems clear that a method name
property can be provided for method call join points (which corresponds to all known
aspect-oriented systems). A method name can be directly derived from (static and
behavioral) method call join points because a method name is specified by the syntactic
elements that represent the method call: A method call as defined in the syntax of most
base languages includes the name (or the selector in Smalltalk) of the method being
invoked. For the same reason it seems intuitively clear that formal parameter types can
be provided for method definition join points.

Also it seems intuitively clear that a dynamic method call join point can be easily
provided with the elements belonging to the corresponding method call. The
corresponding call consists of a calling object, a called object, a message name, and a
number of actual parameters. All these elements are being used by the underlying
runtime system in order to compute the target method being invoked59. Hence, it seems
intuitively clear that such elements represent reasonable join point properties.
Furthermore, state information of all objects participating in the method call can be
potentially used as distinguishing properties for such a join point. For example, if it is
desirable to provide means to selected method call join points only in cases where one
of the parameters is null, then corresponding join point properties can be provided
for such calls.

caller1

caller2

caller1caller1

caller2caller2

ServiceService

worker 1 worker 3worker 2worker 1worker 1 worker 3worker 3worker 2worker 2

 pointcut invocations(Caller c):
 this(c) &&
 calls(void Service.doService(String));

 pointcut workPoints(Worker w):
 calls(void *.doTask(Task)) && this(w);

 pointcut perCallerWork(Caller c, Worker w):
 cflow(invocations(c)) && workPoints(w);

Figure 5-15. Wormhole pattern in AspectJ (taken from [HKG+01]
with minor modifications).

On the other hand, providing the potential caller types for a static method definition
join point is not that intuitive and systems like Hyper/J do not provide a corresponding

59 This is slightly simplified. In systems like Java or C++, that provide late binding and static multi-
dispatching, the computation of the method being executed also depends on the static types of the
parameters being passed.

5 - Design Dimensions of Aspect-Oriented Systems 125

property: In Hyper/J only the classes of callers can be specified within a bracket
relationship. Also, a property that provides information about all classes referring to a
static class definition join point is unusual and is not provided by systems like AspectJ
or Hyper/J.

The reason for this lies in what information is available at each join point. The base
language defines some kind of local context for each join point class60. For example,
the source code of a method call has a number of elements (like fields as targets and
parameters) in its syntax tree representation that can be directly used as join point
properties. Such properties are local to the method call61 because they are closely located
to (or even direct subnodes of) the node representing the method call. In the same way,
the objects participating in a dynamic method call represent some local context because
such objects are being used by the underlying runtime system in order to invoke the
corresponding method.

Aspect-oriented systems potentially provide join point properties that cannot be
directly derived from the join point’s local context. One example of such a non-local
deducible property (for a dynamic join point) is the occurrence of an object of a certain
type in the control flow before a certain method call is reached. This kind of selection
criterion is the foundation of the wormhole pattern in AspectJ as explained in
[Labb03, pp. 256]: The wormhole makes the object in the caller place available to the methods in the
called place without passing the object through the call stack.

Figure 5-15 illustrates the wormhole pattern in AspectJ: Instances of Caller
invoke the method doService() of an instance of Service which itself invokes
(indirectly) the messages doTask() of a Worker instance. The selection of a
doTask() join point (the dynamic method call) which occurs because of a previous
doService() invocation is specified in the pointcut perCallerWork. Since the
information about the calling object c used within perCallerWork is not derivable
from the local context of the join point itself, the join point selection is based on non-
local deducible information. Hence, there are properties underlying the corresponding
selection of method calls which are non-local.

Based on the previous discussion this thesis identifies the locality of the join point
property as a design dimensions of join point properties and distinguishes between
local properties and non-local properties.

Local property: A property of a certain join point is local if the property can be
derived from the local information available at the join point.

Non-local property: A property of a certain join point is non-local if the
information needed in order to provide the corresponding property is not accessible
from the local context of the join point.

60 The term context is being used here in a different way than that of for example known from [GoRo89],
where the term context refers to the call stack.

61 The phrase textual locality as used in [KiMe05] can be applied here, too. Since such properties can be
derived from the textural representation (join point shadow) of the underlying join point, such
properties are local.

126 5 - Design Dimensions of Aspect-Oriented Systems

Information is accessible if it is reachable from a join point’s context. For example,
for a given class definition join point, the members of the class are reachable since it is
possible to derive class members from a class (using introspective facilities of the
underlying programming language like the Reflection API in Java). For a given dynamic
method execution join point, the state of the object whose method is called is reachable:
Since the object is known it is possible to access the object’s state directly or to send
additional messages to the object in order to find out the object’s state.

However, the term local context is slightly subjective. In fact, this term can be
interpreted in different ways for static as well as dynamic join points.

In the beginning of this section the term local context was motivated by an example
of a static method call join point: A method name and the expressions that describe the
called object and the actual parameters can be interpreted as part of the local context of
the syntactical expression. However, although the underlying base language might be
object-oriented the language’s syntax definition does not necessarily need to have an
explicit representation of method calls. Furthermore, a subnode in an application’s
syntax tree does not necessarily represents “local” information.

Figure 5-16 illustrates production rules of a context-free grammar A for a Java-like
base language. The grammar includes the production rule <methodCall> that explicitly
represents a method call. Consequently, method calls can be directly identified in the
syntax tree of a given class definition.

<classDeclaration> "class" <identifier>
["extends" <identifier>]
"{" <fieldDeclarations> | <methodDeclarations> "}"

<fieldDeclarations> (<identifier> <identifier> ";")*

<methodDeclarations> (<methodHeader> <block>)*

<identifier> <identifier>"("
[(<identifier> <identifier>) ("," <identifier> <identifier>)*]
")"

<methodHeader>

"{" <expressionList> "}"<block>

((<expression> | <retExpression> | <ifExpression>) ";")*<expressionList>

"return" <expression><retExpression>
<assignment> | <methodCall> | <varExpr> |
<newExpr> | <literal> | <identifier>

<expression>

<varExpr> "=" <expression><assignment>

<expression> "." <identifier> <paramList><methodCall>

"if" "("<expression>")" <block> ["else" <block>]<ifExpression>

<identifier> ...

"(" [<expression> ("," <expression>)*] ")"<paramList>

<expression> "." <identifier><varExpr>

"new" <identifier> <paramList><newExpr>

<literal> ….

5 - Design Dimensions of Aspect-Oriented Systems 127

Figure 5-16. Grammar A with explicit production rule for method
calls.

Figure 5-17 illustrates a grammar B which defines the same language as A but whose
production rules slightly vary. Grammar B does not have an explicit production rule for
method calls. Furthermore, the enumeration of statements (separated by the token “;”)
is defined in a different way: Instead of having a common node that enumerates all
statements (which corresponds to the production rule <expressionList> in grammar A)
each production rule representing expressions defines its following expression.

<classDeclaration> ...
...<...>

<expression> ";" | <retExpression> | <ifExpression><expressionList>

"return" <expression> ";" [<expressionList> | ε]<retExpression>

"if" "("<expression>")" <block> ["else" <block>] ";"
[<expressionList> | ε]

<ifExpression>

(
 <expression> "." <identifier> [<paramList>] |
 "new" <identifier> <paramList> |
 <varExpr> "=" <expression> |
 <literal> |
 <identifier>
) [";" <expressionList>]

<expression>

Figure 5-17. Grammar B without explicit method call production.

Although both grammars define the same language, the syntax trees for a given
application differ substantially. Figure 5-18 illustrates two derivation trees for a simple
class definition that can be derived from the previous grammar definitions. Considering
the first executable statement of method m for grammar A, the method call consists of
the expression that represents the target expression System.out, the method name
println, and the parameter list consisting of the integer literal 42. In this example,
the term local context can be interpreted as the whole sub-tree having the node
representing the method call as its root. Consequently, it seems intuitively clear to
interpret the class System, its field out, the method name println and the
parameter 42 (which is an integer literal) as potential candidates for local join point
properties. The situation is different for grammar B’s derivation tree. First, the
derivation tree does not contain a direct representation of method calls, because there is
no explicit production rule for method calls. Second, the sub-tree that represents the
method call also includes the parse-tree representation for the second statement
(System.out.println(4711)). Obviously, it seems rather unintuitive to regard
the second statements as part of the first method call join point’s local context.
Consequently, simply stating that the local context of a static join point can be directly
derived from the syntax tree by its subnode relationships is not correct because a
programming language’s syntax can be defined by different equivalent grammars.

The term local context is slightly problematic for dynamic join points, too. For
example, it seems to be intuitively clear to consider the objects that participate in a

128 5 - Design Dimensions of Aspect-Oriented Systems

method call to be part of the method call join point’s local context. However, a close
look at a specific language reveals even more potential local join point properties. For
example, in Java it seems clear to consider the called object as well as the actual
parameters as part of the local context. Furthermore, it seems clear to consider
information about previous methods from the call stack as being not part of the
dynamic method call’s local context, because Java does not directly provide a runtime
representation of the call stack. However, in the dynamic execution of a Java
application the stack trace is also available: It is possible to create an instance of
Throwable (which represents a caught or uncaught exception) at runtime. By sending
the message printStackTrace to such an instance call stack information are made
explicit: All messages on the call stack are printed to a given stream. This call stack
information has a pure textual representation. Hence, it is possible to determine whether
a certain method is on the class stack, but it is not possible to determine what objects
performed method invocations that lead to the current call stack’s state.

class MyClass {
 void m1() {
 System.out.println(42);
 System.out.println(4711);
 }
}

Base system

classDeclaration

methodBody

...

methodCall

...

...

varExpr
...

paramList

...

...

System

... out

...
println

42

...

...

Parse tree for
 System.out.
 println
 (4711);

classDeclaration

methodBody

...

expression

...

...

expression
...

paramList

...

...

System

... out

...
println

42

...

...

Parse tree for
 System.out.
 println
 (4711);

 Figure 5-18. Derivation trees for a simple class definition for
grammar A and B.

Figure 5-19 illustrates the local context from within a method increment inside a
Counter object being executed for the first time in the application: From within the
method increment it is possible to refer to the corresponding Counter object and
to the stack trace leading to this method call. Since the method is executed, the stack
trace consists of the method increment, realMain and main. Consequently,
when the method increment is being invoked all elements of the stack trace are local
deducible and represent candidates for join point properties. The object that belongs to
the method calls (i.e., the instance of Main) cannot be deduced at runtime from the
method call. Hence, the object does not belong to the join point’s local context.

5 - Design Dimensions of Aspect-Oriented Systems 129

In systems such as Smalltalk, the local context at method calls differs widely from the
local context at method calls in Java. In Smalltalk exists the special variable
thisContext which makes the current call stack accessible. In contrast to Java,
thisContext does not only make signatures on the call stack available but also the
corresponding objects. Consequently, for a dynamic method execution join points such
objects represent local deducible properties and properties provided by a Smalltalk-
based aspect-oriented system that are related to such control-flow specific objects
represent local join point properties.

Furthermore, Smalltalk dialects like Squeak or VisualWorks permit to access all
instances of a class in the system. In Squeak, the class Behavior (which is a superclass
of all Class instances) provides a method allSubInstances which returns all
objects of the corresponding class and all subclasses. Hence, if such a message is sent to
the class Object (which represents the superclass for all objects in the system), all
objects are returned62. Since this method is available for all classes, and since all classes
can be computed from the current image, all existing objects in the image including their
state represent derivable information from a method call’s local context63.

class Main {
 public static void main(String[] args) {
 new Main().realMain();
 }
 public void realMain() {
 Counter counter = new Counter();
 while(Input.getInt()!=0) {counter.increment();}
 }
}
class Counter {
 int c = 0;
 public void increment() {
 c = c + 1;
 }
 ...
}

Local context
(first occurrence of method call
increment):

 this = an instance of Counter
 stackTrace =
 Counter.increment(...)
 Main.realMain(...)
 Main.main(...)

 derivable properties:
 - this.c = 0,
 - this.c != 1,
 - after method realMain

Figure 5-19. Local context of a method increment in Counter
executed for the first time in the programming language
Java.

The problem with such different views on locality is that they make it difficult to
compare different aspect-oriented systems independently of the underlying base
language. As argued above, even giving a precise definition of the term local context for
the same base language for properties that can be derived from the syntax tree is hard
because different grammars (with different production rules) potentially describe the
same language although the resulting syntax trees differ widely. For aspect-oriented
systems having different base languages, the term locality is problematic because

62 In VisualWorks the corresponding method is allGeneralInstances.
63 It is obvious that accessing all objects at a certain point in time is a highly time-consuming task and

should be avoided whenever possible for reasons of performance. But since this section reflects on the
characteristics of properties being provided by an aspect-oriented system, considerations of system
performance are neglected.

130 5 - Design Dimensions of Aspect-Oriented Systems

different languages have different notions of locality. For languages that do not provide
any call stack information at all, it is clear that information about previous messages are
not local.

In general, there are two different goals for classifying join point properties with
respect to their locality:

• First, it is desirable to determine for aspect-oriented systems in a language
independent way whether they are able to handle a certain crosscutting problem.
A typical question is for example whether a method call join point can be selected
because the called object is referenced by another certain object. For this purpose
it is desirable to have a common understanding of the term local context for
different base languages. Consequently, the previously described differences
between languages like Java or Smalltalk should not influence the understanding
of the term local context.

• Second, it is desirable to determine for an aspect-oriented system what properties
a join point provides in addition to the features of the underlying base language.
This information is valuable if developers want to estimate the effort for
providing a certain attribute. For this purpose, it is desirable to have a language-
dependent understanding of the term local context.

In order to overcome the first problem, this thesis proposes to use a common meta
model for language features like for example the UML meta model [OMG01]. Such a
model represents a common abstraction for a number of languages and language
constructs like class definitions or method calls. In order to overcome the second
problem a join point property should additionally contain a description of whether the
property is already provided by the underlying base language.

In principle, it is possible to provide a more fine-grained distinction of the join point
property’s locality. For example, it would be possible to define a distance between a
(non-local) join point property and the property itself. Such distance could be useful for
example for describing how many nodes exist between an element representing the join
point and a node representing the join point property. However, this thesis considers
the distinction between local and non-local join point properties to be sufficient.

5.4.3.5 Join point identity and shadow identity

A property can be used not only to decide whether or not a certain join point is to be
selected. It can be used to compare different join points and to decide upon such a
comparison whether or not a join point is to be selected. However, even the existence
of a large number of join point properties does not guarantee that the appropriate join
points are always selected. It turns out that there is often the requirement that static join
points provide properties that are unique for such join points – properties that represent
some identity for the corresponding join points.

Figure 5-20 illustrates an example of a class PrettyPrint in a Hyper/J-like
system. The intention of PrettyPrint instances is to print a number of parameters
in a pretty way to some output stream (the output stream is not shown in the example).
Therefore, the class provides a number of methods printout which receive a
number of parameters (at least one). According to [KPRS00] it is reasonable to use an
aspect-oriented system to specify a number of constraints like pre or post conditions.
Hence, it is reasonable to modularize code that checks the parameters for null. Since

5 - Design Dimensions of Aspect-Oriented Systems 131

null is not a subtype of a primitive type like int, char or boolean in languages
like Java, it is desirable to select only those methods whose parameters are not primitive.
Figure 5-20 illustrates two methods where one has a primitive parameter and the other
one has a non-primitive. However, since methods are only identified by their name (and
not by their parameter types) it is not possible to select only the method with the
String parameter.

The problem of not being able to address the desired static join points (not even by
enumerating them) can be reduced to the problem of not being able to have identities
for join points, i.e. properties that identify a static join point in a unique way. In case the
static join point could be identified by a corresponding identity property it would be
possible to enumerate exactly the desired join point. The idea of join point identities
corresponds to the concept of object identity known from object-oriented
programming (cf. e.g. [KhCo86]) or the idea of primary keys in the relational calculus
(cf. [Codd70]) where the primary key is just a single attribute.

Although the previous discussion was related to static join points, it is possible to
transfer the same discussion to dynamic join points. In contrast to static join points
(that can be extracted by a static analysis of the base system) each dynamic join point
has conceptually its own identity (see section 5.3.1). For example, each method call at
runtime represents a unique join point although it might be represented by the same join
point shadow. However, the idea of identity properties can be directly applied to join
point shadows.

Shadow Identity property: A property is an identity property, if the property
uniquely identifies a corresponding static join point, or a dynamic join point’s
shadow.

In principle, the idea of an identifying property represents its own dimensions and
join point classes can be distinguished according to whether or not they provide a
shadow identity property.

public class PrettyPrinter {
 public void printout(int i) {

 }
 public void printout(String s) {

 }
}

Join Point properties
 ...
 Name: printout

Join Point properties
 ...
 Name: printout

Figure 5-20. Join Point properties of methods printout in a
Hyper/J-like system (no distinguishing
characteristics for printout methods).

However, the idea of identifying a join point is not only restricted to a single
property. Possibly a conglomerate of properties permits to identify a join point in a
unique way (which corresponds to compound keys known from relational database
systems, cf. [Codd70]). For example, in Java all methods within a class definition have a
unique signature. If an aspect-oriented system provides for a method definition join
point a number of (static) properties representing a signature and also a property

132 5 - Design Dimensions of Aspect-Oriented Systems

representing the defining class then these properties altogether represent an identity for
the method definition. Consequently, systems like AspectJ which provide such
properties for method execution join points provide an identity for the corresponding
join point shadows (although there is no single property representing that identity).

Although a base language might already provide from its syntax and semantics a
possible set of identifying properties, this is not (in general) true for a large number of
join point classes. For example, static method call join points in a Java-based aspect-
oriented system cannot be directly identified by a set of lexical constructs: A method
definition possibly contains an arbitrary number of method calls that refer to the same
method definition. Consequently, properties for static method call join points
representing the method containing the call as well properties representing the called
method are not sufficient to identify the method call join point. Hence, systems like
AspectJ which provide only such properties for method calls do not provide (neither an
atomic nor a compound) a shadow identity for the corresponding dynamic join points.

5.4.3.6 Dynamic properties: Data and metadata properties

The distinction of static and dynamic properties only shows that there are properties
which rely on runtime information. However, it turns out that different systems provide
different kinds of dynamic properties.

Join Point Selection:
 ?jp matching
 reception(?jp, m, <?firstArgument, 5>)

class MyClass {
 public static void main(String[] args) {
 new MyClass().m(5)
 }
 void m(int i) {
 ...
 }
}

Join Point properties
(for join point first execution of method m):
 kind: execution join point
 methodName: m
 parameters: 5

Figure 5-21. Join Point Selection based on variable values (taken
from [GyBr03] with modifications).

For example, in AspectJ (up to version 1.06) the only available dynamic properties
for join points were dynamic types of objects participating in a join point. For example,
a method call could be selected due to the dynamic type of the calling object, the called
object, or the arguments. However, it was not possible to select join points because of
values associated with variables. For example, it was not possible to select a method call
join point because some actual parameters were null.64.

Systems like the one proposed in [GyBr03] permit to select join points not only
because of runtime types but also because of values of variables and parameters. Figure
5-21 illustrates a join point selection taken from [GyBr03] with some modifications65.
The JPSL selects all reception join points of method calls where the corresponding

64 Just since version 1.06 AspectJ provides the if-pointcut designator which permits to select join points
based on the result of a boolean expression.

65 In the example, the underlying base language is assumed to be Java. In [GyBr03] the underlying
language is a Smalltalk dialect.

5 - Design Dimensions of Aspect-Oriented Systems 133

method has the name m and the first passed parameter has the value 5. In the example,
method m defined in class MyClass is invoked only once (from the main method)
and the passed actual parameter is an integer with the value 5. The join point selection
selects all reception join points (which corresponds to execution join points in AspectJ)
where a method m is invoked (i.e. the method name property is addressed) and the first
passed parameter has the value 5. In contrast to AspectJ, it is possible to select the
method execution based on the value 5 and not only because the passed parameter has
the dynamic type int.

Hence, different aspect-oriented systems provide different kinds of dynamic
properties with respect to what kind of runtime data they represent. This thesis calls the
underlying design dimension data representation and distinguishes between meta-
data properties and data properties.

Metadata join point property: A dynamic property is a metadata join point
property if it represents some metadata on runtime data (like for example runtime
types) for a given join point.

Data join point property: A property is a data join point property if it represents
runtime data (and no metadata) for a given join point (like values of variables).

Although the distinction between metadata and data join point properties seems to
be obvious, there are still a number of situations where such distinction is not that clear.
In introspective languages like for example Java it is possible to gain some metadata
from objects (cf. for example [Chib00]). For example, it is possible to get the class of an
object or to retrieve the defined members of a class. Consequently, a join point that
provides no metadata but data indirectly provides some metadata in such languages.
However, even in introspective languages it is potentially not possible to gain the same
meta-information from data than possibly provided by a metadata join point property.
For example, a method call join point can be equipped with properties that provide
information about the static types of the actual parameters. In Java the Reflection API
does not permit to determine the static types of local (i.e. non-member) variables.

In general, the distinction between metadata and data depends on the underlying
programming language. In object-oriented languages such a distinction also depends on
underlying libraries. For example, in systems like Java or C++ there is a type boolean
which has the values true and false. Consequently, if for example (boolean)
parameters of a method call join point are equipped with the information that the
parameters are of type boolean such information represents metadata properties. If
there are properties that represent the values true or false, such properties are data
properties. In Smalltalk the situation is slightly different. Boolean is a class and True
and False are subclasses of Boolean. Consequently, in such a system a join point
property that describes whether a parameter has the value true or false is a meta
join point property.

5.4.3.7 Dynamic properties: Current, past and future properties

Dynamic properties represent data that appears at runtime. Obviously, dynamic join
points can be provided with dynamic properties that represent the runtime data at the
current join point [WKD02]. Such data reflects the system’s state at the moment when

134 5 - Design Dimensions of Aspect-Oriented Systems

the join point appears. Systems like AspectJ provide runtime properties for the current
system state like the runtime type of a method call join point’s parameters, for example.

However, an aspect-oriented system potentially provides not only information about
the current system state but also information about past system states as well as
potential future system states (cf. [HSU05a, StHa05]), i.e. properties potentially
represent information about the progress of a system.

A typical example for such properties is the proposal of dataflow pointcuts as
proposed in [MaKa03]. With the aid of a dataflow pointcut it is possible to state what
objects influenced the state of a certain (current) object. In order to provide such a
pointcut the aspect-oriented system needs to provide some properties that give some
information either about some actions like method calls that occurred in the past or
information about the data that has been already passed to the current object in the past.
A similar approach (although not directly referring to data flow) has been proposed in
[WaVi04] where the selection of join points depends on previous events that happened
in the program execution.

class Main {
 public static void main(String[] args) {
 Target t = new Target();
 t.setX(10);
 t.setX(20);
 t.setX(30);
 }
}

class Target {
 int x = 0;
 public void setX(int x) {
 this.x = x;
 }
}

Join Point properties
(1st execution of method setX):
 kind: ...
 methodName: ...
 parameterHistory: ()

Join Point properties
(2nd execution of method setX):
 kind: ...
 methodName: ...
 parameterHistory: (10)
 Join Point properties
(3rd execution of method setX):
 kind: ...
 methodName: ...
 parameterHistory: (10, 20)

Figure 5-22. Join Point Properties representing the history of
parameters for method setX.

Figure 5-22 illustrates a hypothetical aspect-oriented system that provides properties
that give some information about the history of the program (similar to the one
proposed in [MaKa03]). The (structured) property parameterHistory for a
method execution join point provides information about the parameters that have been
already passed to the method.

Theoretically, it is also possible to provide a small number of properties that refer to
information about future data or future events66. For example, the system might provide

66 Of course, a system cannot provide properties for all future actions due to the haltproblem (cf. for
example [HMU01]).

5 - Design Dimensions of Aspect-Oriented Systems 135

information about the statement that is about to be executed next – in case such a next
statement can be computed from the information available at the current join point.

 Figure 5-23 illustrates a hypothetical aspect-oriented system that provides dynamic
method call join points. When method m is about to be executed with the parameters 1
it is possible to determine at least the next two methods that are about to be invoked.

class Main {
 public void m(int i) {
 if (i = 1) this.m1() else this.m2();
 this.m3();
 ...
 }
 public void m1() { … }
 public void m2() { … }
 public void m3() { … }
 ...
}

Join Point properties
(execution of m with parameter 1):
 ...
 nextMethods: (m1, m3, ..)
 nextObjects: (this, this, ..)

Figure 5-23. Join Point Property representing the next methods to
be called.

Based on the previous discussion there is a difference between different kinds of
dynamic properties with respect to what kind of data they represent concerning the
application’s progress. This thesis distinguishes between current, past, and future
data properties.

Current data property: A dynamic property is a current data property if it
represents data that belongs to the current state at the corresponding join point.

Past data property: A dynamic property is a past data property if it represents data
for the current join point from a previous system state.

Future data property: A dynamic property is a future data property if it represents
data for the current join point from a future system state.

Obviously, systems based on dynamic join points provide at least some current data
properties. For example, in AspectJ it is possible to select join points based on the
dynamic types of parameters. The same is true for systems like Steamloom [BHMO04]
or Andrew [GyBr03]. In general, in order to determine past or future data properties the
system needs to perform a number of advanced analysis techniques (cf. for example
[SeMo04]).

A problem with the distinction of current, past, and future data properties is that
there are situations where it is not clear for a given property what kind of property it is.
For example, it is not obvious how to handle control flow specific selections of join
points as provided for example in AspectJ’s cflow pointcut designator or the
cfFirstInstance advice activator in AspectS. Both constructs permit to select
join points based on some properties of the call stack in the local thread. However, it is
possible to interpret the control flow specific selection in different ways.

136 5 - Design Dimensions of Aspect-Oriented Systems

If the construct is understood in terms of the (thread local) call stack and the
underlying system provides access to the stack (which is true for AspectS, see section
5.4.3.4), then the property that represents the call stack is just a current data property
since it represents data of the underlying runtime system. In case the underlying system
does not provide access to the call stack (like in AspectJ), the aspect-oriented system
needs to create a corresponding data structure – a structure that reflects on previous
calls on the call stack. Consequently, such a data structure represents a past data
property.

However, control flow specific selection can be interpreted also in a different way.
Instead of having the focus on the call-stack and thread-local property it is possible to
interpret it as a construct in order to select join points which are called by a certain
method (this corresponds to the interpretation in [MKD03] that states that the cflow
pointcut matches join points that are created during (certain) method calls67). This interpretation
refers to the dependency of method calls and does not directly refer to the local thread.
Consequently, a method could be selected because another method was called before.
In single-threaded applications, this interpretation corresponds to the previous one
because a method that invokes another method is inherently part of the same thread. In
multi-threaded applications, the first interpretation refers only to method calls in the
same thread. Consequently, if a method calls another one by creating a new thread the
previous method call is not part of the control flow. This is not true for the second
interpretation because it does not distinguish between different threads but has the
focus on the dependencies between method calls.

The problem with properties for control flow specific selections is that the second
interpretation considers such properties as past data properties while the first one
potentially considers them as current data properties. In order to handle this conflict
this thesis considers properties that reflect on the call stack as past data properties. In
case the underlying system already provides access to the call stack, the property is to be
annotated with this additional information.

5.4.3.8 Orthogonality of design dimensions

The previously discussed design dimensions of join point properties – dynamicity, level
of correspondence, level of locality, and structuredness are orthogonal i.e. they can be
applied independently of each other for the design of a certain property (see Figure 5-
24)68. Typically, each join point is encoded with a number of properties whereby each
property can be based on different design decisions. For example, one property of a
(dynamic) method call join point can be a static and atomic property while another one
is dynamic and structured.

A number of such properties occur more often than others. Static, local, and atomic
properties with a direct property correspondence are provided by a large number of
aspect-oriented systems. Such properties are for examples method names for (static of
dynamic) method calls or all elements that belong to a method’s signature (like return
types for method definition join points) – such properties are provided by all known
systems like AspectJ, Hyper/J, AspectS, etc. The reason why such properties are

67 See [MKD03], page 56.
68 For reasons of simplicity the identity characteristic is left out here.

5 - Design Dimensions of Aspect-Oriented Systems 137

provided seems obvious: Such properties can be provided by performing a very simple
static analysis on the source code and by comparatively easy source code
transformations (in case the aspect-oriented system is realized by such a technique).

Also, dynamic, structured, and local properties with a direct property correspondence
are quite often provided by aspect-oriented systems that provide dynamic join points –
examples for such properties are target objects of method calls as well as runtime types
of objects participating in method calls. AspectJ provides such properties.

Only few systems provide properties that are non-local or which have an abstract
property correspondence. Non-local dynamic properties are almost exclusively restricted
to control-flow specific properties. AspectJ first introduced such a property. Systems
like Steamloom whose design is closely related to AspectJ as well as AspectS provide
such properties, too (whereby the latter one provides them already on the base language
level, see section 5.4.3.4). Also, non-local static properties are quite often very restricted.
For example, AspectJ provides static type information for method call join points as
non-local join point properties.

dynamic

static dy
na

m
ic

ity

locality
non-local

local

level of correspondence

direct abstract

structuredness

atomic

structured

Figure 5-24. Design dimensions of join point properties.

Similar to the previous discussion some kinds of dynamic properties occur more
often than others. For example, systems that provide dynamic join points (and which
are closely related to AspectJ) typically provide data and metadata properties and current
join point properties. There are relatively few systems that provide past join point
properties (except control flow specific properties, see section 5.4.3.7). Even less
systems that provide future join point properties. In fact, the only system known to the
author of this thesis that provides future join point properties is the one introduced in
[ÅLSM03].

A special situation is the combination of the application’s progress with the locality
characteristic of join points. Past as well as future join point properties represent
information that is inherently not available at the corresponding join points; otherwise
such a property would be a current join point property. Consequently, past and future
join point properties cannot be local. According to this, the dimension of the

138 5 - Design Dimensions of Aspect-Oriented Systems

application’s progress is not orthogonal to the locality characteristic of join point
properties (see Figure 5-25).

5.4.4 Join Point Addressing

Join point properties express the information available for each join point. Based on
these properties join points are selected by the developer by using language constructs
provided by the JPSL.

In general, the language constructs for addressing join points via their properties
represent an ordinary query language. Hence, characteristics of query languages like
descriptiveness, adequacy [HeSc91], or computational completeness [ABD+89]
could be used to describe characteristics of the JPSL. However, current aspect-oriented
systems are much more restrictive than known query languages (for example, the
language constructs in AspectJ are not computational complete69). Therefore, it is
necessary to describe their characteristics on a finer grained level.

data

da
ta

 re
pr

es
en

ta
tio

n

meta data

progress

current past future

= non-othogonal to the locality characteristic

Figure 5-25. Design dimensions of dynamic join point properties.

The easiest way to select a join point is to specify the value of a certain property. This
approach can be found in all known aspect-oriented systems. For example, in AspectJ a
static class definition join point used by an introduction is selected by specifying the
name of the class. In the same way, an operation in Hyper/J is selected by specifying the
operation name. Consequently, language constructs are provided to enumerate
properties and values of join points to be selected.

However, a JPSL possibly provides more complex means to specify a selection.
Section 5.4.1 discussed the ability to select a join point based on a structural
correspondences or the selection of a join point based on some type correspondence in
AspectJ. Likewise, a number of systems (like AspectJ and Hyper/J) permit to use
wildcards to specify a join point selection. That means, there are some common

69 With the existence of the if-pointcut AspectJ’s pointcut language is turing-complete.

5 - Design Dimensions of Aspect-Oriented Systems 139

characteristics between aspect-oriented systems as well as significant differences with
respect to how join points properties can be addressed in join point queries.

Similar to the previous sections, this section discusses in the following design
dimensions of selection constructs.

5.4.4.1 Lexical and indirect value addressing

In the most trivial case the JPSL provides constructs that permit developers to specify
the value of a certain property. This corresponds for example to the specification of a
class name within a type pattern in AspectJ. This class name is lexically compared with
all class names in the application. Also, in Hyper/J an operation is specified inside the
concern mapping by its name. Hence, all methods matching the specified name are
selected. In fact, this kinds of join point selection is the most straight forward way and
all known aspect-oriented system provide this. Lexical crosscutting [LLM99] as well as
enumeration-based crosscutting [GyBr03] are based on such a join point selection.

However, for example in AspectJ, it is also possible to specify a join point selection
without referring to a join point property in a lexical way, e.g. by means of the +
operator (as already shown in Figure 5-12). By using such a construct, it is possible to
select a join point based on a type relationship between a join point property and a
certain type. Consequently, there is no lexical correspondence between the specified
selection and the corresponding join point property.

class Point {
 public Integer getX() {...}
 ...
}

base application

aspect MyAspect {
 pointcut pc1():within(Point);
 pointcut pc2():within(Poi*);
}

join point
selection

join point properties and values:
kind: …
...
name: getX
retType: Integer
within: Point

Lexical matching

Figure 5-26. Lexical value specification in AspectJ.

Both kinds of selection constructs differ significantly. The first construct addresses a
property’s value directly by specifying the same value in the selection construct. The
latter one permits a more abstract way of addressing a certain property because the
selection construct does no refer to the join point property in a lexical way.
Consequently, this thesis identifies the directness of value addressing as a design
dimension of selection language constructs and distinguishes between lexical value
addressing and indirect value addressing.

Lexical value addressing: Lexical value addressing is provided by a language
construct, if the developer needs to specify the lexical characteristics of a property’s
value.

Indirect value addressing: Indirect value addressing describes the facility of a join
point selection language construct to permit the specification of characteristics of
the property’s value in a non-lexical way.

140 5 - Design Dimensions of Aspect-Oriented Systems

The difference between both kinds of directness of value addressing is whether
within the selection the developer specifies characteristics of the property that are
compared directly to the property’s value. Examples of lexical value addressing can be
found in all known aspect-oriented systems. In AspectJ a type pattern which is used by a
number of pointcut designators like within or this permits the user to specify the
selection on a lexical basis: A selection of a return type can be achieved by specifying the
type’s name. Also, using the * operator in AspectJ is a lexical value addressing because
the selection criterion contains a string that is lexically compared with the corresponding
property’s value.

Figure 5-26 illustrates two different ways of lexical value specifications in AspectJ.
The pointcut pc1 addresses the within property of all join points in the program and
specifies the value Point. The second pointcut also addresses the value of within in
a lexical manner. Here, the developer does not completely specify the value of the
property, but combines a lexical specification (the corresponding class begins with the
characters Poi) with the wildcard *, i.e. the developer abstracts from an arbitrary
number of characters at the end of the type name.

class 3DPoint extends 2DPoint{
 ...
}

base application

aspect MyAspect {
 pointcut pc1():within(2DPoint+);
 ...
}

join point
selection

join point properties and values:
kind: …
...
name: ...
retType: ...
within: 3DPoint

Indirect value addressing

Figure 5-27. Indirect value specification in AspectJ.

Figure 5-27 illustrates indirect value addressing in AspectJ using the + operator. The
within property of all join points that appear inside of the class 3DPoint is
addressed by specifying the superclass 2DPoint in combination with the operator +.
As a consequence, there is no lexical dependency between the property value being
addressed and the specification in the join point selection because the selection does not
directly contain any lexical element of the corresponding property within. However,
it must be mentioned that 2DPoint is lexically addressed (because there is a type
named 2Dpoint in the application). But this addressing is a lexical one of a different
property (the name property of a class definition join point) and not of the property
whose value is addressed here.

An indirect value addressing is a more advanced way of addressing a certain
property’s value. Instead of comparing a specified string with a property’s value on a
lexical basis, an indirect value addressing permits to address a value’s property on a
more abstract level. An indirect value addressing assumes the existence of language
constructs that permit to specify some non-lexical constraints on the value. For
example, if a structured property describes a method definition’s parameter list, a
language construct that permits to address such methods because of the number of
parameters is an indirect value addressing. Another example of an indirect value

5 - Design Dimensions of Aspect-Oriented Systems 141

addressing is the + operator in AspectJ that can be applied to a type pattern: Applying
the postfix operator + to a single type descriptor specifies all subtypes of the underlying
type. Hence, there is no lexical dependency between the specification and the property’s
value. Instead, there is rather a semantic dependency between a specified value (a
super type’s name) and the value of the property (since the + operator refers to subtype
relationships).

Although both kinds of addressing are conceptually different, an aspect-oriented
system possibly provides language constructs for both kinds of addressing. In AspectJ it
is possible to specify a selection of a property based on a lexical as well as on an indirect
basis.

class 2DPoint {
 void setXY(Integer x, Integer y) {
 ...
 }
}

base application

aspect MyAspect {
 pointcut pc1():execution(* *.*(Number+,Integer);
 ...
}

join point
selection

join point properties and values:
kind: …
...
name: ...
retType: ...
paramTypes: (Integer, Integer)

Indirect value
addressing

Lexical value
addressing

Figure 5-28. Combined indirect and lexical value specification in
AspectJ.

Figure 5-28 illustrates such a combination of both kinds of value addressing. The
first parameter is indirectly addressed because the + operator is used in combination
with a lexical specification of the superclass. The second parameter of the structured
value of the property paramTypes is lexically addressed because the type Integer
is specified in the join point selection, which corresponds to the second parameter’s
value. Hence, the value of the join point property paramTypes is addressed lexically
as well as indirectly.

5.4.4.2 Closed and open value addressing

In a number of aspect-oriented systems it is possible to specify join point selections in a
way even those join points are potentially addressed that are not yet contained in the
application. This property is essential if a number of characteristics of join points for a
certain aspect are known but it is not clear how often (or whether at all) they appear in
the underlying application or future evolutions of the application. For example, in
AspectJ and Hyper/J it is possible to use wildcards for addressing join point properties.
Such wildcards permit to specify the value of a certain join point property only partially.
Such kind of addressing is interesting in situations where the base application is based
on a number of naming conventions70.

70 One example of a common naming convention is the naming of field accessing methods using the
prefixes get and set. In Java, architectures like Java Beans [Sun04a] or Enterprise JavaBeans (EJB,
[Sun04b]) make use of such conventions.

142 5 - Design Dimensions of Aspect-Oriented Systems

The characteristic of such addressing in comparison to a pure enumeration of
properties is that it refers to an infinite set of possibly matching join point property
values: Join points that are added to the system due to an evolution of the system can be
considered in that way.

Consequently, this thesis distinguishes between these kinds of addressing and calls
the underlying design dimensions the openness of value addressing and distinguishes
between closed value addressing and open value addressing.

Closed value addressing: An aspect-oriented system provides a closed value
addressing if it provides means to specify a precise set of values for a given
property, i.e. at specification time it is known how many values of join point
properties match the specification.

Open value addressing: A join point selection language permits an open value
specification if it permits to specify an imprecise set of values for a given
property, i.e. at specification time is it not known how many values possibly
match the specification.

Most of the previous examples already contained an example of a closed value
addressing. For example, the pointcut pc1 in Figure 5-27 addresses the value of the
within property completely (by specifying the value 2DPoint), i.e. there is only one
possible value matching this specification. Figure 5-29 illustrates another example of a
complete value specification in Hyper/J: The value of the property operation
name is addressed by specifying its complete value within the concern mapping file.
The term enumeration-based crosscutting [GyBr03] is closely related to this way of
value specification: A developer enumerates all possible values for a given property and
determines in this way a finite number of possible values matching the selection
criterion.

class 2DPoint {
 void setXY(Integer x, Integer y) {
 ...
 }
}

base application
join point properties and values:

operation name: setXY

// concern mapping
operation setXY : Feature.Setter

join point
selection

Figure 5-29. Closed (and lexical) value addressing in a Hyper/J
concern mapping file.

An open value addressing on the other hand specifies an infinite number of possibly
matching values. Consequently, a maximum number of values that fulfill this
specification cannot be determined. Examples of open value specifications are the
wildcards within a pointcut specification in AspectJ as well as in hypermodules71 in

71 In Hyper/J wildcards can only be used within some composition rules and not for example within
concern mapping files (see section 2.3).

5 - Design Dimensions of Aspect-Oriented Systems 143

Hyper/J. For example, the pointcut pc2 in Figure 5-26 is an open value specification:
All class names starting with the identifiers Poi correspond to this specification. For
the same reason, the + operator used within type patterns in AspectJ (as illustrated in
Figure 5-28) is an example for an open value addressing: In case the type structure
evolves, all new classes that subtype Number are addressed.

The main intention for distinguishing between closed and open value addressing
pertains to their impact on the evolution of base applications: A closed value addressing
does not consider any possible property values that may appear in an evolved version of
the base system72. If the base application evolves and grows, a number of new join
points appear in the system (likewise previous join points may disappear). Since the
maximum number of matching values in a closed value specification is fix, additional
property value pairs in the evolved base program are not considered. Not even those
values that might be important to guarantee the aspect’s consistency. As a consequence,
evolving base applications may lead to some inconsistencies caused by aspects73 when
the join points are addressed by a closed value specification.

Note that the term open value addressing does not determine in what way the open
value specification has to be done. Obviously, the straightforward implementations of
wildcards in AspectJ as well as in Hyper/J are examples for open addressing. However,
systems that permit to specify a value via a regular expression (like proposed in
[PGA02]) by using a Kleene star would be an example of an open value addressing. In
principle, all kinds of formal languages74 that permit to describe languages having an
infinite number of words can be used to specify values in an open way.

class 2DPoint {
 Integer getX() {...}
}

base application
join point properties and values:

operation name: setXY
retType: Integer

aspect MyAspect {
 pointcut pc1():execution(Number+ 2DPoint.getX();
 ...
}

join point
selection

Figure 5-30. Open value specification without multiple matching
in an AspectJ-like system with (static) join points.

It needs to be pointed out that the openness of value addressing does not necessarily
mean that the number of join points to be selected are infinite. This is because join
points are selected because of all properties and values being specified in combination
with the underlying join point encoding and the underlying semantics of the base
language – and because of a single property that is potentially addressed in an open way.

72 See [KRH04] for a more detailed discussion on the problem of evolving base applications in aspect-
oriented systems.

73 In fact, a similar problem was originally addressed by Adaptive Programming [Lieb96], which permits
to specify functionality independent of the underlying class structure.

74 See [ASU86] for example for an exhaustive discussion on the specification of formal languages.

144 5 - Design Dimensions of Aspect-Oriented Systems

Figure 5-30 illustrates a join point selection where one value (the return type) is
addressed in an open manner (assuming an AspectJ-like system with pure static join
points). The other values (method name, defining class, parameter types) are addressed
in a closed manner. The open addressed value refers to the return type of the
corresponding method in the base application. Hence, the corresponding method in the
base application is selected. However, if the application evolves incrementally (see
[WeZd88] for the discussion on incremental modification in object-oriented
programming) by adding subtypes to class 2DPoint the number of selected join
points is the same. In fact, the number of static join points selected by pc1() is at
most one, because the underlying programming language does not provide the
declaration of covariant return types75.

5.4.4.3 Stand-alone and sharing property addressing

The previous design dimensions are related to the addressing of values for a certain
property. However, a more interesting issue is the specification of values that are shared
between different properties, i.e. whether it is possible to specify the same set of criteria
for a number of different properties. In relational databases, join operations [Codd70]
are such value sharing operations where the resulting relation depends on values shared
between different relations and possibly different attributes.

class MySingleton {
 static MySingleton me;
 static MySingleton createInstance(){
 ...
 }
 ...
}

base application join point properties and values:
kind: method definition
...
name: createInstance
retType: MySingleton
within: MySingleton

 shared
value

Figure 5-31. Method definition join point in a singleton class with
a shared property value.

The need for the ability to have a shared value specification can be directly derived
from a simple implementation of the Singleton design pattern [GHJV95] (see also
section 3.3.1). A singleton is a class that is itself responsible for creating and maintaining
its instances. Figure 5-31 illustrates a straightforward implementation of the singleton
design pattern for a class MySingleton in Java76. A typical characteristic of such an
implementation is that the signatures of the class method have some common
characteristics: The value of the name property is often the same (createInstance
in the example) and the value of the return type property as well as the name of the
defining class is the same (MySingleton in the example). Figure 5-31 also contains

75 Covariant overriding is not possible in the Java langauge up to version 1.4 (althouth the virtual machine
permits this). By adding genericity to the language [BOSW98], covariant overriding becomes possible
within generic types.

76 Here, the discussion of topics like garbage collection or polymorphism in the implementation of the
singleton design pattern in Java is avoided. For a more comprehensive discussion this thesis refers to
[Gran98], pp. 127-133.

5 - Design Dimensions of Aspect-Oriented Systems 145

characteristic join point properties for the (static) method definition join point similar to
AspectJ.

For selecting all methods that return the instances in singletons, it is desirable to
specify the common characteristics of those methods. If the class name is not known at
selection time, i.e. if the selection should be specified independent of the base
application, there is a need to define the characteristic that the class method’s return
type corresponds to the class where the method is defined in. I.e. it needs to be
specified that the value of the return type corresponds to the value of the defining class.

Such a specification on the other hand assumes that the JPSL permits to specify such
a selection where a number of different properties have the same value. If the developer
wants to specify a selection independent of the underlying class, there is a need to
specify the selection in a way that both return type and class definition type are equal
without directly referring to a certain class.

aspect MyAspect {
 pointcut pc1():
 execution(static MySingleton MySingleton.createInstance());
 ...
}

class MySingleton {
 static MySingleton me;
 static MySingleton createInstance(){
 ...
 }
 ...
}

base application join point properties and values:
kind: method definition
...
name: createInstance
retType: MySingleton
within: MySingleton

 shared
value

redundant values

Figure 5-32. Redundant value specification caused by the stand-
alone value specification in AspectJ.

Although from the singleton example it seems natural to permit the ability to share
values among different join point selections, it turns out that such a features is not
necessarily provided by aspect-oriented systems. Consequently, this thesis distinguishes
between aspect-oriented systems according to whether their join point selection
languages permit to specify shared common characteristics of property values for a
number of join point properties. This thesis calls the corresponding dimension level of
value sharing and distinguishes between stand-alone and shared property
addressing.

Stand-alone property addressing: The join point selection language provides a
stand-alone property addressing if it provides language constructs for specifying
only characteristics for values of a single join point property.

Shared property addressing: The join point selection language provides a shared
property addressing if it permits to share values across a number of properties.

A stand-alone property addressing is the easiest and most common kind of
specifying a selection in aspect-oriented systems like for example Hyper/J and AspectJ:

146 5 - Design Dimensions of Aspect-Oriented Systems

All values for certain join point properties need to be specified separate from each
other. As a consequence, whenever one single criterion is needed for a number of
different join point properties, a copy of such criterion needs to be specified. Hence, in
such situations a redundant specification of criteria is necessary.

Figure 5-32 illustrates the consequence of stand-alone property addressing in AspectJ
based on the previous discussion. The aspect MyAspect selects in its pointcut pc1 all
methods of a singleton that create (or simply return) an instance of that class based on a
lexical value addressing. However, what needs to be specified is that the value of the
within property corresponds to the value of the return type parameter. Since AspectJ
does not permit to specify shared values it is necessary to specify the corresponding
value twice for each property: The name of MySingleton occurs twice in the
pointcut definition. Another consequence of providing only a stand-alone property
addressing is that it is not possible to specify the essential characteristic of this
singleton-specific selection without referring to the corresponding class name. I.e. it is
not possible to specify “the return type of the method to be selected corresponds to the
class defining the method” on an abstract level without specifying the name of the class.

Shared value specifications permit to specify a selection criterion for a number of
properties within a single selection. The main benefit of shared value specifications is
that redundancies that occur in certain situations in stand-alone value specification are
not necessarily needed.

?jp matching
 shadow(?jp, ?sp),
 shadowln(?class, ?name, ?sp),
 hierarchy(?class, Collection),
 hierarchy(WeakArray, ?class)

join point selection

Shared value
Collection

ArrayedCollection

SequenceableCollection...

base application

Array

WeakArray

Figure 5-33. Join point selection with shared values across different
join point properties.

Figure 5-33 illustrates a join point selection using a shared value specification
whereby the join point selection language is based on a logic programming language
(taken from [GyBr03]). The predicate shadow addresses all join points shadow in the
base application and binds them to the variable ?sp, the corresponding join points are
bound to ?jp77. The predicate shadowIn determines all join point shadows ?sp
within the classes ?class and their methods ?name. The predicate hierarchy
determines for a given class (described in the second parameter) its subclasses, i.e. a
predicate like hierarchy(?class, Collection) determines all subclasses of

77 The underlying join point model for the proposed language is behavioral and dynamic (see [GyBr03]).
Hence, it distinguishes between the join point itself and the corresponding join point shadow.

5 - Design Dimensions of Aspect-Oriented Systems 147

class Collection and binds them to the variable ?class. The same variable can be
applied to the same predicate. I.e. the conjunction “hierarchy(?class,
Collection), hierarchy(WeakArray, ?class)” determines all
subclasses of Collection that are superclasses of WeakArray (i.e. the variable
?class is unified). As a consequence, the join point selection selects all join points
that occur within classes that are subclasses of Collection and superclasses of
WeakArray. On the left hand side of Figure 5-33 a small extraction of subclasses
extending Collection in the collection framework in the Smalltalk dialect Squeak
[IKM+97] is illustrated. According to this, the join point selection selects all join points
that occur within classes SequenceableCollection, ArrayCollection and
Array.

Another example of a shared value specification is AspectS where the computation
of join points and sharing of values among join point properties is not part of the
framework itself but part of the underlying language. Figure 34 shows a shared value
specification in AspectS similar to the previously introduced one. The join point
selection is specified within the pointcut block that determines all join point descriptors
the aspect should be woven to (the example neglects the kind of advice and advice
qualifier as well as the code to be executed at the corresponding advice). For
constructing join point descriptor objects, the code collects all subclasses of
Collection that are also superclasses of WeakArray. Then, it collects all method
selectors defined in such classes. After creating a corresponding join point descriptor
object, that object is stored into the collection jpds which represents the result of that
block (see section 2.4). When the aspect is installed, it is woven to exactly those join
points. The sharing of values within the join point selection is achieved by common
variables whose values are used for a number of join point descriptor: The variables
eachClass and eachSelector represent the shared value specification.

Advice
 qualifier: (...)
 pointcut: [
 |jpds|
 jpds := OrderedCollection new.
 (Collection allSubclasses
 select: [:each |
 each allSubclasses includes: WeakArray])
 do: [:eachClass |
 eachClass allSelectors do: [:eachSelector |
 jpds add: (AsJoinPointDescriptor
 targetClass: eachClass targetSelector: eachSelector).
 jpds.
]
 beforeBlock: […]

Collection

ArrayedCollection

SequenceableCollection...

base application join point selection

Shared values

Array

WeakArray

Figure 5-34. Join point selection with shared values in AspectS.

In aspect-oriented systems that provide shared value specifications, a more advanced
kind of parameterization is possible: A property’s value can be specified in one place
and the join point class (possibly later on) in a different place. However, there is a large
variety of how such parameterization can be realized. In AspectS such parameterization

148 5 - Design Dimensions of Aspect-Oriented Systems

can be achieved by passing a shared variable from a different context. Also, hook
methods [Pree95] can be used in the pointcut block and defined later on in a subclass.

5.4.4.4 Monolitic and incremental selection

A more abstract view on the selection (which is not directly referred to the selection of
specific join point properties) reveals that join point selections among different aspect-
oriented systems also differ with respect to how selections can be composed.

One kind of composing selections originates once more from the term enumeration
based crosscutting: Aspect-oriented systems typically provide mechanisms to specify a
number of different values for a certain property. Since aspect-oriented systems typically
provide more than one single property for each join point, all known systems permit to
compose different selection criteria for different properties – like for example selecting
a method definition join point because of the method’s name in conjunction with the
number of parameters.

However, as also known from the object-oriented world there is one essential way of
specifying and composing code fragments – called incremental modification (cf. for
example [WeZd88]) - which is the stepwise refinement of a module based on a
description of how it differs from another module. In object-oriented programming
languages, such incremental modifications are achieved via different kinds of inheritance
(cf. for example [Taiv96]) where a subclass defines how it differs from its superclass.

For aspect-oriented systems such an incremental modification seems to be essential
and corresponds to the idea of specifying aspects that can be woven to a number of
different applications (cf. for example [KRH04, HaUn03a] for further discussions).
Since all applications come with their own set of join points it is desirable to specify the
aspect’s selection criteria only partly and to refine the aspect specification later on in
order to match a specific application’s needs.

public aspect AbstractAspect {
 abstract pointcut hook():
 pointcut myTargetCall(TargetClass t): this(t) && hook();
 before(TargetClass t): myTargetCall(t) {
 // join point adaptation
 }
}
public aspect ConcreteAspect extends AbstractAspect {
 pointcut hook():
 call(void MyTargetClass.foo());
}

Figure 35: Example application of the Abstract Aspect idiom.

In AspectJ as well as in Sally such an incremental modification of join point
selections is achieved by a mechanism similar to inheritance: An abstract aspect can
provide a number of (possibly abstract) pointcuts that are later on defined in a
subaspect. This kind of refined join point selection is used by a number of AspectJ
idioms (cf. [HaCo03, HSU03]), like for example Abstract Pointcut. In this idiom an
abstract aspect specifies the behavior that needs to be executed at certain join points but
leaves out the join point selection to be defined later on for application specific
purposes. Figure 35 illustrates a code example for Abstract Pointcut.
AbstractAspect specifies the adaptation of certain join points within its advice and

5 - Design Dimensions of Aspect-Oriented Systems 149

also specifies within its pointcut MyTargetCall that the objects at which such join
point occur must be of type TargetClass. However, the pointcut also refers to a
pointcut hook() that is to be defined in a subaspect. In order to connect the aspect to
a specific application the developer needs to define the pointcut hook(). In the
example, ConcreteAspect selects the method call join points to method foo() in
class MyTargetClass.

Although it seems quite essential to have such an incremental definition of join point
selection, it turns out that not every system provides corresponding mechanisms. For
example in Hyper/J, it is not possible to refine concern mappings.

Based on this observation, this thesis identifies the level of adjustability of join
point selections as a design dimension of join point selection languages and
distinguished between monolithic and incremental join point selections.

Incremental join point selections: An aspect-oriented system provides
incremental join point selections if a join point selection can be defined in one
module and refined in other modules without the need to perform invasive changes
in the first one.

Monolithic join point selections: An aspect-oriented system provides monolythic
join point selections if a join point selection has to be defined in one single module
without the ability to be modified in other modules.

5.4.4.5 Unrestricted and restricted join point selection

The intention of a join point selection is to select all join points that are “appropriate”
for the aspect. Under certain circumstances it is only necessary to select join points
which occur in special modules. For example, in order to specify a persistency aspect for
a given class definition it is sufficient if the selection language permits only to select join
points which occur in a certain class. In such a situation the underlying crosscutting is
class-specific (cf. [HaUn02a]) and the selection language only needs to address join points
that occur within this class (in case of a static join point model). However, if one aspect
should be able to handle the object persistency for more than one class there is a need
to specify selections that address join points in the whole application – there is no
restriction of where the join points occur.

In general, crosscutting code occurs on different levels. On the one hand there are
crosscutting concerns where the resulting code is restricted to a small number of
modules (like different methods in a single class definition). On the other hand the
resulting code is possibly distributed over a large number of modules.

Different systems have different abilities in selecting join points. Systems such as
AspectJ as well as Hyper/J permit to refer to any join point in the whole application –
the join point selection is not restricted to some specific modules. However, systems
like Composition Filters [AWB+93] restrict the selection of filters to the types they are
defined in. Consequently, this thesis identifies the scope of join point selection as a
design dimension of join point selection languages and distinguishes between
unrestricted and restricted join point selection.

150 5 - Design Dimensions of Aspect-Oriented Systems

Unrestricted join point selection: An aspect-oriented system provides an
unrestricted join point selection if the join point selection constructs can refer to
any join point in the whole system.

Restricted join point selection: An aspect-oriented system provides a restricted
join point selection if the system restricts each join point selection to a number of
modules.

5.4.4.6 Orthogonality of design dimensions

Similar to the design dimensions of join points and join point properties the identified
design dimensions of join point selection constructs are orthogonal. However, the
identified design dimensions are on different levels of abstraction.

closed value
addressing

open value
addressing

lexical
value addressing

Indirect value
addressing

di
re

ct
ne

ss

openness

stand alone

shared
level of

value sharing

Figure 5-36. Dimensions of join point addressing.

The first three – directness of value addressing, openness and level of value sharing -
are related to how the JPSL permits developers to refer to certain properties of join
points. Possibly, an aspect-oriented system provides for a number of selection
constructs and properties different mechanisms to select them. Correspondingly, it is
reasonable to consider the design dimensions for each given construct. For example, it
is possible to analyze AspectJ’s call pointcut designator, execution pointcut designator,
etc. how the corresponding construct maps the design dimensions directness, openness
and level of value sharing.

The latter two design dimensions – the adjustability and scope of join point
selections – are directed to the selection of join points themselves (and not only to the
addressing of a property’s value). It seems rather strange if in a given aspect-oriented
system the selection constructs differ with respect to these design dimensions78. Hence,
such design dimensions describe characteristics of the whole JPSL for a given aspect-

78 In fact, AspectJ is already an example where the selection constructs differ for such dimensions: Class
definitions join points (as used in introductions) cannot be incrementally defined, while all behavioral
join points can. In respect to this, AspectJ differs from systems such as Hyper/J, Sally or AspectS where
all constructs are equal in respect to such design dimensions.

5 - Design Dimensions of Aspect-Oriented Systems 151

oriented system and not only a characteristic of a certain language construct. For
example, it does not make any sense to ask whether the execution pointcut designator in
AspectJ is restricted or whether the specification of call pointcut designators can be
achieved incrementally. Instead, the set of all pointcut designators can be analyzed in
respect to both dimensions.

Figure 5-36 illustrates the design dimensions of value addressing. Every JPSL
construct of a given aspect-oriented system can be analyzed with respect to how it
matches to the corresponding design dimensions. Similar to the design dimensions of
join point properties certain kinds of constructs occur more often in aspect-oriented
systems.

Lexical, closed and non-shared constructs are provided by a large number of aspect-
oriented systems and can be regarded as the “first generation of JPSL constructs”.
Examples are constructs that permit to refer to method definition join points only by
specifying each method’s name. This corresponds for example to the selection
constructs of Hyper/J (except the bracket relationships79).

restricted
selection

unrestricted
selection

monolithic

incremental

ad
ju

st
ab

ili
ty

scope

Figure 5-37. Design dimensions for join point selection languages.

An example for an indirect, open and stand-alone construct is the + operator in
AspectJ. The + operator refers to join point properties without referring to the
corresponding types by their name. Since all subtypes of the specified type are
addressed, it is also an open value addressing. However, since it is not possible to
specify the same type pattern for a number of different properties, + is a stand-alone
construct.

Figure 5-37 illustrates the latter design dimensions for the join point selection. An
example for an incremental and unrestricted join point selection language is AspectJ’s
pointcut language. Hyper/J’s selection language is an example of being monolithic and
unrestricted.

79 Since bracket relationships permit to use wildcards for selecting methods this construct provides an
open value addressing.

152 5 - Design Dimensions of Aspect-Oriented Systems

5.4.5 Relationship between Join Point Properties and Join Point
Addressing

When designing an aspect-oriented system there is a trade-off between the design of
join point properties and the design of join point addressing. In general, it is possible to
reduce the number of properties for a given join point and to extend the way how
properties can be addressed without reducing the expressiveness of the underlying
system’s selection language.

For example, AspectC++ provides a property for method call join points that states
how many parameters a method has – a static and local property with an abstract
correspondence. Such a property is for example not provided by AspectJ for method
call join points. However, AspectJ provides a static, local and structured property with a
direct correspondence that represents the types declared in a method’s signature.
Although both join point encodings differ, it is possible to select method call join points
because of the number of parameters. In AspectJ this can be achieved by the ..
operator which abstracts over the number of parameters as well as with the * operator
which abstracts over a property’s value in a lexical way.

class Computation {
 ...
 public Integer compute(int i1, int i2, int i3) {
 ...
 }
 ...
}

base application

join point properties:
...
params: (int, int, int)
...

System A

join point selection:
method(Integer Computation.compute(*, *, *))

join point properties:
...
numParams: 3
...

System C

join point selection:
method(Integer Computation.compute(3))

join point properties:
...

 params: (int, int, int)
...

System B

join point selection:
method(Integer Computation.compute(3))

Figure 5-38. Join Point Selection with direct and indirect join point
value addressing and lexical and abstract join point
properties.

Figure 5-38 illustrates three different systems where each one differs with respect to
the provided join point properties as well as with respect to the selection language
constructs whereby in all these cases the resulting join point selection (selecting a certain
method definition because the number of parameters is 3) is the same.

• System A is an AspectJ-like system that provides a static, local, and structured
property with a direct correspondence that represents the types declared in a
method’s signature. Furthermore, the system provides mechanism for a lexical
and open property addressing.

• System B provides the same property as system A. However, the selection
construct is indirect (because the value 3 reasons on the number of parameters).

5 - Design Dimensions of Aspect-Oriented Systems 153

• System C provides directly a property that represents the number of parameters.
In order to select the appropriate join points it is sufficient to have a lexical value
addressing: The token 3 can be lexically compared to the value of the
numParameters property.

When analyzing a certain aspect-oriented system, the underlying design of the join
point properties might be not transparent. Such a situations occurs where the aspect-
oriented system provides only a stand-alone property addressing (which is the case for
example in AspectJ or Hyper/J). The problem here is that it is not possible to request
the value of a certain property but only to specify constraints on some join point
characteristics. In the previous example, system B permitted to specify an indirect
selection criterion. However, if the value of the underlying property cannot be requested
it is not clear how the underlying property is represented.

Although AspectJ provides only a stand-alone property addressing, it can be derived
how the underlying property is represented due to the reflective capabilities of AspectJ:
The keywords thisJoinPoint and thisStaticJoinPoint provide access to
each join point and its properties can be retrieved from within the join point adaptation
(but not from within the join point selection). Consequently, a number of properties can
be derived from this join point representation. However, there are also properties whose
representation cannot be derived from such reflective capabilities: The underlying data
that is being used in order to permit the selection of elements from the call stack is
hidden from the developer80. Consequently, the design dimensions of join point
properties can be understood in such situations rather as a conceptual framework for
the data used to determine whether a join point characteristic holds.

class Computation {
 ...
 public Integer compute(int i1, int i2, int i3) {
 ...
 }
 ...
}

base application

join point properties:
...
method(Integer,Computation,compute,[int,int,int]).
...

System A

join point selection:
method(Number, Computation,compute,[int, int, int])

join point properties:
...

method(Integer,Computation,compute,[int,int,int])
method(Number,Computation,compute,[int,int,int]).

...

System B

join point selection:
method(Number, Computation,compute,[int, int, int])

Figure 5-39. Join Point Selection based on indirect and direct join
point selection.

There are some systems that come with a logical join point language in combination
with a number of predicates for join points. Examples for such systems are Andrew

80 In fact, AspectJ does not provide the whole call stack information in a property but generates some
additional runtime checks that determine whether the declared call stack characteristics for a given
dynamic join point hold.

154 5 - Design Dimensions of Aspect-Oriented Systems

[GyBr03] or Sally. In general, such approaches provide for each join point a number of
facts as well as a number of rules operating on such fact. In case the underlying system
does not provide constructs that distinguish between the facts and the rules applied to
such facts, it is not possible to determine directly the characteristics of the underlying
join point properties.

Figure 5-39 illustrates two systems that both permit developers to address the same
method definition based on a subtype relationship of the method’s return type: The
methods are selected because the return type is of type Number (which corresponds to
the method because Integer is a subtype of Number in Java). System A provides
such a selection because the underlying predicate specifies the corresponding subtype
relationship. Hence, the selection construct provides an indirect join point addressing.
System B directly provides a fact that represents the subtype relationship. From the
developer’s perspective both join point selections are equal because they both refer to
the same join point. However, if no internals about the underlying facts are known, it
cannot be determined whether the underlying property has a direct correspondence (and
the selection construct provides an indirect addressing) of whether the underlying
property has an indirect correspondence (and the selection construct provides a lexical
value addressing).

It can be concluded from the previous discussion that there is some interplay
between design decisions of join point properties and property addressing: It is possible
to replace a design decision of a join point property with a design decision of the join
point addressing without changing the system’s functionality from the developer’s
perspective.

5.5 Join Point Adaptation
Once join points are selected, aspect-oriented systems provide language constructs for
adapting such join points. However, there are many possibilities that could be done with
the chosen join points. This does not only depend on the design decisions of the aspect-
oriented systems but also on the semantics of the base language and the chosen join
point model. For example, if a selected static join point is a method definition an aspect-
oriented system potentially may replace the body of the method or add additional
statements to the method body.

Join Point Adaptation Language: The join point adaptation language specifies
language constructs for adapting those join points selected by a join point selection.

With respect to the constructs that specify how a join point is to be adapted,
different aspect-oriented systems already differ substantially on the first glimpse:

• AspectJ (and closely related systems like AspectS or PROSE) provides at least
advice, i.e. modules that permit to change the behavior of an application at
behavioral join points. Furthermore, AspectJ provides a mechanism of
introduction that permits to extend class definition join points by adding new
members or interfaces.

• Hyper/J provides on the one hand relationships among hyperslices that
permit to add new structural elements to classes within a hyperslice. Furthermore,

5 - Design Dimensions of Aspect-Oriented Systems 155

the bracket relationships in Hyper/J permit to change the behavior at certain
behavioral join points by adding new method invocations.

By studying such mechanisms in more detail it turns out that there are number of
similarities among them. First, most approaches have a mechanism that is similar to
introductions in AspectJ. Second, most approaches have an advice-like mechanism.

5.5.1 Structural and Behavioral Join Point Adaptation

AspectJ introduces the term introduction (which has been exhaustively discussed in
Chapter 3). It implements a mechanism for adding fields, methods, and interfaces to
classes. This is similar to open classes as described in [Cann82] and [CLCM00].
Introductions have been motivated by the observation that different concerns have a
direct impact on the type structure of object-oriented applications. As a consequence,
modularization is compromised since some elements in the type structure, like certain
fields and methods, come from different concerns. In Hyper/J, AspectJ-like
introductions can be implemented by defining classes that contain the members to be
introduced and by specifying within the hypermodule how to weave the participating
classes.

public String newString();
public void getString() {
return this.newString();

}

Introduction Module

public String newString();
public void getString() {
return this.newString();

}

...

...

A

A

weaving

Figure 5-40. Introducing methods newString and getString to a
target class A [HaUn03a].

In general, both systems contain mechanisms that permit to achieve a similar result:
Introducing members into a class definition join point. Figure 5-40 illustrates an
introduction without referring to a concrete aspect-oriented system. A special
introduction module defines new members (method newString and getString)
that are to be introduced into a target class A. The aspect-oriented system takes the
introduction module and the target class and weaves them together. Thus, all elements
of the introduction module become members of the target class A. An introduction is a
strictly type increasing operation on types since it adds new features to types but does
not permit to remove anything. The intention of applying introductions is to change the
way that the system possibly interacts with certain types. Typically, introductions are
performed by aspects that later on themselves access the introduced members.

On a more abstract level, an introduction is a composition mechanism that refers to
a structural join point and that adapts the target join point in a way that only its

156 5 - Design Dimensions of Aspect-Oriented Systems

structure changes. Introductions do not change the way how the application is
executed81, hence the semantics of the resulting (woven) application stays the same82.

However, aspect-oriented systems also potentially provide an advice-like mechanism
that changes the behavior of the base application without changing the structure of the
application. Figure 5-41 illustrates the specification of an advice before and after
weaving in AspectJ. The around advice changes the base application at the specified join
point but it does not have any impact on the structure of the join point: The structural
appearance of the method stays the same83. Similar results can be achieved (but just for
static join points) in Hyper/J by using bracket relationships.

Obviously the means of how join point are adapted using advice and introduction
substantially differ. The main difference is that an introduction is a structural adaptation
while an advice is a behavior adaptation. Based on this observation, this thesis identifies
the design dimension level of adaptation and distinguishes between structural join
point adaptation and behavioral join point adaptation.

Structural join point adaptation: An aspect-oriented system provides strucural
join point adaptations if there are constructs that permit to change the structure of
the join points.

Behavioral join point adaptation: An aspect-oriented system provides behavioral
join point adaptations if there are constructs that permit to change the behavior of
the join points (without changing the join points’ structural appearance).

In the easiest case, a structural adaptation is the attachment of members to class
definitions without interfering the lookup process of the objects of this class84. Under
the same restriction, adding a new method to an object in a prototypical language
represents a structural join point adaptation. Both adaptations have in common that the
corresponding join point is a structural join point.

Although the (static) structural join points described in the examples above are class
definitions, there is (on the conceptual level) no reason why other kinds of structural
join points should not also be used for the same kind of composition. For example, an
introduction-like mechanism for method definition join points could be the attachment
of optional parameters85. Obviously, attaching optional parameters to a method
definition join point does not change the behavior of the application as long as the

81 In fact even introductions in AspectJ possibly change the behavior of the woven application. However,
this is rather regarded as an implementation failure (see [Stör03] for further discussion).

82 Of course, this assumes that the underlying application does not depend on structural reflection
[Maes87], i.e. the way how the application is executed does not depend on the structure of the
application itself.

83 This view on the woven code in AspectJ is quite simplified since on the bytecode level there are a
number of structural changes on the class the target method is defined in (see [HiHu04]).

84 If a method would be added to a class and overrides a method defined in a superclass, this potentially
changes the behavior of the application because the overriding method would be invoked instead of the
overridden one.

85 However, programming languages like C++ and Java currently do not provide optional parameters
while this is common for a large number of languages like LISP or TCL.

5 - Design Dimensions of Aspect-Oriented Systems 157

lookup mechanism is not interfered and as long as there is no code accessing such
optional parameters. In the same way, a method definition join point in systems like
Java could be adapted in a way that declared exceptions are to be deleted from the
method definition. It is also imaginable that structural join point adaptations are applied
to behavioral join points like for example transforming a method call to a behavior
equivalent expression. This could be achieved by providing language constructs that
inline the target method directly. Although possible, this thesis considers such structural
join points adaptations applied to behavioral join points as composition mechanisms
that play design rather a subordinate role in aspect-oriented system 86.

class MyClass {
 void m() {
 ...
 }
}

base application

aspect MyAspect {
 pointcut pc1():execution(* *m();
 void around() pc1() {...}
}

join point
adaptation

weaving

class MyClass {
 void m() {
 // aspect specific code
 }
}

Figure 5-41. Adapting the behavior of a base application by using
advice in AspectJ.

Behavioral join point adaptations are in the easiest case adaptations of behavioral join
points (like advice in AspectJ and AspectS or bracket relationships in Hyper/J). For
example, a method call that is replaced by a different one represents a behavioral join
point adaptation. Of course, such a replacement could lead - after weaving - to an
application that is still behavior equivalent to the unwoven application, if the replacing
method is behavior equivalent to the original method call. However, behavior join point
adaptation just refers to the existence of language constructs for specifying join point
adaptations that possibly change the application’s behavior: It is not necessary that by
applying a specific adaptation the resulting application behaves actually different. In
contrast to structural join point adaptations, it is quite common that behavioral join
point adaptations are applied to structural join points. For example, Hyper/J replaces
method definition join points by corresponding override relationships.

In current aspect-oriented systems that are based on object-oriented base languages,
behavioral adaptations are usually applied to method call join points or method
definition join points. But in principle it is also possible that behavioral join point
adaptations can be applied to any arbitrary behavioral join point like for example the
application of operators.

86 In fact, altough its theoretically possible, there is no system known to the author that provides such a
kind of adaptation.

158 5 - Design Dimensions of Aspect-Oriented Systems

5.5.2 Constructive and Destructive Join Points Adaptation

One characteristic of advice in AspectJ (and also bracket relationships in Hyper/J) is
that they permit to change the behavior at behavioral join points. Such advice permit to
specify that the behavior to be added potentially occurs before or after the join point.
The interesting observation with these kinds of behavior adaptations is, that the original
join point stays the same because just additional behavior is executed at these join
points. Of course, this does not means that such additional behavior does not interfere
with the behavior specified in the base application. It simply states, that the original join
point is still (potentially) part of the application.

There is a parallel with the previously discussed introductions: Introductions add
something to the static class definition join point while the join point after weaving still
contains all elements that existed before weaving: The type being the target of the
introduction is still compatible with the original type.

However, around advices that are available in AspectJ and AspectS slightly differ
from that: Around advices potentially replace the original join point with the elements
specified within the advice. Furthermore, AspectJ as well as AspectS provide a construct
that permits the execution of the original join point. In AspectJ such construct is the
proceed keyword; in AspectS it is realized by invoking the original method extracted
from the context object. The difference between such a proceed-like construct and a
before or after advice is that it is possible from within the adaptation specification to
refer to the original join point. Before and after advice simply represent a form of build-
in mechanism where users of the aspect-oriented system cannot specify on their own
how the original join point is being used. In contrast to that, proceed-like constructs
permit developers to specify on their own how and when the original join points is
being used.

class MyClass {
 void m() {
 ...
 }
}

base application

aspect MyAspect {
 pointcut pc1():execution(* *m();
 void around() pc1() {
 ...do something...;
 if (aCondition)
 proceed();
 }
}

join point
adaptation

weaving

class MyClass {
 void m() {
 ...do something...;
 if (aCondition)
 original method
 }
}

Figure 5-42. Behavioral join point adaptation that refers to the
original join point.

Figure 5-42 illustrates schematically a join point adaptation before and after weaving
where the adaptation specification explicitly refers to the original join point. The aspect
MyAspect contains an around advice that refers to method m defined in class
MyClass. The developer of the aspect decided to execute the original join point only
if some runtime condition is fulfilled. In case this condition is not fulfilled, an execution

5 - Design Dimensions of Aspect-Oriented Systems 159

of method m only executes the behavior that is additionally specified inside the advice,
but the original behavior is not executed.

Hyper/J also provides an override relationship: Overriding one method with a
different one simply replaces the original method definition. There is no possibility to
refer from the overriding method to the original implementation.

Based on the previous discussion this thesis identifies constructiveness of join
point adaptation as a separate design dimension for join point adaptation and
distinguishes between destructive join point adaptation and constructive join point
adaptation.

Destructive join point adaptation: An aspect-oriented system provides
destructive join point adaptations if the adaptation necessarily replaces the join
points it refers to.

Constructive join point adaptation: An aspect-oriented system provides
constructive join point adaptation if the adaptation does not necessarily change the
join points it refers to in a way that they no longer exists after weaving.

The simplest kind of a destructive join point adaptation is the replacement of
method bodies from the base application with new bodies specified in the adaptation
specification. This corresponds to the override relationship in Hyper/J. The particular
characteristic of destructive adaptations is that the original join point is replaced by a
new one.

Constructive join point adaptations simply permit to change the join point in a way
that the join point after weaving still exists. Before and after advice as well as
introductions in AspectJ are typical examples of constructive join point adaptations.

class MyClass {
 void m() {
 ...original body...
 }
}

base application

aspect MyAspect {
 pointcut pc1():execution(* *m());
 before(): pc1() {
 doSomething();
 }
}

Alternative 1 (constructive adaptation)

aspect MyAspect {
 pointcut pc1():execution(* *m());
 void around(): pc1() {
 doSomething();
 proceed();
 }
}

Alternative 2 (destructive adaptation) weaving

class MyClass {
 void m() {
 ...do something...;
 ...original body…;
 }
}

Figure 5-43. Equivalent adaptation using a constructive or
destructive adaptation.

As argued above, language constructs like around advices in AspectJ also permit to
refer to the original join point. Hence, on the one hand they replace the original join
point, but on the other hand they still give developers the ability to refer to the replaced
join point from within the join point adaptation. From the user’s perspective, a system

160 5 - Design Dimensions of Aspect-Oriented Systems

that provides destructive join point adaptations can express the same as constructive
adaptations as long as the adaptation refers to the original join point.

Figure 5-43 illustrates schematically two different (behavioral) adaptations in AspectJ.
The first alternative specifies the adaptation using a constructive adaptation using a
before advice in AspectJ to add certain behavior. The second alternative specifies the
adaptation using a destructive around advice. From the application’s semantics
perspective both join point adaptations lead to the same application as illustrated in
Figure 5-4387. This means, in general a destructive join point adaptation is not less
powerful in comparison to constructive adaptations: It also depends on the existence of
constructs that permit to refer to the original join point that is replaced by the
adaptation.

In comparison to Hyper/J such a language feature differs essentially, because the join
point adaptation itself can determine whether or not the join point is to be removed.
Hence, this thesis does not only distinguish between destructive and constructive
adaptations but also on adaptations that are potentially constructive by allowing to
decide within the adaptation whether or not the join point is to be replaced.

Conditional constructive join point adaptation: An aspect-oriented system
provides a conditional constructive join point adaptation if within the adaptation
module it can be determined whether the target join point is to be destructed.

Conditional constructive join point adaptations are for example around advice in
AspectJ that refer to the original join point via proceed as well as wrappers in Sally
that refer via wrap to the original join point.

There are some parallels between the conditional constructive adaptation of dynamic
join points and different kinds of inheritance [Taiv96] in object-oriented systems (see
also [HaUn01a]). Inheritance is often regarded as a kind of incremental modification
[WeZd88] of the superclass where method overriding is one special kind of incremental
modification. Furthermore, in most object-oriented languages the newly defined method
is able to refer to the method which is about to be overridden by using the super
keyword. Such overridden methods with super references are quite similar to
conditional constructive join point adaptations: The newly defined behavior potentially
refers to the old definition by invoking the overridden method via a super-reference.
Hence, the new behavior is also defined in terms of the old (incremented) behavior.
However, obviously there are also some differences: Method overriding in object-
oriented programming is achieved by creating a new class which overrides a number of
methods. I.e. the “join point” is in fact a method definition for an object created from a
new class (and not a class that already exists in the system). Hence, simply creating a
new class and refining a method does not change anything in the base application at all
as long as inside the “base application” such new classes are not used.

87 The woven application is just an illustration of the woven application in AspectJ. In fact, AspectJ
generates much more elements like additional methods, etc. (see [HiHu04] for more details).

5 - Design Dimensions of Aspect-Oriented Systems 161

5.5.3 Non-Variable and Parametric Adaptation

One characteristic of aspect-oriented systems like AspectJ or Hyper/J is that their
adaptation language permits to specify adaptations in a way that the code of the
adaptation is fix. I.e. all elements of the code are statically defined and do not contain
any variabilities with respect to the code. If the base language is a statically typed
language like AspectJ or Hyper/J, it is possible to assign static types to all elements in
the adaptation and typechecking can be performed in a straight forward way.

However, there are some good reasons why aspect-oriented systems should be able
to handle a more relaxed form of adaptation specification: Adaptations that contain also
variables. One typical example that illustrates the need for variabilities in the join point
adaptations can be directly derived from the singleton design pattern [GHJV95]88.
Figure 5-44 illustrates two classes both making use of the singleton design pattern.
Obviously, both classes contain some kind of crosscutting: The singleton specific static
field and method occur in more than one place. A first idea could be to modularize the
singleton specific elements within a join point adaptation (the corresponding join point
selection addresses the static class definition join point). However, in languages like
AspectJ or Hyper/J it is not possible to modularize the singleton specific elements.

class SingletonA {
 static SingletonA me;
 static SingletonA createInstance(){
 ...
 }
 ...
}

class SingletonB {
 static SingletonB me;
 static SingletonB createInstance(){
 ...
 }
 ...
}

class ASingleton {...} class SingletonB {...}

?targetClass me
?targetClass createInstance() {…}

 Move redundant code to aspect

static Join Points = ?targetClass
Join Point
Adaptation

Figure 5-44. Moving code redundancies from singleton
implementation to aspects by using a parametric join
point adaptation.

 As shown in Chapter 3, such a kind of adaptation is possible in Sally (other
examples for systems that provide such a variability in the join point adaptation is
LogicAJ, cf. [KRH04]). Figure 5-44 illustrates a possible syntax for a join point
adaptation (closely related to Sally) where some elements (in this example the types) are
variable and are replaced when the corresponding aspect is woven.

88 The ingredients of a typical Singleton implementation are already discussed in section 3.3.1 as well as in
section 5.4.4.3 and are therefore not repeated here.

162 5 - Design Dimensions of Aspect-Oriented Systems

Since the impact of providing constructs like Sally seems to be essential (because the
existence of such constructs determines whether or not certain crosscutting concerns
can be modularized), it is reasonable to describe the existence of such constructs as a
design dimension on its own. Hence, this thesis identified the level of variability as a
design dimension for join point adaptation and distinguishes between non-variable
join point adaptation and parametric join point adaptation.

Non-variable join point adaptation: An aspect-oriented system provides non-
variable join point adaptations if the code that adapts each join point does not
permit to contain any variabilities.

Parametric join point adaptation: An aspect-oriented system provides a
parametric join point adaptation if there can be variabilities inside the code
representing the join point adaptations.

Almost all current and popular aspect-oriented systems provide non-variable join
point adaptations. In AspectJ for example, the body of an advice is very similar to the
body of a method definition in Java (neglecting the new keywords proceed,
thisJoinPoint, and thisStaticJoinPoint).

Parametric join point adaptations currently occur not that often in aspect-oriented
systems. The approach of aspect-oriented logic metaprogramming as proposed in
[DVDH99] can be regarded as a form of parametric join point adaptation89.

MyClass

base
applicationtargetMethod(MyClass,m,TargetClass,y)

Join Point Adaptation

adviceBefore(
 method(?c1,?s1), {?c2.?s2();})
if targetMethod(?c1,?s1,?c2,?s2).

Join point selection

parametric adaptation
m()

refes
to

weaving
MyClass

m() {TargetClass.y();}

Figure 5-45. Parametric join point adaptation similar to the
SOUL/Aop system as described in [BMDV02].

The approach described in [BMDV02] which makes use of the previously mentioned
approach [DVDH99] can also be regarded as an approach supporting parametric join
point adaptations90: The (behavioral) join point adaptations possibly contain variables
which are “filled” with parameters from the corresponding pointcut.

Figure 5-45 illustrates a parametric join point adaptation similar to the one described
in [BMDV02]. The join point selection (which is specified in a different place) refers to

89 Although the approach as described in [DVDH99] rather resembles of a logic-based code generator
than a system that matches the here proposed design dimensions.

90 In constrast to [DVDH99] it has a clear static join point model where the corresponding join points are
method definitions. However, it should be noted that the intention of [BMDV02] is not to provide a
single general-purpose aspect language, but to provide a framework for implementing aspect-specific
languages.

5 - Design Dimensions of Aspect-Oriented Systems 163

method m in class MyClass. The join point adaptation refers to that method. The term
?c2.?s2() delimited by the curly braces in the construct similar to advice in AspectJ
represents the (constructive) join point adaptation. In the example, the term consists of
two variables ?c2 (for a class) and ?s2 (for a selector, i.e. a method name) which are
specified within the join point selection (and they are bound to the class
TargetClass and method y). The term represents a method call91. However, the
join point adaptation does not determine in what class what method will be invoked:
This depends on the binding of the variables.

Another example of an aspect-oriented systems providing parametric adaptations is –
of course – Sally (see Chapter 3) since the need for a variable code specification within
introductions (and advice) has been the main problem addressed by Sally.

5.5.4 Variable and Fix Join Point Abstraction

Systems like AspectJ provide the ability to expose some context to the advice by
specifying parameters within the advice and pointcut header: Inside a pointcut
declaration, (dynamic) pointcut designators refer to these parameters and permit to
specify additional constraints on them (like additional type constraints by means of
this or target pointcut designators or Java-defined constraints with the help of the
if-pointcut). Within the join point adaptation (i.e. within the advice) the code refers
only to the context exposed by the selection, to local variables within the aspect or to
global variables. I.e. the values to be used within the join point adaptation are defined
(among others) by the corresponding join point selection. Consequently, the data
available in order to adapt a certain join point possibly varies from adaptation to
adaptation.

class MyClass {
 ...
 public void m(int i, String s) {...}
 public void n(String s, int i) {...}
 ...
}

base application aspect MyAspect {
 pointcut pc(String s):
 (execution(void MyClass.m(..))
 && args(int, s)) ||
 (execution(void MyClass.n(..))
 && args(s, int));

 before(String s): pc(s) {
 System.out.println(s);
 }
}

Figure 5-46. Abstraction of join point context in AspectJ.

The situation is different in systems like AspectS (but also for Sally). There, each join
point provides a list that represents the list of parameters passed to it. Consequently, if
for example a single adaptation refers to two method execution join points with two
different shadow join points, and the adaptation needs to refer to the method’s first

91 The illustration was slightly adapted to fit a Java-like syntax. In the original paper, the base language
used by the authors was Smalltalk. Hence, the corresponding term it the system desribed in [BMDV02]
would be ?c2 ?s2, where ?c2 describes the target object (which is potentially a class object) and
?s2 desribes the message selector.

164 5 - Design Dimensions of Aspect-Oriented Systems

parameter and the method’s second parameter, it is up to the developer to select the
appropriate parameter within the adaptation.

Figures 5-46 and 5-47 illustrate the difference between the context handling in
AspectJ and AspectS. In the example, both (constructive) join point adaptations simply
print out the string passed to the method in class MyClass.

In the AspectJ example, the join point selection already refers to the parameter of
interest and passes it to the join point adaptation. The join point adaptation refers to the
passed parameter in order to print it out.

In the AspectS example, the join point selection refers to the same methods (written
in Smalltalk). However, the join point adaptation receives for all join points the same
parameter list. Hence, the developer of the adaptation needs to extract on his own the
right parameter by reflecting on the current join point (using the keyword
thisContext) in order to print out the right parameter.

Both kinds of join point adaptations have a large impact on the resulting aspect. In
AspectJ it is possible to specify the adaptation first and later on a selection that refers to
the appropriate join points. Hence, the system provides for the adaptation some
abstraction over join points and permits in that way to reuse the adaptation in a number
of different situations.

Object subclass: MyClass
 m1: i m2: string ...
 n1: string m2: i ...
 ...
}

base application

myAdvice
^ AsBeforeAfterAdvice
 qualifier: (AsAdviceQualifier attributes: { #receiverInstanceSpecific. })
 pointcut: [
 OrderedCollection
 with: (AsJoinPointDescriptor targetClass: MyClass targetSelector: #m1:m2)

with: (AsJoinPointDescriptor targetClass: MyClass targetSelector: #n1:n2:)]
 beforeBlock: [:receiver :arguments :aspect :client |

((thisContext method selector) = #m1:m2) ifTrue: [
 Transcript show: (arguments at: 2)
] ifFalse: [
 Transcript show: (arguments at: 1)
]

]

 Figure 5-47. Selecting the appropriate context in AspectS.

In AspectS the adaptation needs to reflect on the join points itself in order to
determine the right parameters. Consequently, the join point adaptation is closely related
to the selected join points and it is hard to combine a once specified join point
adaptation with different join point selections. For example, if execution join points of
other methods should be adapted (where the 3rd or 4th parameter needs to be printed
out) it is necessary to change the join point selection as well as the join point adaptation.

This thesis identified the level of join point abstraction as another design
dimension of aspect-oriented systems and distinguishes between a fix and variable join
point abstraction.

5 - Design Dimensions of Aspect-Oriented Systems 165

Fix join point abstraction: An aspect-oriented system provides a fix join point
abstraction if the join point adaptation’s context is fix for all join points of a given
concrete join point class.

Variable join point abstraction: An aspect-oriented system provides a variable
join point abstraction if the developer can specify on his own the join point’s
context the adaptation operates on.

In principle, the ability to provide a context to the join point adaptation can be
considered as a more mature mechanism of aspect-oriented systems than a fix join point
abstraction because mechanisms are needed that extend the adaptation context with
additional runtime entities. Consequently, more recent approaches (cf. for example
[NCT04]) investigate the ability to specify a larger variety of contexts for join point
adaptations.

5.5.5 Orthogonality of Design Dimensions

The previously identified design dimension are orthogonal to each other and join point
adaptation mechanisms can be analyzed with respect to all dimensions independently of
each other (see Figure 5-48).

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

constructiveness
constructive destructive

level of variabilitynon-variable

parametric

join point abstraction

fix

variable

Figure 5-48. Orthogonal design dimensions of join point adaptation.

Similar to the section 5.4.4.6 the design dimensions represent the underlying design
space for different kinds of join point adaptations. It is possible that an aspect-oriented
system provides language constructs for different kinds of adaptations where each one
is based on different design decisions. For example, AspectJ provides with introductions
and advice two different kinds of adaptations where each one is based on different
design decisions (introductions are structural adaptations while advice are behavioral
adaptations). In Hyper/J there are even more implementations of the design dimensions
due to its large number of composition rules.

166 5 - Design Dimensions of Aspect-Oriented Systems

A special attention should be paid to the orthogonal dimensions level of variability
and join point abstraction. From the first glimpse it looks like both dimensions describe
the same (or at least a similar) situation because both refer to a kind of parameterization
of join point adaptations. However, the difference is that while the level of variability
focuses on variable code specifications, the join point abstraction determines the
runtime context in which the adaptation is executed. The orthogonality of both
dimensions can be shown by examples of possible combinations. AspectS provides by
its advice a fix level of variability and also a fix join point abstraction. AspectJ provides
via pointcuts and advice a fix level of variability and a variable join point abstraction.
Sally is an example for a parametric system with a fixed join point abstraction. Sally-like
systems that also provide a kind of context exposure (for example, LogicAJ is such a
system, cf. [KRH04]) provide a parametric join point adaptation with a variable join
point abstraction.

It seems as if the level of variability does not change between different kinds of
adaptations in the same aspect-oriented system. With respect to AspectJ, it seems
natural that if someone constructs an AspectJ extension supporting parametric
adaptation the parametric adaptations are then provided for each kind of adaptation.
For example, the approach of LogicAJ [KRH04] is closely related to AspectJ and
provides a parametric adaptation within introductions as well as in advice.

Similar to the design dimensions of join point properties and join point addressing,
there are some combinations of design decisions that occur more often than other. For
example, behavioral join point adaptations with a non-variable level of variability
are provided by a large number of systems (like AspectJ, AspectS, Prose, etc.). Reasons
for this might be the probably rather easy way to implement such adaptations via simple
code transformations.

5.6 Weaving
Weaving describes the process of integrating aspects into the base application. However,
likewise to the previous section, there is a number of different interpretations of the
weaving process. While this thesis considers join points, join point selections, and join
point adaptations as concepts aspect-oriented systems are based on, weaving is rather
considered as an implementation detail. I.e. the semantics of the woven application
should be only determined by the base application, the join point model, the join point
selection, and the join point adaptation – and not by the way aspects are woven.

Nevertheless, for comparing different aspect-oriented systems it might be crucial in
some situations to know what weaving technique is used, and for implementing a new
system the decision of what kinds of weaving are to be provided has a large impact on
what techniques are being used (like for example building a new interpreter, a new
compiler, preprocessor, etc.).

It is observable that there are recurring ways of implementing weavers in aspect-
oriented systems. Hence, it is consequent to describe the different design alternatives
underlying weavers in the same way as for the other ingredients of aspect-oriented
systems – by corresponding design dimensions.

Originally, the term weaver and weaving was introduced in [KLM+97] which states
that a weaver accepts the component and aspect programs as input, and emits a (…) program as output.

5 - Design Dimensions of Aspect-Oriented Systems 167

This view on weaving is closely related to generative programming [CzEi00] where an
output program is generated from a number of input programs. However, [KLM+97]
also states that there are different alternatives to realize such an integration of aspects
into the base program: On the one hand weavers might work at runtime or at compile time. This
makes the view on weaving slightly inconsistent because it is not clear whether the
underlying idea of a weaver is for example a program generator that operates on the
application’s syntax or a metaobject protocol [KDRB91], which permits to adapt
metaobjects at runtime. In the same way it would be possible to regard a weaver as an
interpreter (see for example [StSu78] for an example discussing the construction of
interpreters).

However, even using the term weaving for describing the “process of integrating
aspects” is not clear: The term weaving is also used for example in [KCA04] to describe
the bytecode modifications at load-time in the programming language Java to provide an
infrastructure for adding aspects dynamically ([KCA04] speaks about load-time weaving for
injecting hooks that enable run-time weaving). In contrast to the original interpretation of the
term, this kind of load-time weaving neither affects an application’s behavior nor (or
hardly) does it affect an application’s structure in any way. So, this kind of weaving does
not integrate an aspect in the system. Instead, hooks are inserted in each method that
forward each message to another module (object or class), which decides what to do at
each point92. This permits to integrate aspects into the base system later on.

To handled even such techniques with a common definition of weaving, this thesis
proposes the following definition:

Weaving: Weaving is the process that creates a connection between the base
system and the aspect-oriented system.

This definition does not emphasize the integration of aspects; the integration of
concrete aspects into the base system might be either achieved by the weaver itself or by
an infrastructure, which the weaver connects with the base system.

5.6.1 Static and Dynamic Weaving

The first criterion for classifying weavers can be directly extracted from [KLM+97]: The
criterion of weave time. This criterion simply determines the point in time when a
weaver performs its work. According to [PGA02, PGA03] applying this criteria divides
aspect-oriented systems into two classes: Systems that perform dynamic weaving and
static weaving (the same terminology is used for example in [CBE+00, Rash02]).

Probably the most intuitive example of a dynamic weaver is a language that permits
to change metaobjects during runtime. An example of such a language is Smalltalk that
permits to change for example compiled methods which have an object-oriented
representation during runtime (see sections 2.4, especially 2.4.3). In such a situation the
programming language’s metaobject protocol is the weaver and weaving is the
replacement or configuration of metaobjects.

92 The mechanism for forwarding messages is an implementation of the message redirector design
pattern (cf. [Zdun01]). A similar approach can be found in the aspect moderator framework [CBE00].

168 5 - Design Dimensions of Aspect-Oriented Systems

A number of authors (like for example [Aßma03, CBE+00, PFFT02, Rash02])
consider static weaving and compile-time weaving to be equal. However, the problem
with this interpretation of the weaving process is that there are languages that either do
not have any compile-time (which is the case for most scripting languages).
Furthermore, languages like Java also provide an additional load-time which refers to
the time when elements from the application’s sources (or bytecode in the Java
example) are being loaded. On the one hand load-time seems to be closer to run-time
than to compile-time because the application is already running. From this point of view
adapted class loaders in Java like for example the Binary Component Adaptation
(BCA, [KeHo98]) would represent a kind of dynamic weaving. However, according to
the Java Language Specification ([JSGB00], p. 248), a once loaded class can only be
unloaded if a number of very restrictive conditions are fulfilled (see for example
[McBa98] for a more detailed discussion). As a consequence, load-time approaches
permit to modify a class when it is loaded; afterwards it is (hardly) possible to modify
the once loaded class. Hence, if load-time class transformations are applied as a
technique for implementing an aspect-oriented system upon a base system, the
infrastructure for integrating aspects can be added but not removed. From this point of
view, load-time bytecode transformation is rather a technique for static weaving because
the decision whether or not a class is adapted is a final one (even if decided at runtime)
and cannot be revised after the transformation is performed.

Based on the previous discussion, this thesis identifies the dynamicity of weaving
as a design dimension of weaver design and distinguishes between dynamic weaving
and static weaving.

Dynamic weaving: Dynamic weaving describes the ability of an aspect-oriented
system to create and remove the connection between the base system and the
aspect-oriented system at an application’s runtime.

Static weaving:. Static weaving describes every kind of weaving where the decision
whether or not to connect a particular part of the base system to the aspect-oriented
system is a final decision and cannot be revised afterwards.

The design dimension does not explicitly refer to load-time weaving. This is because
load-time is a term closely related to systems like Java and can hardly applied to other
programming languages. Furthermore, since load-time approaches have the
characteristic that a transformed class cannot be changed once more during runtime it is
reasonable to characterize such an approach as static weaving.

5.6.2 Code Instrumentation and Interpretation

Instead of distinguishing weaving in terms of its dynamicity, it is also possible to
distinguish systems with respect to the underlying technique that implements the
weaver. In general, there are two different approaches.

• A weaver can transform the base system’s code by inserting appropriate hooks
that execute aspect-specific code by inserting the aspect-specific structures
directly into the underlying code base. In fact, most of the current approaches
(like AspectJ, Hyper/J, AspectS, and Sally) perform such a code instrumentation.
One characteristic of such approaches is that the runtime environment of the
underlying base language does not need to be changed.

5 - Design Dimensions of Aspect-Oriented Systems 169

• Weaving can also be achieved by an interpreter that contains the functionality for
performing the connection to the aspect-oriented system. This can be done via a
new interpretation of the base application that implies the same semantics of the
non-adapted join points and that provides the corresponding semantics of the
adapted join points. One system performing a new interpretation of the base
code is for example Prose [PGA02].

From the implementation’s point of view both techniques are quite different. In the
first case a preprocessor is sufficient (or the transformation of some underlying
metaobjects in case a corresponding meta-object protocol is available). In the latter case
an adaptation of the runtime system is necessary. Consequently, this thesis identified the
level of adaptation as a design dimension of weavers and distinguished between code
instrumentation and code interpretation.

Code instrumentation: A weaver is based on code instrumentation if the
underlying code base is transformed to adapt join points. I.e. the way how the base
system is to be interpreted stays the same, but additional constructs written in the
same language as the base system establish a connection to the aspect-oriented
system.

Code interpretation: A weaver is based on code interpretation if weaving is
achieved by a new interpretation of the underlying code base, i.e. the weaver is an
interpreter that permits on the one hand to interpret the base system, but performs
the join point adaptation by a new interpretation of the corresponding join points.

One characteristic of weavers based on code instrumentation is that the finally
woven application has a different appearance than the original one – additional
statements or additional structural elements like classes or methods need to be added to
the base application, which are written in the same language as the base language. In the
presence of dynamic behavioral join points this code potentially includes join point
checks [HHU04] or join point residues [HiHu04] that determine for each adapted
join point shadow whether a selection criteria is fulfilled.

5.6.3 Dynamic Weaving: User-Driven and System-Driven Weaving

Dynamic weaving can be provided by different underlying techniques. First, dynamic
weaving could be a technique for improving a system’s performance: The intention of
morphing aspects is to adapt join points just at the moment when they are needed.
Consequently, the number of join point checks performed at runtime is less than in
comparison to a static weaver, since join point adaptations are performed just in time
(see Chapter 4). The intention of morphing aspects is to keep the same semantics of the
woven application than static weaving.

In contrast to that, AspectS also permits a completely different approach. Instead of
specifying the relationships between join points upfront it is possible that weaving is
performed by a user’s request. For example, instead of providing a persistency aspect
which stores all objects fulfilling certain criteria into a database, it is possible that the
system provides some interaction with the user which determines whether or not an
aspect should be woven – like a graphical user interface that explicitly permits users
annotate objects to be persistent.

170 5 - Design Dimensions of Aspect-Oriented Systems

Technically, both kinds of weaving are the same – both are performed just at
runtime. However, there is a conceptual difference: The first approach has already
specified all criteria under which an aspect is to be woven. The system needs to
determine whether or not a join point is reached that requires to adapt or release join
points. In the latter case the application leaves it up to the user of the system to
determine whether or not an aspect is to be woven: The join point selection is
conceptually performed (at least partly) by the application’s user. However, it is not
necessary that this kind of weaving is restricted to the selection of join points – possibly
the application also permits means to let the user specify how to adapt join points (like
letting the user choose what data storage is to be used).

Consequently, this thesis considers the weaving stimulus as a design dimension of
dynamic weaving and distinguished between user-driven and system-driven weaving.

User-driven weaver: A dynamic weaver is a user-driven weaver if the set of join
points that are to be adapted or the way of how join point are to be adapted is
explicitly determined be the user of the base application. I.e. some stimulus defined
by the application’s user is needed in order to determine the semantics of the
application.

System-driven weaver: A dynamic weaver is a system-driven weaver if the join
point selection and the join point adaptation is completely specified and not
influenced by user input.

The problem with user-driven weavers is that it is hard to study the implications of
join point selections. The point in time when weaving is performed is the result of a
stimulus provided by the application’s user. As long as the user does not provide such a
stimulus, weaving (and hence the join point adaptation) is not performed. Consequently,
the semantics of the application can hardly be determined because the semantics of the
application depends on the application’s user. Consequently, the user’s behavior
represents (at least partially) a selection criterion.

System-driven weavers on the other hand operate with a predefined set of join point
selection criteria and adaptation mechanisms. The application’s behavior is consequently
defined in terms of the underlying aspect specification.

5.6.4 Orthogonality of Design Dimensions

The design dimensions of dynamicity as well as the level of adaptation can be applied
independent of each other in order to distinguish weavers (see Figure 5-49).

A system might provide for example static weaving based on code instrumentation
(like AspectJ), while another one may provide dynamic weaving based on code
interpretation (like for example Prose). As a consequence, applying the design
dimensions permits to distinguish between four different kinds of systems.

However, while dimensions 1-3 seem to be reasonable implementations for weavers,
the combination of static weaving and code interpretation seems to be rather exotic. On
the one hand such a weaver would perform aspect-specific behavior at certain join
points within the runtime system. On the other hand such a weaver would not permit to
adapt new join points (or remove an adaptation) at runtime.

5 - Design Dimensions of Aspect-Oriented Systems 171

The reason why such an approach seems to be less reasonable is that evaluation rules
in interpreters typically do not differ for expressions of the same kind (like for example
method calls). Such a system would handle expressions of the same kind in different
ways: For example, only some method calls would be adapted while others are not. For
the developer, such a behavior would seem to be the rather unintuitive.

dynamic
weaving

static
weaving dy

na
m

ic
ity

level of adaptation

code
instrumentation

code
interpretation

1

2

3

4

Figure 5-49. Orthogonal design dimensions for weavers.

5.7 Dependencies between Join Point Model,
Selection, and Weaving

The relationships between the ingredients of an aspect-oriented system are conceptually
described by Figure 5-50. Each join point has a number of properties which are
addressed by join point selections. Join point selections indirectly select join points
(illustrated by a dashed line) by addressing join point properties. Join point adaptations
indirectly adapt join points (illustrated by a dashed line) because they refer to join point
selections. The weaver implements the adaptation by transforming join points or by
interpreting them in a different way.

According to the previous sections all elements of an aspect-oriented system are
based on certain design dimensions that are in most cases orthogonal.

It has already been noticed in section 5.3.3 that an aspect-oriented system’s concrete
join point model can rely on different abstract join point models – like for example a
system that provides static structural as well as dynamic behavioral join points. Each
join point itself provides a number of properties – whereby different properties can rely
on different design decisions with respect to the corresponding design dimensions. In
the same way, an aspect-oriented system can provide different constructs for addressing
join point properties – whereby different constructs possibly are based on different
design decisions. Possibly a system provides different mechanisms in order to adapt join
points whereby each mechanism is possibly based on different design decisions. And
finally, a system may provide different weavers whereby each one is based on different
design decisions.

However, until now it is not discussed whether there are any dependencies between
design decisions of different ingredients of an aspect-oriented system. It needs to be

172 5 - Design Dimensions of Aspect-Oriented Systems

discussed for example whether the underlying design decision of a certain join point
property has an impact on the underlying join point model.

Join Point

Property

describes

Selection
addresses

Adaptation

implements

Weaver

refers to

adapts

selects

has

1..n

1..n

1..n1..n

Figure 5-50. Relationships between Join Point, Join Point Property,
Join Point Selection, Join Point Adaptation and
Weaver.

A newly developed hypothetical aspect-oriented system can have the following
characteristics. First, the developer decides to provide a dynamic, incomplete and
behavioral join point model. For each concrete join point class the developer provides a
number of properties; some of them are static, direct, atomic, and local, others are
dynamic, direct, local, atomic and current meta-data properties. Each property can be
addressed in a lexical, closed, stand-alone, monolithic, and unrestricted way. Each join
point can be behaviorally, destructively, and non-variable adapted, and the weaving is
performed by a static code transformer. A Java-based aspect-oriented system, which
corresponds to this description, could provide method call join points identified by the
method name (static, direct, local, and atomic property) and the type of the called object
(dynamic, direct, local, atomic, and current meta-data property). Furthermore, the
developer decides to implement the weaver as a preprocessor (i.e. a static code
transformer). Obviously, such a system seems to be reasonable.

The exemplary system could be changed in some ways. First, the weaver could be
implemented as an interpreter instead of a code transformer. Instead of changing the
behavior of the application according to some aspect specification the weaver is just an
interpreter, which determines at every join point whether a corresponding aspect refers
to it. This design decision addressing the weaver does not touch the design decisions
addressing the other ingredients. Second, the system could be changed in a way that new
properties are to be provided – for example by providing the static types of each
method call’s parameters. Adding new parameters simply changes the data provided by
each join point – in this specific case the other design dimensions are not touched.

However, in case the system provides no dynamic properties at all, there are no
runtime specific characteristics that can be used in order to distinguish join points – all
method calls can only be selected because of the static types of their parameters and the
methods’ names. Consequently, all join points are only distinguishable by static
properties and the resulting join point model is a static one. Thus, a given concrete join
point class is based on a dynamic join point model if there is at least one dynamic

5 - Design Dimensions of Aspect-Oriented Systems 173

property available for the corresponding class – a concrete join point model directly
depends on the provided properties. In other words, the join point model is partly
restricted by the provided join point properties.

5.8 A Critial Discussion of the Term Design
Dimension

The main intention of the design dimensions is to describe different, orthogonal views
in the possible design decisions of aspect-oriented systems. From this perspective the
term design dimension seems to be reasonable to describe the approach in this chapter.

However, the term also might be understood in the wrong way. The term dimension
is also used for example in linear algebra in mathematics and seems to describe a similar
thing there.

Nevertheless, the term dimension in algebra and the term dimension being used here
differ noteworthy. First, not all constructs that are called dimensions in this chapter are
orthogonal to other design dimensions (an example is the locality of join point
properties as described in section 5.4.3.4 and the application’s progress as described in
5.4.3.7). Such non-orthogonal constructs are from a mathematical point of view a
contradiction with respect to the term dimension. Second, the described dimensions
have a finite number of possible values: For example, this thesis identifies two different
implementations of the dynamicity dimension (static and dynamic, see section 5.3.1).
This is also a contraction to the term dimension as used in algebra, where each
dimension has an infinite set of values.

Nevertheless, this thesis still considers the term design dimension to be appropriate
in order to communicate the underlying idea because of two reasons.

First, in [Wegn87] the same term is being used to describe different kinds of object-
oriented systems. Consequently, the use of the term within this thesis can be considered
an adaptation of the term from the object-oriented world.

Second, the term design dimension seems to be a valid metaphor for describing the
approach. Instead of relying on exact definitions of the term, it is rather considered to
be a metaphor that suggests the right meaning and which still requires an appropriate
interpretation by the reader. Although the use of metaphors in software technologies
seems to be in contradiction with an often cited goal of accuracy and determinism, this
thesis agrees with approaches as described for example in [Beck02] that consider the use
of metaphors in software construction as a valuable contribution in order to
communicate concepts and ideas.

5.9 Chapter Summary and Conclusion
This chapter proposed the main contribution of this thesis – the design dimensions of
aspect-oriented system. Thereto it identified in section 5.2 the core ingredients of
aspect-oriented system – the join point model, the join point selection, the join point
adaptation and the weaving – and proposed a number of design dimensions for each
ingredient in the following sections. The main motivation for such an analysis of design

174 5 - Design Dimensions of Aspect-Oriented Systems

decisions underlying different aspect-oriented approaches is the observation that there
are a number of differences between systems which are commonly accepted to be called
aspect-oriented. Such differences have a large impact on the way of how aspect-oriented
system can be understood and how they can be applied. On the one hand the
underlying terminology of different systems differs, on the other hand the underlying
means to select and adapt join points differs. For the developer of new systems this
situation is problematic because the alternatives in providing an aspect-oriented system
for a given base language are not directly obvious and need to be derived by analyzing
existing systems.

In detail, this chapter introduced the following design dimensions for join point
models, join point properties, property addressing, join point adaptations, and weavers.

• Join Point Models:

Dynamicity (section 5.3.1) – that distinguishes between static and dynamic join
points, Level of Abstraction (section 5.3.2) – that distinguishes between
structural and behavioral join points, and Completeness (section 5.3.5)– that
distinguishes between incomplete and complete join point models.

• Join Point Properties:

Dynamicity (section 5.4.3.1) – that distinguishes between static and dynamic
properties, Directness of Property Correspondence (section 5.4.3.2) – that
distinguishes between direct and abstract property correspondence,
Structuredness (section 5.4.3.3) – that distinguishes between atomic and
structured properties, Locality (section 5.4.3.4) – that distinguishes between local
and non-local properties, Identity (section 5.4.3.5) – that distinguishes between
identity and non-identity properties, Data Representation (section 5.4.3.6) –
that distinguishes between data and metadata properties, and Application’s
Progress (section 5.4.3.7) – that distinguishes between current, past and future
data properties.

• Join Point Property Addressing:

Directness (section 5.4.4.1) – that distinguishes between lexical and indirect
value addressing, Openness (section 5.4.4.2) – that distinguishes between closed
and open value addressing , Level of Value Sharing (section 5.4.4.3) – that
distinguishes between stand-alone and shared property addressing, Adjustability
(section 5.4.4.4) – that distinguishes between incremental and monolithic join
point selections, and Scope (section 5.4.4.5) – that distinguishes between
unrestricted and restricted join point selections.

• Join Point Adaptation:

Level of Adaptation (section 5.5.1) – that distinguishes between structural and
behavioral adaptation, Constructiveness (section 5.5.2) – that distinguishes
between constructive and destructive adaptations, Variability (section 5.5.3) –
that distinguishes between non-variable and parametric adaptations, and Level of
Join Point Abstraction (section 5.5.4) – that distinguishes between fix and
variable join point abstraction.

• Weavers:

5 - Design Dimensions of Aspect-Oriented Systems 175

Dynamicity (section 5.6.1) – that distinguishes between static and dynamic
weaving, Level of Adaptation (section 5.6.2) – that distinguishes between code
instrumentation and code interpretation, and Weaving Stimulus (section 5.6.3)
– that distinguishes between user-driven weaver and system-driven weaver.

The design dimensions were on the one hand extracted based on a study of parallels
and differences in the current aspect-oriented literature and on the other hand based on
a comparison of parallels and differences between different aspect-oriented systems.
They represent a common conceptual framework for aspect-oriented systems. On the
one hand they provide a conceptual framework to understand such systems in terms of
join point models, join point selections, join point adaptations, and weavers. On the
other hand they provide distinguishing characteristics on a lower technical level which
can be used in order to compare different systems or to build up new systems. For
example, a system can be analyzed with respect to whether it provides the ability to
address properties in an indirect way. Also, such a system can be analyzed in respect to
whether code instrumentation is the underlying technique for achieving the connection
between the aspect-oriented system and the base system.

Based on the identified core ingredients of aspect-oriented systems as (section 5.2), it
is possible to express the characteristics of aspect-oriented systems by means of an
equation similar to the way the term object-oriented was expressed in [Wegn87]93:

Aspect-Oriented = Base System + Join Points
 + Join Point Selection + Join Point Adaptation

Although this (non-formal) equation rather communicates the core ingredients of

aspect-oriented systems on an abstract level, it describes the characteristics of aspect-
orientation on a finer-grained level than the nowadays used terms quantification and
obliviousness. If a finer-grained study of a certain system is needed, the systems
ingredients can be mapped to the proposed design dimensions.

The design dimensions are on different levels of abstractions and address different
problem domains. For example, the design dimensions of join point models are very
high-level abstractions for the (concrete) join point model underlying aspect-oriented
systems. This abstraction provides a very generic overview of aspect-oriented systems
and abstracts from a number of essential elements – the way of what information is
available in order to select a join point and adapt join points. The design dimensions of
join point properties are quite technical and represent rather a low-level abstraction
because the analysis of what design dimensions are applied needs to be studied for each
property independently of each other.

The design dimensions represent a common basis that can be used in order to
understand and compare aspect-oriented systems. Furthermore, the design dimensions
can be used to assess aspect-oriented systems with respect to their appropriateness to
modularize a given crosscutting concern.

93 In [Wegn87] the term object-oriented is characterized by the equation object-oriented = objects + classes +
inheritance.

176 5 - Design Dimensions of Aspect-Oriented Systems

6

IMPLEMENTATIONS OF DESIGN
DIMENSIONS

6.1 Introduction
The previous chapter described design dimensions for the different ingredients of aspect-
oriented systems. In order to show that the design dimensions represent a reasonable
framework for aspect-oriented systems, this chapter applies them to a number of systems.
Furthermore, this chapter contributes to the discussion of the aspect-orientedness of
roles by explaining the role concept in terms of the design dimensions.

Section 6.2 first discusses briefly different alternatives of aspect-oriented systems in
order to implement certain design dimensions. Sections 6.3 – AspectJ, 6.4 – Hyper/J,
6.5 – AspectS, 6.6 – Sally, and 6.7 – Morphing Aspects map the aspect-oriented systems
introduced in Chapters 2 to 4 to the design dimensions introduced in Chapter 5. Such
mapping requires a detailed study of all features of the corresponding system. Especially
all properties provided by the corresponding system (which are typically a lot) need to
be analyzed with respect to how they implement the corresponding design dimension.

 Section 6.8 maps the role concept (as introduced in [KrØs96, Kris96]) to the design
dimensions. Section 6.9 summarizes and concludes this chapter.

6.2 Variabilities in Implementations
The design dimensions leave open a large number of different ways how they can be
implemented by aspect-oriented systems. First, developers of an aspect-oriented systems
can choose based on their join point model which kind of encoding they want to
provide, i.e. which properties should be available as distinguishing characteristics for
each join point. Each provided property might be based on different implementations
of different design dimensions. Next, for the join points a number of language
constructs that address the corresponding properties are required. Then, constructs
need to be found that define how to adapt the join points. Finally, a technical solution
for the weaver is required.

6 - Implementations of Design Dimensions 178

6.2.1 Join Point Model

The abstract as well as the concrete join point model depend on the one hand on the
design decisions of the system’s developer. On the other hand this also depends on the
base language underlying the aspect-oriented system.

When a system is developed, the developer has to determine what structural elements
as well as what behavioral elements should represent join points: The language
constructs provided by a certain programming language implicitly define the possible
kinds of join points. In principle, the easiest decision is simply to provide a complete
join point model (see section 5.3.5). However, the consequence of such a decision is
that the aspect-oriented system also needs to provide corresponding properties and
addressing mechanisms for all join points. Furthermore, developers need to provide
corresponding adaptation constructs for each kind of join point. Because of this effort,
it is currently rather not the case to provide complete join point models.

In addition to the structural and behavioral elements the developer also has to
determine whether the system should provide static or dynamic join points. In general,
the effort of providing static join points seems (from the current perspective) easier
because adaptation of static join points (based on a code transforming weaver) does not
require to generate corresponding join point checks (see Chapter 4 as well as section
5.3.1 for a detailed discussion on join point checks and shadow join points).

In general, the set of potentially provided kinds of join points differs from
programming language to programming language due to the different abstraction being
provided by each one. For example, templates are quite typical constructs in C++ that
do not have direct correspondences in languages like Smalltalk or Java. Consequently,
template definitions are potential static structural join points in C++ whereby no
corresponding kind of join point exists in Java or Smalltalk. Java provides declared
exceptions within method headers that also potentially represent join points (which are
not available in C++ or Smalltalk). In Smalltalk blocks are potential join points (which
are not available in Java or C++).

Nevertheless, it seems from the current perspective that at least method definitions
in object-oriented systems should represent (structural) join points (since all known
aspect-oriented systems provide such join points). Consequently, the decision whether
methods are to be provided as join points does not seem to be design alternative for
aspect-oriented systems.

6.2.2 Join Point Properties and Join Point Addressing

With respect to join point properties as well as join point addressing, there is a large
variety of possibilities how they can be implemented.

With respect to join point properties developers face two situations (see also section
5.4.3). First, the set of possible available join point properties depend on the underlying
programming language. Second, even for the same programming language different
developers can provide for the same kind of join point different properties: Properties
which are common with respect to their design dimensions do not necessarily represent
the same information for each join point. For example, a property in a Java-based
aspect-oriented system representing the number of parameters of a (static) method
declaration join point is a static, local, atomic property with an abstract

179 6 - Implementations of Design Dimensions

correspondence. In comparison to this a property that describes the number of
declared exceptions for a method definition join point is also a static, local, atomic
property with an abstract correspondence. Although both properties have the same
characteristics and also refer to the same join point (and both are provided in aspect-
oriented systems based on the same programming language), both properties obviously
describe two completely different things. Hence, the selection of the corresponding join
point based on the one property will be useful for developers in other circumstances
than the selection of the join point based on the other property.

In general, it is up to developer to find a number of properties that seem to be useful
for the developer. Furthermore, it seems desirable to provide not too many properties:
The more properties are available the more complex becomes the resulting language.
Furthermore, it seems clear that the provision of dynamic properties coming from the
applications past require a larger overhead for the implementation that simply providing
current data properties because the system needs to maintain a number of different
runtime information in order to provide corresponding join point properties.

With respect to the language constructs to address join point properties the
developer has even more freedom. While lexical and closed value specification as well
as stand-alone value specification hardly leaves any freedom for the developer, there
are many different ways how indirect value specifications, open value specifications
and, shared value specifications can be implemented.

Indirect value specification just means that there are language constructs for
addressing a value of a property without specifying it lexically. However, it is up to the
developer to decide what values potentially can be indirectly specified and how. For
example, a type might be selected because of its position in the inheritance hierarchy
(like implemented in AspectJ), but maybe also because of its structure (i.e. for example
selecting a type because of the types it refers to). Hence, the developer may decide to
provide an indirect value specification that reasons on part-of relationships between
different types.

With respect to the open of values specifications there are many different
possibilities. Developers may want to provide open value specifications only for certain
kinds of join points or for certain properties. For open value specifications developers
may want to provide regular expressions or even context-free grammars, etc.

Shared value specifications give developers the freedom to choose among a large
number of possible implementations. One possibility is to implement join operations
like known from the relational databases like natural joins or outer joins ([Codd70]).
Another alternative is to provide a Turing complete language that shares variables
among selection expressions.

However, typically the design decisions for aspect-oriented systems with respect to
the encoding and the value addressing are not independent of each other in a way that
the developer first decides what kind of encoding and then what kind of selection he
wants to provide. There are situations where it is possible to disclaim a certain feature
on the encoding level and instead providing an additional feature on the addressing level
(cf. for example the discussion in section 5.4.5). From the user of the aspect-oriented
system’s perspective the result could be the same. For example, if the developer of the
system wants to give users the ability to select join points in a more sophisticated way.
Selecting a static method definition join point because of the number of parameters in

6 - Implementations of Design Dimensions 180

the method’s signature can be achieved by providing additional properties, or additional
addressing constructs, or both.

Incremental adjustability of join point selections also permits a large variety of
different implementations. Probably the best-known approach is to provide an
inheritance-like mechanism in order to share join point selections among different
modules (such an approach is provided for example by AspectJ or Sally). Another
alternative is to provide variables within join point selections that can be set by
developers in analogy to the template instantiation in languages like C++.

6.2.3 Join Point Adaptation

Similar to the previous section, the design dimensions for join point adaptations give a
general framework for the design of adaptations, but aspect-oriented system developers
still have much freedom to provide a corresponding implementation.

With respect to structural or behavioral adaptation the design dimensions do not
prescribe what kind of (structural of behavioral) adaptation should be applied. One
language construct for performing structural adaptations could for example add
additional superclasses or interfaces to a class definition (or to an object if the
corresponding join points are dynamic and structural). Another construct may add
exception declarations or additional parameters to a method definition. What kinds of
join point adaptations are possible also depends on the underlying programming
language. For example, in languages like Java that provide explicitly declared exceptions
within method headers, the addition of such exceptions to static method definition join
points seem to be a reasonable join point adaptation. Of course, such an adaptation is
not reasonable in programming languages like Smalltalk or C++ that do not provide
declared exceptions.

Also, the design dimensions of join point adaptation refer only to adaptation
constructs for a given kind of join point. For example, developers might decide to
provide a variable join point abstraction only for behavioral adaptations of behavioral
join points, while having a fix adaptation for structural join points94.

For parametric join point adaptations developers possibly decide to provide only
certain kinds of parameters within the introduction. One possibility is (in
correspondence to class templates in C++) only to provide types as variables within join
point adaptations. Another possibility is (according to Sally) to provide any identifier or
parameter list as a parameter.

In general, although the abstract join point model might be already determined there
is still a large variety of how each kind of join point can be adapted.

6.2.4 Weaving

Weaving is probably the most complicated task in aspect-oriented systems, because the
weaver provides the connection between base system and the aspect-oriented system.

94 This corresponds for example to the implementation of join point adaptation in AspectJ, which will be
discussed in section 6.3.3.

181 6 - Implementations of Design Dimensions

If the weaver performs code instrumentation and the underlying join point model
is a dynamic one, the weaver must (when weaving is performed) determine and adapt all
locations where potentially or for sure aspect-specific code needs to be executed (see
further Chapter 4 as well as [HiHu04]).

Obviously, building a weaver based on code instrumentation in combination with a
dynamic join point model is quite a complex task. The effort of building a weaver
making use of a dynamic join point model and which is based on code interpretation
can be substantially less complex than the one build upon code instrumentation. For
example, [BHMO04] argue that the creation of a weaver by extending an open source
java runtime system just took about 2000 lines of code (including an additional API).

If the join point model is a static one and all join point properties are local ones the
resulting weaver is much more trivial since the join points can be directly determined by
reasoning on the application’s syntax and do not consider the base program’s semantics.
In such a situation, weaving can be easily achieved by performing pure syntactic
transformations on the source code where the weaver has to guarantee that the resulting
woven application is valid.

There are technical reasons for or against a certain kind of weaver. Possible reasons
against the implementation of a new interpreter could be (depending on the underlying
language) that some characteristics of the original base system (like for example
platform independence, performance, etc.) do not hold any longer if a new interpreter is
provided. In situations where such characteristics are needed it is rather desirable to
have an aspect-oriented system build on code instrumentation.

Systems that provide dynamic weaving need at least some mechanism to enforce
weaving. I.e. some API is necessary to permit developers to start the weaving process.
For example, in AspectS weaving is achieved by sending messages. On the other hand,
dynamic weaving could be also achieved by a corresponding access to a running system
where the system itself does not permit to enforce the weaving process, but which
requires developers to enforce weaving by using some external tools95.

6.3 AspectJ
A number of elements of the design dimensions were motivated and explained in terms
of AspectJ. Especially a number of different kinds of join point properties and join
point addressing are provided by AspectJ due to its rich join point selection language96.
In the following the aspect-oriented language constructs of AspectJ are explained in
terms of the design dimensions as introduced in Chapter 5: Join point model, selection,
adaptation, and weaving are described in separate subsections.

95 Such external tools would have some similarities to deployment tools known from for example
Enterprise JavaBeans where administrators are permitted to deploy additional Enterprise Beans.

96 The phrase rich pointcut language was used in [RaSu03] in order to explain that AspectJ’s pointcut
language differs noteworthy from join point selections like e.g. in Hyper/J.

6 - Implementations of Design Dimensions 182

6.3.1 Abstract Join Point Model

AspectJ provides two different kinds of join point adaptations namely introductions (or
inter-type declarations) and advice which both permit to adapt different kinds of join
points.

On the one hand AspectJ permits to select and adapt types (classes as well as
interfaces) using introductions. Classes and interfaces represent static and structural
join points. Java also provides as structural elements also anonymous classes, i.e. classes
that do not have a name. They cannot be selected and adapted via introductions. Hence,
AspectJ is with respect to static and structural join points incomplete.

On the other hand, AspectJ permits to select class and object initialization, method
and constructor executions, method invocations, field accesses and assignments, and
caught exceptions. These entire join points can be selected because of dynamic
properties like the actual type of the currently involved object. Consequently, all of these
join points are dynamic. Method calls, field assignments and accesses, as well as
exception handlers are all encapsulated in structural elements and represent the
application’s behavior – hence they are dynamic and behavioral join points. Method
execution join points directly refer to methods but can be furthermore restricted by
additional runtime conditions. Hence, they represent structural and dynamic join
points.

A number of expressions like typecasts or operators cannot be selected and adapted.
Consequently, AspectJ is incomplete with respect to dynamic and behavioral join
points. With respect to structural and dynamic join points AspectJ is also incomplete –
AspectJ does no permit for example to express object-relationships within its pointcut
language.

dynamic

static dy
na

m
ic

ity

level of abstraction
behavioral structuralincomplete

method call,
initialization, field

access / assignment
exception handling

method
execution

type

Figure 6-1. Abstract join point model.

Figure 6-1 illustrates the join point model underlying AspectJ in terms of the design
dimensions. The entries within the design dimensions correspond to the different kinds
of join points that AspectJ provides.

6.3.2 Join Point Properties and Property Addressing

Due to the different kinds of join points (static and dynamic join points adaptable via
introductions and advice) AspectJ provides a different number of join point properties
and different ways of how such properties can be addressed.

183 6 - Implementations of Design Dimensions

This section is structured as follows. First, the properties of static join points are
described in terms of the design dimensions. Then the means to address such properties
are explained. Afterwards, the properties of dynamic join points are described in terms
of the design dimensions. Finally, the means to address such properties are explained in
terms of the design dimensions.

6.3.2.1 Properties of static join points

Type join points that are used via introductions are encoded with a corresponding
typename property – which is the only property of type declaration join points. This
property represents the type via its name. The type name property is a static property
since it can be directly derived from the base system’s sources. Since the type name
directly appears in the application the property’s value has a direct correspondence.
The structuredness of a typename property is not that obvious. In Java, the name of a
type is structured – since a type name consists of a package name and a type identifier
(in case of inner types the type name furthermore consists of the outer types’ names).
However, this structure is simply a chain of characters – the structure corresponds to
the interpretation of such characters. Furthermore, it is not possible to deduce from a
type’s name whether or not it is an inner-type. On the other hand, all types that
correspond to the same package have the same prefix.

Hence, the type name property is a structured property. Since type names can be
directly derived from the position in the source code where they are declared, the type
name property is local97. Furthermore, since full qualified type names are unique in Java,
the type name property also represents an identity property.

6.3.2.2 Addressing properties of static join points

The type name property is being used within an introduction specification. However,
AspectJ distinguishes between member and parent introductions. Parent introductions
are specified by declaring any arbitrary type pattern. Member introductions are specified
by declaring one single type name. Consequently, both kinds of introductions have a
separate way of selecting join points.

Member introductions require to address the target type via its name. It is not
possible to abstract from the type name using for example the wildcard *. Hence,
member introductions refer to a type property via a lexical, closed, and stand-alone
addressing. The selection is unrestricted since within an introduction any arbitrary type
can be chosen (i.e. it is not restricted to a certain set of types).

Parent introductions refer to a type property via a lexical as well as an indirect
addressing – lexical since the type name can be specified, indirect since the operators +,
&&, ||, !, and * can be used in order to address the property’s value with respect to
certain type relationships. The join point selection is due to the possible use of the
previous mentioned operators open. For example, a type pattern (A+ && B+) selects
all types which are subtypes of A as well as subtypes of B. This is an open selection since
in future versions of the system new types might appear that extend A as well as B. For

97 Not that in the presence of generic types the property representing an instantiated generic type does not
fulfill such properties. However, such a feature does not (yet) exist in the AspectJ versions underlying
this thesis.

6 - Implementations of Design Dimensions 184

the same reason as argued in the previous paragraph the selection is stand-alone as well
as unrestricted.

With respect to its adjustability introductions are slightly problematic. In principle, it
is not possible to refine a join point selection – a once specified selection criterion
cannot be overridden or redefined. However, it is possible to select a type for an
introduction that is later introduced to a different type – this usage of introduction
represents the foundation of the container introduction idiom [HSU03]. The underlying
idea is that the selection is specified in terms of an aspect-specific type, which is later on
introduced to a number of different types using a parent introduction. Consequently,
type patterns used within introductions are considered to be a restricted kind of
incremental adjustability98.

6.3.2.3 Properties of dynamic join points

The different kinds of dynamic join points have some properties in common and differ
with respect to other properties.

In general, AspectJ provides four kinds of properties. The first three are:

• Properties describing types or type lists (within, this, target, args, as
well as return types, and formal parameter types in call, execution, and
withincode),

• Properties describing method names (as part of call, execution, and
withincode),

• Properties describing objects (this, target and args)99.

All of these properties are addressed in a similar way but they differ with respect to
the design dimensions these properties are based on. The fourth kinds of property
significantly differs from the other three, because no object or message but the control
flow is encoded:

• The control flow property (cflow) describes the call stack join point occur in.

All dynamic join points have a within property which represents the class or the
aspect containing the corresponding join point shadow. This property is quite similar to
the type name property mentioned in the section 6.3.2.1 – it represents a static,
structured property with a direct correspondence. However, the property differs
with respect to the identity as well as with respect to its locality. The dynamic join points
which are encoded by this property are for example method calls or field accesses – they
are not uniquely represented by the corresponding type name because a class possibly
contains more than one field access. Consequently, the within property itself is no
identity property. For structural dynamic join points like method executions the
within property becomes part of the join point identity. With respect to the locality
the property represent a local property: A class definition is a module that lexically
contains its join point shadows.

98 It is restricted, because the developer has to preplan such an incremental adjustability by performing an
introduction on an interface.

99 Note that this, target, as well as args describe objects as well as actual types (cf. section 2.2).

185 6 - Implementations of Design Dimensions

The property this represents the object where a certain join point occurs in.
Hence, the property is a dynamic one. The object is directly available at the
corresponding join point. Hence, the property is local and has a direct
correspondence. The property itself is no identity property since the actual type
abstracts over the join point shadow. Furthermore, this property is a current property
since no data from the past or the future is being represented. Whether the property is a
data or a meta-data cannot clearly answered: The problem is that the property is being
addressed by a type name. From this perspective it is a metadata property. On the other
hand, the corresponding object can be passed to an advice – from this perspective the
property is a data property. Since the data available at each join point can be accessed
via thisJoinPoint within an advice, and requesting the this property returns the
current object, the property is a data property. Nevertheless, the data cannot be
addressed using selection constructs. Consequently, the conceptual data provided for
the purpose of being selected is a meta-data property (the runtime type), while the
data-property (the current object) serves different purposes (to be used within the
advice)100.

The property target represents the target object of a method call. The
characteristics of this property are equal to the characteristics of this: It is a dynamic,
local, current, structured, meta-data property representing no identity and has a
direct correspondence.

The args property represents a list of actual parameters at a method call (or
method execution) join point. The property corresponds with respect to the design
dimensions to this and target – the property is dynamic, local, current, meta-
data representing no identity and has a direct correspondence.

The signatures being used within call, execution, and withincode differ
with respect to how they are derived from the base application. Call and
execution describe the signatures of the methods being invoked or being executed,
while withincode describes the signature of the method containing the
corresponding join point. The signature itself is structured and consists of the return
type, the declaring type, the method name and the parameter types declared in the
corresponding method – consequently according to the discussion in section 5.4.3.3 all
ingredients can be considered as properties on their own.

For execution join points the current return type property, the declaring type
property, the method name property and the parameter types property are all static
properties. All of them have a direct correspondence in the source code since
method names and types are explicitly declared in Java. All properties are furthermore
local. The method name is unstructured, the return type, declaring type, as well the
parameter types are structured. Nevertheless, the structures differ – while the return
type and declaring type is structured according to the package/type/inner type-
relationship as describe above for the within property, the parameter types represent
a list of types. Each type occurring in this list is itself structured in the same way as the
return type. For execution join points the whole signature itself represents a shadow

100 However, although only the type name can be addressed using the pointcut language the development
effort is the same as providing the data property: The object needs to be stored within the
thisJoinPoint object reflecting the current join point.

6 - Implementations of Design Dimensions 186

identity – since due to the semantics of Java it is prohibited to declare two methods
within the same type with the same signature.

The signatures for call join points are similar in many points but differ in others
significantly from the signatures of execution join points. The parallels are, that return
types, declaring type, method name and parameter types are static properties with a
direct correspondence and all except the method name are structured. However, the
properties differ in their locality. The method name is obviously local (since a method
name can be directly found in the sources at the corresponding locus). But in order to
determine the types of the called method a number of typing relationships need to be
known. The static type of the called object needs to be computed, the static types of the
parameters need to be computed and the corresponding method in the target type has
to be chosen according to the dispatch mechanism in Java. Although typing information
can be derived from the syntax of the whole application it cannot be derived from the
local syntax information available at the join point101. Consequently, the join point
property is non-local.

The signature described by the withincode property consists of the same value as
the within property as described above as well as the signature of the method where
the corresponding join point occurs in. The signatures described in withincode and
execution correspond to each other (since both unambiguously describe the
corresponding join point shadow) – consequently the characteristics of the properties
are the same. The only exception is the identity property. While withincode
describes the shadow identity for the execution join points, it does no describe such an
identity (non-identity) for method call join points since a number of method calls can
occur within the same method.

The cflow property conceptually represents the “join point stack” where a certain
join point occurs in. On the implementation level the cflow construct is (probably due
to performance reasons) only a small extract from the call stack the developer can refer
to. All elements on the stack conceptually consist of join points – the elements can be
accessed with a subset of the selection language (for example the if-construct is
prohibited). From this point of view, the cflow property can be understood as a list of
join points expressing the current control flow. Consequently, the property is dynamic
and structured. The elements in the list themselves are furthermore structured (since all
join points have a number of structured properties). Since call-stack information is not
directly available, the property is abstract. Since in Java the developer does not have any
access to objects on the call stack, the cflow property reveals information that is not
available in the ordinary execution context. Consequently, the cflow property
represents a non-local property (see also the discussion in section 5.4.3.4). The
information available via the cflow property is not sufficient to determine the current
shadow’s identity. Consequently, cflow is a non-identity property. Since the cflow
contains elements that are themselves meta-data properties, the cflow itself is a meta-
data property. According to the discussion in section 5.4.3.7 the cflow property is
considered as a past property.

101 Note that the distinction between source code and byte code becomes important here: The Java byte
code contains already static typing information which are constructed at compile-time.

187 6 - Implementations of Design Dimensions

6.3.2.4 Addressing dynamic join point properties

In AspectJ the different kinds of properties are addressed in different ways – depending
on whether the property is a type, object or a list of both, a method name, or the
cflow construct. Furthermore, AspectJ provides the if-pointcut designator which is
discussed afterwards.

Properties representing types can be addressed corresponding to the type selection of
parent introductions (see section 6.3.2.2) – they can be addressed in a lexical, indirect,
closed and open, stand alone, and unrestricted way. The properties that represent
objects (this, target) are addressed in a similar way – open, stand-alone, and
unrestricted. However, with respect to the directness of the addressing the
implementation it is not obvious how the underlying dimension is implemented: Such
properties are addressed either due to lexical characteristics of the object’s dynamic
types or due to an indirect addressing that refers to type relationships. Since the
corresponding pointcuts permit to address a type by specifying the type’s name in
addition to combining the lexical specification with the operators *, &, ||, and +, the
corresponding addressing is lexical as well as indirect.

The structured property referring to type and object lists (the parameter type list in
signatures as well as the actual parameter list in args) can be addressed according to
the type properties – lexical and indirect, closed and open, stand alone, and
unrestricted.

The cflow property is addressed by addressing properties of join points that occur
within the control flow. Consequently, all parts of the cflow property are addressed
corresponding to the previous discussion.

aspect MyAspect {

 public static boolean euqualObjects(Object o1, Object o2) {
 return o1 == o2;
 }

 pointcut pc(Object o1, Object o2):
 this(o1) && target(o2) && call(* *.*(..)) && if(euqualObjects(o1, o2));

 ….
}

Figure 6-2. Shared value specification in AspectJ.

A special kind of property addressing is the if-pointcut. Since all bounded objects
within a pointcut specification can be passed to a method via the if-pointcut (but not
the join point itself) the whole computational power of Java (including its reflective
capabilities) can be used in order to specify selection criteria on these objects.
Correspondingly, all object-properties encoded by this, target and args can be
addressed additionally in a shared way – by specifying corresponding comparisons
within the corresponding method. Such a shared value specification is illustrated in
Figure 6-2: The join points are only selected in case objects o1 and o2 are identical.
However, it should be noted that this join point selection is not achieved using the
pointcut language. Instead, the base language is being used in order to determine the
selection. Consequently, this value sharing is not part of AspectJ’s pointcut language.

6 - Implementations of Design Dimensions 188

6.3.3 Join Point Adaptation

The two ways of adapting join points in AspectJ are introductions (or intertype
declarations) and advices that need to be discussed separately.

6.3.3.1 Introductions

Conceptually, introductions are structural join point adaptations because they add fields
or interfaces to existing types. However, introductions can also be behavior adaptations
because of some (accidental) introduced members. From this thesis’ point of view the
behavioral adaptation performed by introductions is not considered as the conceptual
focus of introductions but rather an accidental characteristic. Hence, introductions are
considered to be pure structural adaptations.

Introductions are constructive in the sense that the type is extended by additional
constructs. With respect to the variability introductions are fix – the code being
executed cannot contain any variables. However, it needs to be pointed out that (of
course) the executed code does not need to behave equal due to late binding in Java.
Nevertheless, it is not possible to have any variables like types or method calls within
introductions.

The join point’s abstraction is also fix: The context of the introduced elements is
determined by the selected join point. It is not possible to extend or reduce the context
using the selection language used for introductions (type patterns). For member
introductions the special variable this refers to the selected type, i.e. the context
always corresponds to the target type.

6.3.3.2 Advice

The advice construct is a behavioral adaptation. AspectJ implements the weaver as a
code transformer that generates new methods and relationships in order to weave in
advice. Consequently, the structure is transformed. However, from the developer’s
perspective, this structural change is not relevant and the generated items are not
directly accessible102.

AspectJ provides three different kinds of advice – before, after, and around advice.
The first two kinds are conceptually pure constructive adaptations: The original join
point becomes executed. Of course, before and after advice can change the semantics of
the executed join point – before advice by changing the join point’s parameters, after
advice by changing the returned value. But as pointed out in section 5.5.2, this does not
contradict the intention of constructive adaptations. Furthermore, both kinds of advice
possibly throw runtime exceptions and may change the control flow in that way. In the
first case the original join point is not executed, in the latter case the control flow traces
back the call stack to the first try-catch construct. Although in such situation the join
point significantly changes, before and after advice are considered as being constructive
adaptations. The around advice permits the developer to decide based on some runtime
data whether the original join point is to be executed using proceed. Consequently,
around advices without any occurrence of proceed are destructive adaptations, around

102 Only in case the underlying application uses the introspective capabilities of Java, the resulting woven
code is visible for the developer. Nevertheless, the intention of advice is not to rely on such structural
changes.

189 6 - Implementations of Design Dimensions

advices containing a proceed are conditional constructive join point adaptations.
Likewise introductions, an advice is fix with respect to its level variability. With respect
to the join point abstraction, advice provide variable join point abstractions because
the parameters passed to the advice depend on the underlying join point selection:
Additional parameters coming from the control flow can be passed to the advice and
which are not directly available at the corresponding join point. Furthermore, the
context can be restricted by for example passing only few elements from the original
join point context to the advice (for example only some actual parameters of method
executions instead of all).

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

join point abstraction
fix variable

introduction

advice

no variability, constructive
(around = conditional constructive)

Figure 6-3. Design dimensions of join point adaptation in AspectJ.

Figure 6-3 illustrates the design decisions of AspectJ’s join point adaptations
according to the underlying design dimensions (whereby the design dimensions of
variability and constructiveness are not illustrated due to the discussion above).

6.3.4 Weaving

Weaving in AspectJ is realized in previous versions at compile time on the source code
level – the AspectJ compiler computes from the join point selection those shadows
whose dynamic join points are potentially adapted. The compiler adds some runtime
checks to such join points (cf. [HiHu04]) and inserts appropriate invocations according
the join point adaptation. The developer is not able to change the woven code at
runtime. In newer versions of AspectJ, the join point selection and adaptation is
performed in a compilation-like process that is also executed before runtime. From the
design dimension’s perspective the distinction between byte code adaptation and source
code adaptation is not important: The AspectJ weaver is a static weaver based on code
instrumentation.

6.4 Hyper/J
This section explains the aspect-oriented constructs of Hyper/J (see section 2.3) in
terms of the design dimensions as introduced in Chapter 5. Join point model, selection,
adaptation and weaving are described in separate subsections.

6 - Implementations of Design Dimensions 190

6.4.1 Abstract Join Point Model

Hyper/J provides a number of different composition rules for composing classes like
merge and override for composing methods. Furthermore, bracket relationships are
provided in order to add additional code to method calls.

The means of composing classes in Hyper/J permit to select a number of classes that
composition rules are applied to. Since classes correspond to the static structure, they
are static and structural join points. In the same way, methods (or operations in the
Hyper/J terminology) are selected and adapted with additional functional code. Since
methods represent elements from the static structure, they are also static and structural
join points.

Method calls on the other hand are selected depending on the class they are located
in, on the static target type of the call, and on the called method’s name. No dynamic
elements are being used in order to select such method calls. Hence, method calls in
Hyper/J are also static join points. Since such method call join points are encapsulated
within structural elements (the method definitions), they represent static and
behavioral join points.

In Hyper/J method calls are the only behavioral join points - casts, supercalls,
operations, etc. do not represent join points. Furthermore, anonymous classes or
relationships between classes, etc. are no join points either. Consequently, the join point
model of Hyper/J is incomplete with respect to behavioral as well a structural join
points.

dynamic

static dy
na

m
ic

ity

level of abstraction
behavioral structuralincomplete

method calls classes,
methods (operations)

Figure 6-4. Hyper/J’s abstract join point model.

Figure 6-4 illustrates the abstract join point model of Hyper/J according to the
underlying dimensions of join point models. Since all join points are static elements,
Hyper/J has a pure static join point model.

6.4.2 Join Point Properties and Join Point Addressing

The JPSL of Hyper/J is much more restrictive than the one in AspectJ. First, there are
join points which are selected within the concern mapping file. Furthermore, join points
can be selected in the hypermodule (which are based on the selections specified in the
concern mapping). As a consequence, a join point selection occurs in the concern
mapping as well as in the hypermodule, i.e. the join point selection is not localized in
one single construct, but in two. The properties available within the concern mapping as
well as within the hypermodule are the same. Consequently, the properties do not differ

191 6 - Implementations of Design Dimensions

depending on where they occur. However, the way of how properties are addressed
differs between both specifications. Consequently, the discussion of the property
addressing is separated into the concern mapping property addressing and hypermodule
property addressing.

The next section describes the join point properties in terms of the corresponding
design dimensions. Afterwards, the means to address such properties within the concern
mapping are described. Finally, the property addressing within hypermodules is
described in terms of the design dimensions.

6.4.2.1 Join point properties

In general, Hyper/J provides type names, operation names, and field names as join
point properties103 for type definition and method definition join points. All names are
structured: Class-names are structured in compliance to the full type qualification as
defined in Java [JSGB00]. Operation names are structured according to the type
defining the corresponding method and the name of the method. Type information like
return type or parameter types are not represented by properties (or part of a property).
However, similar to the structure of signatures in AspectJ pointcuts like call or
execution, this structure can be considered simply as different properties. A class
has a name property and a package property. An operation (and a field) has a package
property, a class name property, and a name property describing the member itself. The
name properties are atomic, the type properties are structured.

All of these properties are static and have a direct correspondence. Furthermore,
they are local properties: Type names are locally available at the type definition join
points (direct within the syntax), method names of method definition join point are
available at each method definition. The same is true for field names of field definition
join points. Only the names of packages and types for type join points represent
identity properties (since types are uniquely identified by their full qualified name).
Operations on the other hand are only identifiable via their names. Consequently,
Hyper/J does not permit to distinguish between overloaded methods within the same
type, since parameter types are not provided as properties. Consequently, there are no
identity properties for method definition join points.

Method call join points (which are selected and adapted via bracket relationships)
have some properties representing the called method as well as the calling method. The
called method is encoded with the called type as well as with the method’s name. The
type is represented by the package name as well as the type’s name, the method is
represented by its name. This corresponds to the declaring type and method name
property of method calls in AspectJ (see section 6.3.2.3). The method name is a static,
atomic, local, non-identity property104 with a direct correspondence. The target
type is a static, structured, non-identity property with a direct correspondence.
Likewise to AspectJ, the static type of the called object needs to be computed. Although

103 Hyper/J permits also to specify packages within concern mappings which simply means that all classes
within the package are added to the specified concern.

104 It is a non-identity property corresponding to the previous discussion: Hyper/J does not distinguish
between methods defined within the same type but wich differ in respect to their parameter types
(overloaded methods).

6 - Implementations of Design Dimensions 192

typing information can be derived from the syntax of the whole application, it cannot be
derived from the syntax information locally available at the join point105. Consequently,
the target type property is non-local.

The properties which represent the operations in which the corresponding method
calls occur, correspond to the withincode property in AspectJ (see section 6.3.2.3).
They can be divided into a property representing the calling type via its name (static,
local, structured, non-identity property with a direct correspondence) and the
method name property (static, atomic, local, non-identity property with direct
correspondence).

6.4.2.2 Property addressing within a concern mapping

Within the concern mapping all elements are identified directly via their name – all
names need to be explicitly enumerated to be assigned to a concern mapping. It is also
possible to leave out some values. For example, it is possible to specify only an
operation name and select that way all operations in all types having such a name. Also,
it is possible to specify only type names and select that way all classes matching this
name. Furthermore, selecting classes implicitly selects all methods defined in this class
and assigns them to the corresponding concern. However, it is not possible within the
concern mapping to specify names only partly (for example by specifying only the first
characters of type or operation names). Furthermore, it is not possible to specify
common property values for different properties, for example enforcing the operations
being selected to have the same name as the type they are contained in.

Consequently, join points are addressed within the concern mapping in a lexical,
closed and stand-alone way. Since a concern mapping cannot be overridden or
incrementally refined, the selection is furthermore specified in a monolithic way.

6.4.2.3 Property addressing within a hypermodule

The property addressing in hypermodules is slightly more advanced than property
addressing in concern mappings. The way how properties are addressed differs in three
different ways. First, the elements from the concern mapping need to be imported in an
explicit way. Second, a number of elements are implicitly selected for a certain
composition rule due to their underlying properties. Third, the concerns (and also
usually class descriptions) are being used within the concern relationships in order to
specify some additional compositions that are not already determined by the general
composition rule.

The import of the concern mappings is just an explicit demarcation of the elements
that are being used for the composition. This is similar to the use of pointcuts within an
advice in AspectJ that states what selected join points are being adapted. Consequently,
it looks like that the import does not need to be considered. However, the import has a
direct impact on the join point selection because of implicit property addressing:
Composition rules like merge or override rely on matching elements. Elements match, if
they either have an equal name of if they are explicitly declared to match using the
match relationship. What elements match is not only a matter of the corresponding join

105 Note that the distinction between source code and byte code becomes important here: The Java byte
code contains already static typing information which are constructed at compile-time.

193 6 - Implementations of Design Dimensions

point selection in the concern mapping, it is also a matter of the properties’ values. For
example, if there are two classes that have the same name within different concerns, the
application of mergeByName creates a class that combines attributes of both. The
characteristic of “matching” is in such a case no explicit property addressing because
both classes are not explicitly declared to match. Instead, both classes within the
different concerns are implicitly selected for the adaptation because the values of the
name property correspond.

However, even this implicit selection can be mapped to the design dimensions
because this selection is simply based on a lexical comparison of properties and the
selection criterion is “having equal names”. Such equality of name is specified without
directly referring to the property within the join point selection. However, the elements
that adapt the corresponding entities require having a corresponding name.
Consequently the adapting element (not the adaptation construct itself) refers to the
corresponding property via its name106. Therefore, the implicit join point addressing is a
lexical addressing. Since matching requires class and operation names to be equal, the
addressing is furthermore a closed addressing. It is not possible to specify any
conditions for a number of properties. Consequently, the implicit property addressing is
stand-alone. Since the implicit selections can refer to all other join points, the selection
is unrestricted. With respect to the adjustability this selection is incrementally
adjustable by an application of the match relationship.

For the different relationships (bracket, match, or compose) Hyper/J provides
different means to address properties.

In the bracket relationship properties are addressed in different ways depending on
what role the corresponding Java entities play for the composition. First, the properties
of the target operation (declaring type and operation name) are addressed by specifying
patterns that are closely related to the type and method name patterns in AspectJ (see
section 6.3.2.2). Hyper/J permits to specify a character sequences partially and provides
negation and conjunction operators in order to exclude or include certain character
sequences. Consequently, the target class name property as well as the target operation
name property is addressed via a lexical addressing. Furthermore, a closed
addressing (in case the complete name is specified) as well as open addressing is
provided. Furthermore, since it is not possible to specify the same patterns for a
number of different properties the addressing is stand-alone. Similar to AspectJ, any
arbitrary join point can be selected from any existing modules. Consequently, the
addressing is non-restricted.

The properties describing the class name and (potentially) the operation name within
which the corresponding join point occurs is being specified within the from clause of
the bracket relationships and require a value specification of the corresponding
property. Consequently, both properties are being addressed in a lexical, closed, stand-
alone and non-restricted way.

The match relationship corresponds to the property addressing of the bracket
relationship. The target entities that are to be matched are described in terms of a class

106 Note that in this case the join point selection is not achieved via a Hyper/J selection constructs but via a
corresponding definition of the corresponding Java entity.

6 - Implementations of Design Dimensions 194

and operator patterns. Consequently the corresponding properties are addressed in a
lexical, stand-alone, closed, as well as open addressing that is non-restricted.

The compose relationship differs with respect to bracket and match: The target of a
compose relationships needs to be specified completely via its name. For example, if
two classes are composed, the name of the target classes to which another class should
be added to has to be explicitly specified. Consequently, the properties are addressed in
a lexical, closed, stand-alone, and non-restricted way.

6.4.3 Join Point Adaptation

In Hyper/J there are mainly two ways of adapting join points. First, classes and methods
are adapted because of the applied composition rules (merge and override) which are
refined by the composition relationships. Furthermore, the bracket relationships are to
be applied, which do not directly refer to the corresponding composition rules.

The general composition rules merge and override are conceptually structural as
well as behavioral join point adaptations. Both kinds of composition rules are structural
adaptations because type structures are extended by introducing additional members
(which come either from matching types or which are explicitly declared via compose
relationships) as well as new super types. Consequently, type definition join points are
structurally extended. Likewise, method declaration join points can be structurally as
well as behaviorally extended (which differs from AspectJ). A structural extension is
possible for example by composing different methods that vary with respect to their
exceptions. Figure 6-5 illustrates a structural extension of a method m by composing it
with an additional method that declared a thrown exception. Other kinds of structural
adaptations (like adding parameters, etc.) are not possible for method definition join
points.

class A {
 public void m() { … }

class A {
 public void m()
 throws Exception {
 … }
}

hypermodule ...
 ...
 mergeByName;
..

class A {
 public void m()
 throws Exception {
 // body 1
 // body 2
 }
}

Figure 6-5. Structural method adaptation in Hyper/J.

The composition rules are also behavioral adaptations since matching operations are
composed. Original methods can be completely replaced by (or merged with) other
methods (i.e. the bodies of different methods are composed). The characteristic of being
a structural or behavioral adaptation depends on the corresponding concern the
composition rules are applied to. This is in contrast to AspectJ where the characteristic
of being a structural or a behavioral adaptation is an inherent characteristic of the
underlying kind of language feature.

With respect to the variability, the composition rules provide non-variable
adaptations. The way how each join point is to be adapted is completely specified by
the types being used for the composition and their operations. With respect to the join

195 6 - Implementations of Design Dimensions

point abstraction, Hyper/J provides a fix abstraction. The context, in which the code is
to be executed, is the same as the original one.

The composition rules are constructive as well as destructive (and will be discussed
in the following paragraphs).

Merge relationships are constructive, since different types are merged together to a
new type. All type relationships of the old type (to which another one it being merged)
are still valid type relationships of the new type (structural and constructive
adaptation). Applying the merge relationship to operations results in merging all
method bodies (behavioral and constructive adaptation).

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

constructiveness
constructive destructive

Merge, compose,
override

no variability, fix join point abstraction

Merge, compose,
bracket override

Figure 6-6. Join point adaptations in Hyper/J.

The override relationship is constructive as well as destructive. If it is applied to
types all members in the overriding type become new members of the overridden type.
Hence, it is structural and constructive. It is behavioral destructive because all
matching operations in the overridden type are replaced and the original behavior at
such methods becomes lost. If applied to operations, the overriding operation simply
replaces the overridden method.

The design dimensions for the compose relationship is similar to the merge
composition rule: Compose adds further type relationships to types or additional
operation bodies to existing operations. Consequently, the compose relationships is a
constructive, non-variable, structural, as well as behavioral adaptation with a fix
join point abstraction.

The situation is slightly different for the bracket relationships. This relationship is
explicitly designed to adapt static and behavioral method call join points. The underlying
structure is not adapted and the original method call is still part of the composed
application. With respect to the variability as well as the join point abstraction the
bracket relationship is designed in the same way as all other adaptations. Consequently,
the bracket relationship is a constructive, non-variable, behavioral adaptation with a
fix join point abstraction.

Figure 6-6 summarizes the different means of adapting join points in Hyper/J. Since
all adaptation mechanism are equal with respect to their level of variability as well as

6 - Implementations of Design Dimensions 196

their join point abstraction, only the dimensions level of adaptation and level of
constructiveness are considered.

6.4.4 Weaving

The term weaving applied to Hyper/J describes the composition of hypermodules.
Hypermodules are composed by transforming the underlying bytecode. Therefore, an
additional representation of the bytecode is being created which is being used by the
transformer in order to determine those join points that are actually addressed and
adapted (cf. [TO00]). The bytecode transformation is achieved in a compilation-like
process that is being executed before runtime. In case operations are being composed in
a constructive manner, Hyper/J generates additional methods containing the code of
the original methods and generates within the new composed method corresponding
method calls. Consequently, the Hyper/J weaver is a static weaver based on code
instrumentation.

6.5 AspectS
A conceptual analysis of AspectS (see section 2.4) in terms of the underlying design
dimensions is slightly different than the analysis of Hyper/J and AspectJ: AspectS does
not provide additional language features on top of Smalltalk nor does it provide any
external tools in order to compose Smalltalk entities. Instead, AspectS is a framework
(in the sense as described in [JoFo88]) written in the same language as the
corresponding base language. This makes especially the discussion of join point
properties and join point addressing slightly different, because it is not possible to speak
about new language features, but about framework implementations.

In fact, AspectS hardly provides any additional properties for join points but relies
on the metaobject facilities provided by Smalltalk. With respect to the property
addressing, AspectS permits to use all Smalltalk constructs – i.e. the whole
computational power of the base language – in order to address join point properties.
Consequently, mapping AspectS’s property addressing to the design dimensions means
to map the language constructs of Smalltalk to the design dimensions.

6.5.1 Abstract Join Point Model

AspectS provides (in correspondence to AspectJ) two different kinds of join points due
to the different join point adaptations introduction and advice. Introductions are
adaptations of class definition join points (static and structural join points). With
respect to advice more discussion is required in order to determine what the underlying
abstract join point model is.

In AspectS advices refer to join points described by join point descriptors. Since the
join point descriptors refer to method definitions (via the class object and the method
selector), it looks like that join points in AspectS are static, structural join points.
However, AspectS also provides advice qualifiers that permit to specify additional
constraints that also potentially depend on the runtime specific information (like for
example call stack information as being provided by #cfFirstClass). From this
point of view, it is disputable whether advice refer to dynamic join points. Furthermore,

197 6 - Implementations of Design Dimensions

AspectS permits to define caller-specific constraints. From this point of view is seems
also disputable whether AspectS advices refer to dynamic, behavioral join points.

dynamic

static dy
na

m
ic

ity

level of abstraction
behavioral structuralincomplete

method
execution

class
definition

Figure 6-7. AspectS’s abstract join point model.

From the developer’s perspective it is important that an advice requires a set of
method definitions as join points which can also be restricted by runtime-specific
information. Consequently, the felt join point is a dynamic method definition join point
(dynamic and structural join point). It is a structural join point because of the join
point descriptor. It is a dynamic join point because of the dynamic constraints.
Nevertheless, in contrast to AspectJ the static properties of the join points (class and
method name) have to be specified in order to select the appropriate join points.

Considering the dimension completeness AspectS’s join point model is incomplete
with respect to dynamic structural elements as well as static structural elements – there
are methods in the system that cannot be wrapped. For example primitive operations
like instVarAt: cannot be adapted.

6.5.2 Join Point Properties and Join Point Addressing

AspectS provides two different ways of addressing join points. First, there are join point
descriptors that are initialized with selector names and class objects. Second, there are
join point qualifiers which are provided by AspectS and which are declared by the
developer for initializing the corresponding advice.

6.5.2.1 Join point descriptors

The selector name part of the join point descriptors is similar to the method name
property in AspectJ or Hyper/J for method definition join points: It is a static, direct,
and local property. The selector is furthermore structured because selectors in
Smalltalk are lists of identifiers separated by the token”:” which implicitly describes the
number of parameters of the corresponding method. It is furthermore part of a join
point identity (in conjunction with the class object).

The class object is an ordinary Smalltalk object. Nevertheless, this property is directly
extracted from the underlying code base. Consequently, the property is a static, direct
and local property (which corresponds so far to AspectJ). Furthermore, the property is
structured (since it is an object). However, in contrast to AspectJ the structure of the
class object differs. In fact, since the class object is an object that reflects on the class
definition, it provides a large variety of properties of elements due to the large number

6 - Implementations of Design Dimensions 198

of fields in the objects (and corresponding methods). Furthermore, the class object is
part of the shadow identity.

In principle, the class object and selector property can be addressed using the whole
computational power of Smalltalk. The selector as well as class object can be addressed
via a direct addressing (by specifying directly a matching selector or the class object via
its name) or via an indirect addressing (by specifying a function returning a number of
matching selectors or class objects). With respect to its openness, both properties can be
addressed in a closed way (e.g. by specifying only the selector’s characters or the class’s
name) as well as in an open way (e.g. by specifying a function which performs a
computation on the base program). With respect to property sharing AspectS permits to
specify shared values among properties e.g. by specifying a function that computes
class objects as well as selectors at the same time. Due to the ability to perform
incremental modification provided by the base language, join points can be addressed in
an incremental way. Finally, since arbitrary class objects and selectors can be selected
the join point selection is unrestricted.

6.5.2.2 Advice qualifiers

Aspect’s advice qualifiers reveal additional properties that can be addressed by the
developer.

The qualifiers #senderClassSpecific and #senderInstance
Specific permit to restrict the join point selection to certain sender instances and
classes. Conceptually, the underlying properties for the sender object as well as the
sender class are dynamic ones that have a direct correspondence107. Since both
properties have objects as values they are structured. From the executed method’s
perspective both properties are non-local since information from the call stack are
needed. However, such information is directly available in the underlying base
language108. None of the properties contributes to the join point’s identity (since the
underlying join point is a dynamic method join point). Obviously, the sender instance
property is a data property while the sender class property is a metadata property.
Furthermore, the properties are past properties since they refer to previous objects in
the call chain.

The conceptual properties underlying #receiverClassSpecific and
#receiverInstanceSpecific corresponds to the this property of method
execution join points in AspectJ: It is a dynamic, local, current and structured data
property with a direct correspondence.

The sender class, sender instance, receiver class, as well as receive instance properties
are addressed in the same way: The developer needs to pass the corresponding object to
the aspect in order to select the underlying join point. Consequently, the way of how
such properties are addressed corresponds to the join point addressing of the class
object property as described in the previous section: Direct as well as indirect

107 On the implementation level both properties are represented by the same data that is the last element
on the call stack.

108 Note that this view on the locality characteristic corresponds to the discussion in section 5.4.3.4:
according to the conceptual model of method definitions call stack information are considered to be
non-local.

199 6 - Implementations of Design Dimensions

addressing, closed as well as open with the capability to address the properties in an
incremental and shared way.

The other advice qualifiers (#cfFirstClass, #cfFirstInstance,
#cfAllButFirstClass, #cfAllButFirstInstance , #cfFirstSuper,
and #cfAllButFirstSuper) differ substantially from the previous ones: They do
not require to specify any addition values in contrast to the previous ones.

The conceptual properties underlying such qualifiers can be interpreted in two
different ways:

• First, the properties are boolean properties whose values determine whether a
certain hard-coded condition is fulfilled. The cfFirstClass property
determines whether the current class occurs for the first time on the call stack,
the cfAllButFirstClass property corresponds to the negation of the first
class property, etc. By adding such a qualifier to an advice the developer states
that the corresponding condition should be fulfilled.

• Second, the advice qualifiers simply represent a way of addressing the call-stack
property, i.e. there is only one property that represents the call stack109.

From the first perspective, all properties have the same characteristics. First, all of
them are obviously dynamic properties, because whether or not the current call stack
fulfills the corresponding characteristic depends on runtime-specific information. The
corresponding boolean value represents the result of a computation on the call stack.
Consequently, the properties are abstract and atomic with an indirect
correspondence. For the same reason the property is a data property. With respect to
the locality as introduced in section 5.4.3.4 all of these properties are non-local, since
they depend on call-stack information. However, such information is directly available
in the underlying base language. With respect to the join point identity none of the
properties contributes to the join point identity (non-identity property).

From this perspective the properties are addressed in a direct and closed way by the
corresponding qualifiers. Due to the ability to push the qualifiers into methods that can
be used by different aspects and overridden using subclassing, shared addressing and
incremental selection is permitted. Furthermore, the addressing is unrestricted.

In the second interpretation the property represents the call stack that is directly
available as a data-object in Smalltalk. Consequently, the property is a dynamic,
structured, non-local, direct data property representing current data. From this
interpretation the join point qualifiers address the property in an indirect, shared,
incremental and unrestricted way.

However, from the developer’s point of view only the way of how the addressing is
achieved is important. Consequently, the first interpretation is considered to be
appropriate.

109 On the implementation level the second interpretation is being used: the qualifiers refer to the call stack
which is in Smalltalk directly available using the keyword thisContext.

6 - Implementations of Design Dimensions 200

6.5.3 Join Point Adaptation

The join point adaptation in AspectS with respect to the design dimensions is closely
related to AspectJ. First, there are introductions referring to class definition join points.
Second, there are advices referring to method execution join points.

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

join point abstraction
fix variable

introduction

advice

no variability, constructive
(around = conditional constructive)

Figure 6-8. AspectS join point adaptation.

Introductions are (in correspondence to AspectJ and in correspondence to the
discussion in Chapter 3.2) structural and constructive adaptations. In
correspondence to AspectJ the adaptation has a fix join point abstraction: The context
within the adaptation does not vary depending on the corresponding selection but is
determined be the target objects and the declaring aspect. However, the join point
abstraction differs from AspectJ: While in AspectJ the context being used by an
introduction corresponds to the context available for each method, the context of an
AspectS introduction refers to the defining aspect because of the self-reference within
blocks110.

Furthermore, the adaptation is non-variable (which also corresponds to AspectJ).
However, a non-variable adaptation in Smalltalk is different than a non-variable
adaptation in Java. Due to the strong-typing characteristics of Java (and in AspectJ)
every expression defined in the adaptation requires to be typed. Consequently, all types
participating in a collaboration defined within the adaptation need to be known. Since
Smalltalk is an untyped language, such restrictions do not exists in Smalltalk dialects like
Squeak underlying AspectS.

The underlying design decisions of advice are also very similar to AspectJ. First,
advices are behavioral adaptations: An advice does change the structure (the
signature) of the underlying method but only its behavior. Second, before and after
advice are constructive and while around advice are conditional constructive.

However, there is a difference between advices in AspectS and AspectJ considering
the join point abstraction: All join points addressed by the corresponding abstraction

110 See section 2.4.1 for a detailed description of the self-reference handling in introductions and advice.

201 6 - Implementations of Design Dimensions

constructs have the same context. All parameters of method calls are being delivered to
each advice. Consequently, AspectS as a fix join point abstraction.

6.5.4 Weaving

AspectS weaves aspects via changing metaobjects (compiled methods): A compiled
method is being replaced with a different objects (the wrapper) which executes the
corresponding blocks and potentially forwards messages to the wrapped compiled
method. The original compiled method still exists after wrapping but has a different
position in the corresponding method dictionary.

Creating a wrapper (and establishing in that way the connection to the aspect-
oriented system) is done dynamically just at the time when an aspect receives an install
message. Consequently, AspectS provides dynamic weaving. The underlying code
representation of the participating classes is being changed, since the class’s method
dictionary changes. Consequently, weaving in AspectS is based on code
instrumentation. Starting the weaving process requires an explicit statement within the
application’s code. Consequently, the dynamic weaving is user driven.

6.6 Sally
Likewise AspectJ and AspectS, Sally clearly distinguishes between join point selection
and join point adaptation (see Chapter 3). The pointcut language permits to specify the
join points that are to be adapted. Sally provides two different kinds of join point
adaptation: Wrappers and introductions that refer to different kinds of join points.
However, as discussed in Chapter 3 the underlying pointcut language is being used for
wrappers as well as for introductions. Consequently, it is not necessary to distinguish
between different kinds of adaptations for the underlying properties and the
corresponding property addressing.

6.6.1 Abstract Join Point Model

Sally provides introductions and wrappers. Introductions permit to add additional
members or additional supertypes and wrappers permit to change the behavior at
certain join points. In contrast to for example AspectJ, Sally does not permit to refer to
any runtime-specific information within the selection. Consequently, the underlying join
point model is a pure static join point model.

Introductions are applied to types: Java interfaces or class definitions represent the
corresponding join points. Consequently, the underlying join points are static and
structural. Wrappers are applied to field accesses (field reads as well as field
assignments), method calls, as well as method definitions. The first two kinds of join
points are static, behavioral join points while the latter ones are static, structural join
points. Both, behavioral as well as structural join points in Sally are incomplete,
because a number of behavioral as well as structural elements are not covered by Sally
(e.g. operators as behavioral elements, and field declarations as structural elements).
Figure 6-9 summarizes the underlying abstract join point model of Sally.

6 - Implementations of Design Dimensions 202

6.6.2 Join Point Properties and Addressing

The properties available for each join point correspond to the facts available for each
join point in the underlying logic programming language provided by the corresponding
predefined pointcuts. The available properties are closely related to the static join point
encoding of AspectJ. Consequently, all properties are rather briefly described in terms of
the underlying design dimensions here. Since Sally is based on a static join point model,
all properties are static. Hence, this characteristic is no longer mentioned in the
following description.

dynamic

static dy
na

m
ic

ity

level of abstraction
behavioral structuralincomplete

method / class
definition

method calls
/ field access

Figure 6-9. Sally join point model.

All source code elements that are selectable using the corresponding pointcuts (for
example typeDeclarations, methodDeclarations, etc., cf. section 3.4.2.3)
are equipped with a corresponding identity property. Obviously, this property represents
a local, non-structured, identity property with an abstract correspondence.

The properties of type declarations, method calls, method declarations, field access
and field assignment properties correspond to the static properties available in AspectJ.
For example, the method call join point is equipped with a list of parameter types
representing the declared parameter types of the method which is to be invoked in this
location. This property has is structured, has a direct correspondence and is non-
local (see section 6.3.2.3 for the corresponding discussion on the mapping of such
properties).

Additional properties available in Sally are those ones that determine the static types
being used within expressions. The corresponding pointcuts are
callExpressionTypes and fieldSetType. However, from the design
dimension’s perspective there is no difference between such properties and the previous
mentioned ones. The pointcutCallExpressionTypes reveals a list of types
that occur on the client side while fieldSetType reveals a single type. Both
properties have a direct correspondence and are non-local (see section 6.3.2.3 for the
corresponding discussion on type information with respect to the design dimensions).
While the type list provided by pointcutCallExpressionTypes is structured,
the single type property provided by fieldSetType is atomic.

In contrast to the previous mentioned approaches the design dimensions of the
property addressing in Sally can be relatively easily explained without the need to
differentiate a number of exceptions. The reason for this lies in the uniform way of how

203 6 - Implementations of Design Dimensions

Sally addresses all join point properties using the underlying logic programming
language independent of what information the addressed properties represent111.

Sally permits to address all properties in a lexical as well as in an indirect way. A
lexical addressing is achieved either via specifying a property lexically within the
corresponding pointcut definition or indirectly via setting a variable for the
corresponding property and specifying additional constraints on the variable in a
different pointcut112. In the same way it is possible to address join point properties in a
closed as well as in an open manner: Closed value addressing is achieved for example
via a direct declaration of the corresponding property while an open addressing is
achieved for example achieved via a variable that refers to all types in the system113.
Consequently, Sally provides all kinds of join point addressing according to the design
dimensions as illustrates in Chapter 5, Figure 5-36.

With respect to the design dimensions adjustability and scope Sally permits an
incremental join point selection (due to the inheritance of pointcuts in
correspondence to AspectJ) as well as an unrestricted selection (since any arbitrary
join point can be selected from within an aspect). Furthermore, Sally permits a shared
value specification by using common logic variables for different properties.

6.6.3 Join Point Adaptation

Sally provides introductions to adapt static structural join points, and wrappers to adapt
behavioral as well as structural join points.

Introductions are (in correspondence to introductions in AspectJ) structural and
constructive adaptations, because the corresponding types are increased. Furthermore
(in correspondence to AspectJ) introductions in Sally have a fix join point abstraction,
because the context of the adaptation is determined by the underlying join point and not
by the corresponding selection. However, in contrast to AspectJ, introductions are
parametric.

Wrappers in Sally are pure behavioral adaptations (although the corresponding join
point for method wrapper is a structural join point). Wrappers are conditional
constructive since they permit to refer to the original join point using the wrap-
construct (see section 3.4.3). Wrappers also correspond to introductions with respect to
the level of variability as well as to the join point abstraction. First, they are parametric
because code elements can be imported from the corresponding pointcut specification.
However, the context in which the adaptation is to be executed is fix, because the
runtime parameters being accessible within wrappers are determined by the kind of
wrapper (see section 3.4.3 for the available runtime parameters in wrappers).
Consequently, wrappers have a fix join point abstraction. Second, the code blocks to

111 This is for example in contrast to AspectJ’s + operator that is only applicable to type patterns.
112 Note that in that way it is also theoretically possible to specify a join point identity in a lexical way.

However, although theoretically possible, there does not seems to be any reasonable case to do this
because the join point identity is created and maintained by Sally and it is not the identity’s purpose to
be used in a lexical manner.

113 In such a case adding new types to the system binds new types to the corresponding variable.
Consequently the specified property also evolves in parallel with the base system itself.

6 - Implementations of Design Dimensions 204

be executed are parametric, because static parameters can be passed from the specified
pointcut to the wrapper. Figure 6-9 summarizes the mapping of Sally’s join point
adaptation with respect the to corresponding design dimensions.

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

join point abstraction
fix variable

introduction

wrappers

parametric, constructive
(wrappers = conditional constructive)

Figure 6-10. Join Point Adaptation in Sally.

6.6.4 Weaving

Weaving in Sally is performed via a code transformation of all classes participating in a
crosscutting relationship. Based on the pointcut descriptions and the corresponding join
point adaptations the target join points are computed and adapted before generating the
corresponding bytecode. While introductions simply add new elements to the type
hierarchy, wrappers add additional methods representing the aspect-specific behavior.
Consequently, Sally’s weaver is a static weaver based on code instrumentation.

6.7 Morphing Aspects
Morphing aspects (see Chapter 3) do not represent a new system in a sense that a new
software framework or system is being provided for selecting and adapting join points:
The proposed implementation in Chapter 3 is based on the system AspectS.
Consequently, the underlying design dimensions of join point model, join point
properties, join point addressing and weaving correspond to the description for AspectS
provided in section 6.5.

However, as noted in Chapter 3, morphing aspects are not considered to be a
implementation technique specific for AspectS but a technique that has a number of
requirements to the underlying systems (see section 4.7): Based on the design
dimensions it is possible to define more specific the required characteristics. First of all,
in order to simplify the specification of the morphing process a dynamic join point
model is desirable. This permits to specify the join point selection using the
corresponding selection constructs of the underlying system114. In case the underlying

114 However, in fact the existence of a dynamic join point model does not guarantee that the corresponding
join point dependencies can be expressed in terms of the provided join point selection constructs. For

205 6 - Implementations of Design Dimensions

join point model is a static one, it is necessary that the system provides constructive
join point adaptation mechanisms. In such a case join point checks need to be
specified within the join point adaptation that invoke the original join points in case
such checks fail.

The approach of morphing aspects mainly addresses the reduction of join point
checks. Consequently, the join point checks must not be added statically (since
otherwise there would not be any benefit in using morphing aspects). Instead, the
physical adaptation of join points is required just in time when they are needed.
Consequently, the underlying weaver must be based on dynamic code
instrumentation. Furthermore, the morphing process is a developer specified
computation of join points that are to be adapted during morphing. Consequently, it is
necessary that the weaver permits a user-driven weaving being specified within the
join point adaptation of join points triggering the morphing process.

The terminology of how morphing aspects are to be applied by utilizing
dependencies among join points (see section 4.3.1) and the corresponding join point
process is to be specified (see section 4.3.2) can be described in terms of the
corresponding design dimensions.

The independent join points (i.e. those join points which do not depend on any other
join point) require to be woven directly. Consequently, developers need to specify a
corresponding selection for this statement. How this selection cannot be determined on
the abstract level upfront without a given concern at hand. For a specific concern (like
the tracing example, see section 4.2.1) and a corresponding implementation (see section
4.4) the underlying properties are static (method and class names), lexical properties
with a direct correspondence (due to the Smalltalk specific representation of selectors,
the selector is structured while the class name is atomic). The corresponding property
addressing is a lexical, closed, stand-alone addressing.

The dependent join points are to be computed using the reflective capabilities of the
underlying language. Consequently, morphing aspects explicitly encourage an indirect
value addressing: Values of properties are computed using reflection and a
corresponding join point selection is to be specified (and within the morphing process
code that represents the user-defined weaving is being executed). Furthermore, the
properties are (typically) addressed in an open way. In the tracing example not all
properties are known whose corresponding join points are to be adapted. Also,
morphing aspects encourage the use of shared value addressing: The result of the
reflective computation is being used to address a number of properties.

6.8 Roles in Terms of Design Dimensions
The concept of roles (cf. for example [KrØs96, Kris96, GSR96]) is very closely related
to aspect-oriented software development (see for example [HaUn02b, HSU05b] among
many others for an exhaustive discussion). However, since an underlying conceptual
model of aspect-oriented systems was missing, it was hardly possible to give a

example, the tracing implementation as proposed in 4.4 was implemented by specifying additional join
point checks within the join point adaptation. Although technically possible, this is rather considered as
a workaround for missing dynamic selection critera instead of a conceptual clear solution.

6 - Implementations of Design Dimensions 206

conceptual description of the parallels and differences between aspect-oriented
approaches and the role concept.

This section shortly introduces the role concept as introduced in [KrØs96, Kris96]
and explains this concept in terms of the aspect-oriented design dimensions. Although
there are implementations available that correspond to the roles concept from [KrØs96,
Kris96] (cf. for example [NeZd99, Zdun01]) the concept can be partly mapped to the
design dimensions without referring to a specific implementation.

6.8.1 Introduction to Roles (the Kristensen Perspective)

Roles are temporary views on an object. A role's properties can be regarded as
subjective, extrinsic properties of the object the role is assigned to. During its lifetime an
object is able to adopt and abandon roles. Thus, an object's environment can access not
only the object's intrinsic, but also its extrinsic properties. In [KrØs96, Kris96] some
characteristics of roles are articulated:

• Identity: An object and its actual role can be manipulated and viewed as one
entity.

• Dynamicity: Roles can be replaced during an object's lifetime.
• Dependency: Roles only exists together with its corresponding object.
• Extension only: A role can only add further properties to the original object,

but not remove any.

• Multiplicity: An object can have more than one instance of the same role at the
same time

• Abstractivity: Roles are classified and organized in hierarchies
In [GSR96] Gottlob et al. emphasize another characteristic of roles:

• Behavior: A role may change an object's behavior.
The feature abstractivity emphasizes that roles are well planned and organized in

hierarchies similar to object-oriented ones. On the other hand, this characteristic
insinuates that the role concept is highly connected to class-based programming
languages and hence roles are classified by classes. Nevertheless, it should be
emphasized that role concepts can also be used in class-less object-oriented
programming languages115.

An important characteristic of roles is that roles are dynamically added to objects
whereas a role itself has properties (fields and methods). Hence, the accessible
properties of a single object differ from perspective to perspective and from time to
time. The root object describes the intrinsic object, i.e. the original object without any
roles. A role object is the instance of a role, which is added to a certain root object. A
role is a generalization of its roles similar to classes. For reason of simplification this
thesis uses the term role instead of role object except in situations where it is necessary
to stress the difference. A subject is a special perspective on a root object including

115 In fact, language features of prototypical languages are very close to language features provided by role
systems.

207 6 - Implementations of Design Dimensions

(some of) its roles. A root object has several subjects whereby every subject contains a
different set of included roles. The interface of a subject is an aggregate consisting of
the root object's interface plus every role object's interface.

One interesting property of roles (in comparison to aspect-oriented programming) is
the behavior characteristic. A role when added to an object may change the object's
behavior. While [GSR96] describes this as an intrinsic role feature, [KrØs96] and
[Kris96] regards it as a special feature of role that they call a method role. A method
role is a role's method that is bound to an intrinsic method of the root object. It is
important to emphasize that the cardinality between intrinsic method and method role is
1:n, i.e. every intrinsic method may have several method roles, but every method role
has exactly one intrinsic method.

If and how a method role changes an object's behavior depends on what kind of
method role it is. There are method roles, which alter a root object's behavior because
the object's user is aware of the role, i.e. the role containing the method role is part of a
subject used by the user. In that case this thesis calls the role method to be subjective.
In the other case there are method roles that replace the root object's behavior
independently of the user's perspective. Although such a behavior is not part of the root
object's intrinsic behavior it is independent of a user's perspective. This thesis calls such
method roles non-subjective.

It is obvious that there are several conflicting situations, since more than one role can
be assigned to an object. Whenever an object's intrinsic methods are invoked the
underlying environment has to determine if and how the corresponding roles influence
the resulting behavior. The following conflict situations occur:

• Multiple subjective method roles: There is more than one subjective method role
assigned to the invoked method.

• Multiple non-subjective method roles: There is more than one non-subjective method
role assigned to the invoked method.

• Mixed method roles: There are at least one subjective and one non-subjective
method role assigned to the invoked method.

Furthermore, there is a conflict if there are at least two members from different roles
with the same selector within the same subject. If an object uses such a selector to
access a member it has to be determined what member to choose.

Figure 6-11 illustrates a person that has two jobs in parallel as a bartender. A job is a
temporal role, because persons usually do not keep their job for the whole lifetime. The
person has some properties like name and day of birth, which are not influenced by any
role. On the other hand there are the properties phone number and income. The phone
number is on the one hand an intrinsic property, because it describes a person's private
phone number. On the other hand it is an extrinsic property, because it describes a
phone number specific to the bartender role (and contains a pub's phone number). If
the phone number property is implemented as a method then the bartender's phone
number methods are subjective since if someone asks a person in private for his number
he expects to get the private number but if he asks a bartender for his number he
expects to get the bar's number. On the other hand, a person's income directly depends
on the income at his jobs. So the income methods of both bartender roles are non-
subjective roles methods.

6 - Implementations of Design Dimensions 208

Although the benefit of role concepts has been accepted widely, popular object-
oriented programming languages like C++ or Java do not support roles as first class
entities on language level. The reason for it is quite simple: The underlying assumption
for static typed, class-based programming languages is that an object's properties are
entirely known at compile-time and can therefore be classified. Hence, class-based
programming languages do not distinguish between intrinsic and extrinsic properties
([Lieb86] discusses this topic in detail). Therefore additional techniques are needed to
support roles in class-based languages.

Non-subjective
method role

bartender

person

phoneNumber

income

phoneNumber

income

bartender

employmentID

phoneNumber

income

employmentID

foreName

surName

dayOfBirth

Figure 6-11. Person object with two bartender roles.

6.8.2 Abstract Join Point Model

The join point model of roles comes from the two different ways of the impact of roles
on the application. First, roles applied to a root object introduce new members that are
accessible via the corresponding subject. Consequently, the adaptation is performed on
objects, which are dynamic structural join points. Second, methods role are behavioral
adaptations of object-specific methods. Such object-specific methods represent dynamic
structural join points.

Figure 6-12 illustrates the corresponding abstract join point model of roles with
respect to the design dimensions of abstract join point models. Since only objects and
object methods are available as join points, the join point model is furthermore
incomplete.

6.8.3 Join Point Properties and Join Point Addressing

Because of both different kinds of join points (objects via roles and object methods via
method roles) there are two different kinds of properties and different kinds of how the
properties are addressed.

Join point properties in role systems are first of all the root objects to which a
particular role is assigned. This property corresponds to the root object’s identity (or a

209 6 - Implementations of Design Dimensions

reference to the root object). Furthermore, the target method of a role method is the
join point which is represented by join point properties and addressed by corresponding
addressing constructs.

The target object is obviously a dynamic property (because objects appear at the
system’s runtime), which has a direct correspondence: The object itself is the property,
which corresponds to the object as it appears runtime. The property is furthermore (in
all programming languages with an implicit management of object identities like Java or
C++) atomic. Since each object has knowledge about its identity property it is a local
property. The object itself furthermore obviously represents a current data property.

dynamic

static dy
na

m
ic

ity

level of abstraction
behavioral structural

incomplete

objects /
object

methods

Figure 6-12. Join Point model of roles.

The property is being addressed lexically as the value of the property has to be
specified, i.e. the very object has to be delivered. However, the computation of the
corresponding root object is not determined by certain selection constructs of the
underlying programming language. Instead, the full computational power of the base
language can be used to determine the object to which a role is to be added. Beyond
that, the property can be addressed in an open way as roles can be applied to arbitrary
objects using the full computational power of the base language. Due to the same
reason, the addressing is shared as well as incremental.

The properties encoding the target method join points consist on the one hand of
the target object as described above, and properties describing the method itself. The
way of how signatures are represented depends strongly on the underlying object-
oriented language as well as on the role implementation itself: On the one hand, all
known object-oriented languages identify methods via their name116. Such a method
name corresponds to the method name property of AspectJ or Hyper/J (see sections
6.3.2.3 and 6.4.2.1): It is a static, atomic and local property with a direct
correspondence117. Whether or not the method name is part of a shadow identity also
depends on the underlying language (as also discussed in 6.3.2.3 and 6.4.2.1): In case the
roles implementation is based on a programming languages where a method name itself

116 In Smalltalk such a name also determines the number of arguments for the corresponding method.
117 In correspondance to section 6.5.2.1 the method name (or selector) is structured in Smalltalk systems.

6 - Implementations of Design Dimensions 210

does not identify the method itself (like Java) the property is a non-identity property,
otherwise it is a identity property118 in conjunction with the corresponding root object.

In the role model as introduced in [KrØs96, Kris96], the method names need to be
addressed in a lexical way: The names defined in the method roles correspond to the
method names as they appear in the root object. Furthermore, each property needs to
be specified in a closed way (because each method role has exactly one intrinsic
method, see the previous section).

Since in the approach described in [KrØs96, Kris96] there are only two properties
available (object identity and method name) and both properties differ in their nature,
there is no value sharing between both properties (stand alone property addressing).
The addressing is furthermore unrestricted (since all arbitrary objects and methods can
be defined) as well as monolithic.

6.8.4 Join Point Adaptation

Roles provide two different ways of adapting join points: Either objects are adapted in a
structural way (by introducing additional methods and fields) or object methods are
adapted in a behavioral way (since methods roles change the behavior of methods
without changing a method’s structure). The structural adaptation of objects is
constructive since only additional members can be added but no members can be
removed. Most implementations permit to refer from within the method roles to the
methods they replace in order to invoke the overridden behavior119. Consequently, the
behavioral adaptation is conditional constructive.

structural

behavioral

le
ve

l o
f a

da
pt

at
io

n

join point abstraction
fix variable

roles

method roles

no variability, constructive
(method roles = conditional constructive)

ObjectTeams
method roles

Figure 6-13. Join point adaptation of roles.

According to most implementations that do not provide any generic constructs, both
kinds of join point adaptations are fix. With respect to the join point abstraction, the

118 In some role implementations such as ObjectTeams [Herr02] the method name is part of the identity
property (together with the object id) although the underlying language provides method overloading.

119 See for example the next-statement in [NeZd99].

211 6 - Implementations of Design Dimensions

structural as well as the behavioral adaptation have a fix abstraction: Depending on the
concrete implementation the code within roles either has the role object itself or the
whole subject as a context. Method roles have the role object or the whole subject as
their context plus the method’s parameters. Since such parameters correspond to
parameters of the root object’s method and cannot be refined by the developer, the
corresponding join point abstraction is fix.

It should be noted, that there are role implementations that provide also variable join
point abstractions for method roles. For example, ObjectTeams [Herr02] implements
the role concept and permits to chose among the variables of a method which one
should be imported to the current implementation120. Furthermore, it should be noted
that there are static role models that permit to adapt only classes, but not single objects.
In such cases, the underlying join point model is static (but the instantiation for the
other dimensions is still the same).

Figure 6-13 summarizes how the role concept relates to the design dimensions of
join point adaptation.

6.8.5 Weaving

The way of how the role concept is implemented cannot be determined by the
conceptual view on roles. However, most implementations (such as [Herr02, Zdun01])
implement roles via a dynamic weaver based on code interpretation. The reasons for
such an implementation are quite simple:

• First, it is an inherent characteristic of roles according to [KrØs96, Kris96] to be
dynamic. Consequently, the implementation of a static weaver seems to be rather
inappropriate.

• Second, implementing roles by code instrumentation either requires to determine
all potential shadows upfront (in case a static weaver is considered for the
implementation), or to perform the code instrumentation has at runtime. This is
typically a time-consuming task (see for example the measurement of adapting
method implementations in AspectS in section 4.5).

Furthermore, since the attachment of a role to a root object is determined by code
being executed at runtime, the underlying implementation is achieved via a user-driven
weaving.

6.8.6 Discussion and Conclusion

According to the previous discussion, the roles concept can be described in terms of the
proposed design dimensions. According to this, role implementations can be considered
as very special kinds of aspect-oriented systems (see furthermore e.g. [HSU05b,
HaUn02b] for further discussions as well as additional literature on that topic).

120 However, it should be noted that the context can only be extended up to to the same parameters as
passed to the corresponding method. Hence, it can be rather argued that ObjectTeams provide a very
restricted form of variable join point abstraction.

6 - Implementations of Design Dimensions 212

However, roles (based on the model as introduced in [KrØs96, Kris96]) do not
provide a strict separation between base language constructs and join point selection
language constructs. Instead, the base language is being used to determine the root
object to which objects are assigned. In contrast to most other approaches, the selection
of the target object is not specified using declarative language constructs. Nevertheless,
the declaration of the target method names within the method roles is a declarative
construct that directly specified a property of the corresponding join point. The
language construct for this declaration corresponds in most implementations to the
same construct for specifying signatures for methods.

However, since roles have been introduced as a concept without referring to a special
implementation, their mapping to the design dimensions is slightly incomplete. For
example, the available join point properties for the role concept cannot be directly
determine from a pure conceptual point of view, because the design dimensions were
build to describe concrete systems on an abstract level. For the same reason, it cannot
be determined (without referring to a concrete implementation) what the corresponding
implementation details are in terms of weaving. However, as argued in section 5.6
weaving is considered as an implementation specific detail. Consequently, the weaving
itself is rather less important for a conceptual understanding of a certain system.

6.9 Chapter Summary and Conclusion
This chapter mapped the design dimensions as introduced in Chapter 5 to different
systems: AspectJ, Hyper/J, AspectJ, Sally, and Morphing Aspects. Furthermore, the role
concept was explained in terms of the aspect-oriented design dimensions.

Since all of such systems are commonly accepted called aspect-oriented approaches,
the mapping represents a case study with respect to the applicability of the design
dimensions. Furthermore, the mapping explains the design dimensions in terms of
concrete systems, which eases the understanding of the design dimensions for
developers who are familiar with one of the previous mentioned systems.

Explaining morphing aspects as well as the role concept showed, that it is not
completely possible to map a pure conceptual approach to the design dimensions. This
is caused by the fact that the design dimension’s purpose is to explain design decisions
of aspect-oriented systems with a concrete implementation. Consequently, some design
dimensions cannot be determined for a certain concept without a concrete
implementation. However, for morphing aspects as well as for the role concept the
application of the design dimensions turns out to be useful. For morphing aspects the
requirements of the underlying system as well as the morphing process could be
explained in a more concrete way based on the vocabulary provided by the design
dimensions. For the role concept the abstract characteristics of the role concept could
be explained in terms of the design dimensions and the deviations of role
implementations from this concept could be expressed in terms of the design
dimensions.

7

DESIGN DIMENSIONS-BASED
COMPARISON AND SELECTION

7.1 Introduction
The design dimensions proposed in Chapter 5 represent a conceptual framework for the
design of aspect-oriented systems – aspect-oriented systems and their ingredients can be
understood in terms of these design dimensions. However, from the dimensions
themselves it is not directly clear how they can be used in order to compare different
aspect-oriented systems or to assess aspect-oriented systems in order to determine what
systems are adequate to solve a given crosscutting problem.

This chapter shows that the design dimensions help to compare aspect-oriented
systems as well as to estimate the appropriateness of a certain system (see also
[HSU05a]) in order to handle a given crosscutting problem.

Section 7.1 discusses the term phrase appropriateness of a system to modularize a given
crosscutting concern. Section 7.2 discusses the usability of the design dimensions in order to
compare aspect-oriented systems and to determine their appropriateness. Section 7.3
applies the design dimension in order to select aspect-oriented systems. Section 7.4
summarizes and concludes this chapter.

7.1 Appropriateness of Aspect-Oriented Systems
In order to determine whether a certain system is appropriate to modularize a given
crosscutting concern, it is necessary to state what exactly the term appropriate means in
this context.

In general, it is possible that an aspect-oriented system provides technically the ability
to solve a crosscutting problem. However, potentially this is achieved without providing
the ability to specify a selection criterion that reflects on the conceptual selection
criterion underlying the developer’s intention within its join point language121.

121 See also [SHU05] for a discussion on the conceptual mismatch between the developer’s conceptual
model and the actually specified selection criteria.

214 7 - Design Dimensions-Based Comparison and Selection

For example, a Java-based system that permits to adapt method call join points and
that provides only method names as properties for such join points does not permit to
distinguish between the different (static or dynamic) target types of the method call.
Consequently, if developers are interested in selecting all method calls to a certain type,
they need to specify on the one hand the corresponding method names within the join
point selection. On the other hand, the developers need to specify additional constraints
within the join point adaptation (in AspectJ for example using the pointcut method
idiom, cf. [HSU03]) in order to determine whether the current join point corresponds
to the desired one122.

Such a solution is valid in the sense that the aspect-oriented system permits that way
to intercept messages at certain join points in order to perform additional functionality.
However, such an approach needs to be considered as rather inappropriate: The join
point selection constructs turned out to be insufficient to specify the selection criteria.
Instead, the adaptation itself contains additional statements that implement parts of the
join point selections. Hence, the selection constructs no longer reflect on the conceptual
model of the join point selection and the join point adaptation becomes part of the
selection. Consequently, such an approach does not cleanly separate between the join
point selection and the join point adaptation.

Another example where developers can build some kind of workaround in order to
handle a certain crosscutting problem is to adapt a structural join point although a
behavioral join point is the actual focus of the adaptation. For example, in order to
determine in AspectJ whether an object changes its state it is possible to select and
adapt the corresponding behavioral join point – this thesis’ considered this as the right
join point, because this is actually the point in the execution of a program where the
state change occurs. Another alternative is to select and adapt the corresponding
methods containing such behavioral join point based on a given set of naming
conventions (via so-called set-methods, i.e. methods whose name begin with the prefix
set) 123 that indicate such a state change.

This thesis considers the second alternative to be inappropriate: Instead of referring
to the original join point that represents the situation where an object is about to
change, a join point is chosen that is only closely related to the real join point.
Furthermore, the problem is that the fulfillment of the naming conventions is already an
implicit join point selection: The developers of a given class already know that state
changes are of a special interest for a different developer (because this is the main
reason for establishing such a naming convention). Consequently, if for some reasons
the naming conventions are not followed the aspect-oriented system is not able to adapt
the right join points.

This thesis considers an aspect-oriented system to be appropriate in order to
modularize a given concern if

122 The pointcut method pattern [HSU03] is typically applied whenever AspectJ’s pointcut language turns
out to be insufficient for selecting a join point. In such situations the corresponding advice invokes an
additional method (the pointcut method) that determines whether or not the current join point is to be
adapted.

123 Such an approach is for example chosen in [RaCh03] for implementing a persistency aspect in AspectJ.

7 - Design Dimensions-Based Comparison and Selection 215

• The right join point class (corresponding to the requirements of the crosscutting
concern) is provided by the underlying aspect-oriented system,

• The selection of the join point can be completely specified using the JPSL (i.e. no
helper code within the join point adaptation is required to determine whether
aspect-specific code needs to be executed),

• The join point selection corresponds to the rules coming from the concern’s
requirements, and

• The provided join point adaptation constructs correspond to the concern’s
requirements.

The first two points have already been discussed previously. The third point simply
states that a join point selection should reflect on the underlying mental rule for
selection join points. If for example, the join point selection should be based on a
certain naming convention, the join point selection should represent this convention
instead of simply enumerating the corresponding join point properties. The fourth point
is quite straightforward: If for example for a certain join point a certain kind of
adaptation construct is required (for example a structural constructive adaptation of a
single object), then the aspect-oriented system should provide such kind of construct.
This rule also implies that the context of the adaptation corresponds to the mental rule
of the adaptation – that the elements required for the adaptation can be provided using
corresponding selection criteria within the adaptation.

Consequently, the above points reflect on the strict separation of join point selection
and join point adaptation whereby the actually implemented join point selection and
adaptation reflects on the underlying conceptual models.

7.2 Comparing Aspect-Oriented Systems
In order to compare different aspect-oriented systems it is necessary to discuss how far
each design dimension can be used to assess and compare different systems, i.e. how
expressive each design dimension is to express essential distinguishing characteristics.
Thereto, this section briefly discusses the means to assess aspect-oriented systems in
respect to their join point models, join point selection languages, join point adaptation
languages, and weavers – whereby each ingredient is described in terms of the design
dimensions.

7.2.1 Comparing Join Point Models

The abstract join point model of an aspect-oriented system (section 5.3) gives a first
estimation of what the system provides in order to modularize a given crosscutting
concern: The kinds of join points determine where an aspect possibly contributes to the
base application.

However, the abstract join point model does not give a complete view on the
possible join points nor does it state anything about the means to adapt such join points.
Nevertheless, in order to determine whether a certain aspect-oriented system is
inappropriate to solve a given crosscutting problem the abstract join point model gives
already some valuable information.

216 7 - Design Dimensions-Based Comparison and Selection

As stated in the previous section, an aspect-oriented system is considered appropriate
in order to handle a given crosscutting concern, if the right kinds of join points are
provided. Consequently, if it can be determined from the crosscutting concern that for
example a behavioral join point needs to be adapted, the information that a system does
not provide behavioral join points is already sufficient to determine that such a system is
not appropriate for handling such a concern. Hence, comparing systems according to
what kinds of join points they provide (expressed by the abstract join point model) is
reasonable – as long as one system provides a certain kind of join point which is not
provided by another system.

System A
 base language: Java
 join point classes
 (static behavioral):
 method calls, field assignments,
 field accesses

System B
 base language: Java
 join point classes
 (static behavioral)
 method calls

static,
behavioral
join points

static,
behavioral
join points

a) b)

Figure 7-14. Level or Coverage for a) a system A covering b)
system B.

Comparing systems with respect to the level of coverage seems to be reasonable, too.
If with respect to a certain point in the 2x2 matrix constructed by the dimensions
dynamicity and level of abstraction all join point classes of a system A are included in a
system B (for the same base language), the phrase higher level of coverage is meaningful.
System A is able to select and adapt the same elements from the base application with
respect to a certain part of the join point model as system B plus some additional
ones124. For example, a system B that provides only method calls as static and behavioral
join points is covered by a system A that provides method calls and operators as static
and behavioral join points. Consequently, system A has a higher level of coverage than
system B with respect to static, behavioral join points.

Join Point Model Coverage: An aspect-oriented system A covers an aspect-
oriented system B with respect to an abstract join point model element, if each join
point class for the corresponding element in the concrete join point model of
system B is included in the concrete join point model of A.

124 However, as mentioned previously, this does not imply directly that the kind of adaptations available for
these join points are the same in different systems.

7 - Design Dimensions-Based Comparison and Selection 217

Consequently, a system A that covers system B with respect to an abstract join point
model element can be described by having a larger distance from the origin on the level
of coverage axis.

Figure 7-14 illustrates the level of coverage for two different systems. Both systems
are based on the same programming language Java. System A provides method calls,
field assignments, and field accesses as static, behavioral join points, while system B
provides only method calls as join points. Since both systems are based on the same
programming language, and all join point classes in system B are included in system A,
system A covers system B with respect to static, behavioral join points. Because of that,
system A has a larger distance to the origin on the level of coverage axis than system B.

While the previous example used the term join point coverage to compare systems
based on the same base language, it is also possible to compare aspect-oriented systems
based on different base languages relying on the same paradigm. For example, all object-
oriented programming languages provide constructs like messages and objects.
Consequently, message and object are potentially available as join point classes in different
object-oriented languages. Hence, corresponding join points classes can be compared in
different languages, and the join point model of one system can be checked whether it
covers the join point model of a different system based on the same paradigm.

7.2.2 Comparing Join Point Properties and Addressing

Most of the design dimensions of join point properties are rather weak for being used to
compare different aspect-oriented systems. The reason for this lies in the granularity of
join point properties.

Join point properties describe implementation specific elements on a finer level of
granularity in comparison to abstract join point model. While for the abstract join point
model a statement like “a system provides dynamic behavioral join points” is a
reasonable statement, a statement such as “a system provides a static property with a
direct correspondence” is less reasonable. This is because an aspect-oriented system
typically provides a large set of properties for all provided join point classes.
Furthermore, it is quite common to provide a number of static properties with a direct
correspondence for join points. Furthermore, if the information is already available that
a certain aspect-oriented system has a dynamic join point model then this already
implicitly means that there are at least some dynamic properties provided for certain
kinds of join points (see section 5.4.3.7 for further discussion). Consequently, a
statement like “having a dynamic property” can be directly derived from the abstract
join point model.

In order to determine reasonable criteria to compare aspect-oriented systems based
on the design dimensions of join point properties it is either necessary to describe for all
corresponding join point classes what kinds of join points they provide, or to find
design dimensions of join point properties where aspect-oriented systems significantly
differ. The first approach would mean that concrete information about the system needs
to be considered. The second approach seems reasonable without directly referring to
implementation specific details: It turns out that certain constellations of join point
properties do not occur in certain systems.

The mapping in Chapter 6 reveals already properties that occurred only in certain
systems. For example, the approaches AspectJ and AspectS differ with respect to the

218 7 - Design Dimensions-Based Comparison and Selection

provided dynamic properties: In AspectJ all dynamic properties are meta-data properties
while AspectS also provides data properties. Consequently, if it can be concluded from a
concern specification that a selection criterion is to be specified on the data the
distinction of data and meta-data becomes important because in such a case AspectJ can
be already excluded as an appropriate aspect-oriented system.

Further essential design dimensions are the locality as well as the application’s
progress. In the implementations of AspectJ and AspectS there are only properties
available that refer to the application’s past that also are bound to the current control
flow. Such a property does not exist in systems like for example Prose [PGA02],
furthermore, in the future there will probably be systems where the past properties do
not only refer to the control flow specific information, but for example also on data-
flow specific information (see for example [MaKa03]) or any other arbitrary information
from the application’s past. Consequently, it seems desirable to compare past properties
whether they are control flow specific or not.

7.2.3 Comparing Join Point Adaptations

With respect to join point adaptations, the design dimension level of variability
represents a significant distinguishing characteristic. In fact, the missing ability to specify
parametric join point adaptations has been the main argument for developing Sally (see
Chapter 3, especially 3.3). Consequently, only few systems currently provide the ability
to specify paramedic join point adaptations. In case it becomes clear from a concern
requirements that a parametric join point adaptation is required, the absence of such a
feature is already a criterion for determining a system to be inappropriate to handle the
concern.

Another essential distinguishing characteristic comes from the dimensions of join
point abstraction. In Chapter 6 it has been argued that neither Hyper/J, Sally, nor
AspectS provide the ability to abstract over the execution context in which the
adaptation is to be executed. Consequently, if it can be determined from the
application’s context that a user-defined join point abstraction is required, all systems
that have a fix join point abstraction can be excluded from the set of possible
appropriate systems for modularizing the crosscutting concern. Consequently, a
statement like “system A provides a variable join point abstraction while system B does
not” is a reasonable statement for comparing systems.

It can be concluded that the dimensions variability as well as join point abstraction
can be used to compare aspect-oriented systems simply by stating whether a certain
system provides a variable adaptation or a variable join point abstraction, or not.

However, due to the abstract nature of the design dimensions it cannot be concluded
from the existence of a variable adaptation or a variable join point abstraction that a
certain system is appropriate to handle a given concern. On the one hand, the
adaptation constructs might be provided only for a certain kind of join point (and not
the required one from the given concern, see also section 6.2.3). On the other hand, the
concrete implementation might not provide the right kinds of parameters125.

125 For example, in AspectJ it is not possible to pass the return value of a method call to a join point
adaptation.

7 - Design Dimensions-Based Comparison and Selection 219

7.2.4 Comparing Weavers

According to the argumentation in section 5.6 this thesis does not consider weaving as a
conceptual element for aspect-oriented systems. The way aspects are woven should not
influence the semantics of the selection and adaptation constructs. Instead, the different
design dimensions simply represent different ways a weaver can be implemented in
order to provide the intended semantics of join point selection and adaptation.
Nevertheless, the decision how weaving is achieved must not influence the semantics of
join point selection and join point adaptation.

Consequently, the design dimensions of weaving hardly play any role in order to
determine whether a certain system is able to modularize a given crosscutting concern.
Therefore, they and will not be considered in this chapter. Nevertheless, there might be
technical reasons why developers rather prefer to have a certain kind of weaver. For
example, if for a given project the runtime system to be chosen is already determined
and this decision cannot be revised, a system whose weaver is based on code
interpretation already can be excluded from the set of possible techniques to be used to
handle a given concern. This is due to the fact that such systems require a different
runtime system that the base system’s original one.

Another issues in this context is the possible performance penalty of dynamic
weaving approaches based on code instrumentation. As argued and measured in
Chapter 4, the performance overhead of dynamic weaving might be immense126.
Consequently, for performance reasons developers may not want to use dynamic
weaving at all.

7.3 Selecting Systems for Observer Implementations
In order to illustrate that the appropriateness of aspect-oriented systems in order to
modularize a given crosscutting concern can be estimated, four different occurrences of
implementations of the observer design pattern [GHJV95] in object-oriented systems
are being used here as exemplary crosscutting concerns.

The reason for using the observer design patterns here is mainly motivated by fact
that such implementations are in general considered to be typical cases of crosscutting
concerns in the aspect-oriented literature (see sections 1.2.2.1 and 4.2.2 as well as for
example [GyBr03, SHU02, VeHe03]). Hence, there is not need to argue that the
problem domain corresponds to the one being addressed by aspect-oriented
programming in general – i.e. it is already known that the observer problematic results
from crosscutting code that needs to be handled by aspect-oriented systems.

All examples are based on the same business object – a class Student in a class-
based object-oriented system. The class Student provides a number of properties like
lastName, firstName, street, city, zipCode, and studentId. The class
provides furthermore a set of corresponding setter and getter methods (according to a
naming convention used in a number of frameworks) that read and write the

126 However, a general statement of the performance overhead of dynamic weaving cannot be done
without referring to a concrete implementation.

220 7 - Design Dimensions-Based Comparison and Selection

corresponding fields. Student objects should be observable in order to present them
in a graphical user interface. According to the terminology proposed in [GHJV95],
Student objects are subjects and the user interface objects are observers. The benefit of
using the observer is that changes of student objects directly lead to changes of the
corresponding user interface objects127.

The implementations proposed in this section significantly differ in their complexity.
The first implementation considers a simple class (neglecting any kind of polymorphism
for implementing students) and requires notifying observers whenever a state-changing
method is being invoked. The second implementation requires notifying the observers
just in time when a state change occurs. The third implementation differs from the
second one that the existence of student subclasses is assumed. The last one assumes
the application of the adapter design pattern [GHJV95] in order to implement the
business object.

Each observer concern is described first with respect to its technical characteristics.
Then, each observer is described in terms of the design dimensions. Finally, the
concern’s design dimensions are compared with the implementations of the design
dimensions according to Chapter 6 in order to estimate appropriate systems.

7.3.1 General Characteristics

Due to the general characteristics of the observer-pattern (and its typical
implementations) a number of requirements of this crosscutting concern can already be
determined without having a concrete subject implementation in mind. According to
the implementation proposed in [GHJV95] (which also has been explained in section
1.2.2.1) it is necessary to add a field observers as well as the methods
attachObserver(Observer), detachObserver(Observer), and
notifyObservers() to the subject.

Consequently, a structural join point is required (representing the target), whereby
it is not important whether the target join point is a class (static join point) or an object
(dynamic join point). The kinds of properties necessary for describing the target or the
way of how the target is to be addressed is not that important from this abstract point
of view. Nevertheless, it looks like a static join point providing a class name as a
property is sufficient here. Such a property could be addressed in a direct and closed
way (in fact, this corresponds to the usual implementation of the observer pattern).
Neither the design dimensions of variability nor the design dimensions of join point
abstraction are important and can be neglected here.

Since adding new members to the target is required as the join point adaptation, a
structural, constructive join point adaptation mechanism is required.

Another requirement comes from the observation of how the application is to be
adapted. Since state changes are to be addressed in the application but the original join
points still need to be executed, a constructive, behavioral join point adaptation is
furthermore required.

127 For reasons of simplicity the user interface classes are not discusses here. Instead it is assumed that they
have a certain method update receiving the changes subject as a parameter.

7 - Design Dimensions-Based Comparison and Selection 221

By comparing such general requirements with the mappings of aspect-oriented
systems to the design dimensions (Chapter 6), it is observable that all systems provide a
corresponding join point model and corresponding join point adaptation mechanisms.

7.3.2 Interface-based, non-polymorphic subject observation

7.3.2.1 Technical Concern Description

The first kind of student subject being addressed corresponds to a straightforward
implementation of a student class. The class’s responsibility is to provide corresponding
fields in order to store the person information. Consequently, the class directly provides
the properties as being described before. Furthermore, it is assumed that Student
does not have any subclasses.

Student

String firstName
String lastName
String street
String city
int zip
void setFirstName(String)
String getFirstName()
void setLastName(String)
String getLastName()
….

s:Student

setFirstName(fn)

...original code ...

notifyObservers()

...

Figure 7-1. Simple Student-class with interface-based observation.

The notification of observers should occur whenever an instance of Student
receives a set-message. Figure 7-1 illustrates the class for the assumed Student as well
as an illustration of one possible interaction resulting in the notification of observers.
The interaction diagram visualizes that an invocation of method setFirstName
requires the invocation of method notifyObservers (in the same object).

7.3.2.2 Concern Design Dimensions

Based on the concern description it can be concluded that the corresponding aspect-
oriented system requires structural join points (in particular method definition join
points in the concrete join point model): The corresponding set-method definitions
represent the join points to be adapted.

Whether instances of Student (dynamic join points) are being addressed or
whether the corresponding source code elements (static join points) in the Student
class are being addressed is irrelevant128. Hence, for the example the dynamicity of the
underlying join point model is not important.

128 This is due to the fact that Student does not have any subtypes nor supertypes (except the common
supertype) and consequently no method definition join points are inherited to or from other classes.

222 7 - Design Dimensions-Based Comparison and Selection

The properties being addressed are the name of class Student itself as well as the
method names within class Student (static, local, atomic join point properties with
a direct correspondence). The addressing of the method name properties requires to
be done in a lexical and indirect way since the underlying naming convention is a
lexical rule for the method names.

7.3.2.3 Appropriate Systems

By considering the concrete implementations of the design dimensions as presented in
Chapter 6 it turns out that all systems provide corresponding implementations. Hence,
from the design dimension’s point of view all systems are considered to be appropriate
to modularize the interface-based, non-polymorphic observation of student subjects.

In fact, due to the simplicity of the crosscutting concern this is no surprise because a
(straightforward) constructive and behavioral adaptation of method definition join
points is the easiest mechanism to realize an aspect-oriented system.

Nevertheless, it should be mentioned that although all systems provide an indirect
lexical addressing of join point properties, it cannot be concluded directly whether each
system is appropriate. For example, it needs to be determined whether the underlying
naming convention can be expressed by the corresponding language constructs.

However, by simply considering the way of how each system provides the lexical
indirect addressing of method name properties it is obvious that all systems are able to
express the underlying naming convention. This is due to the fact that the naming
convention simply consists of prefixing method names with the characters get and
set and no complex computation of method names is required.

7.3.3 State-change-based, non-polymorphic subject observation

7.3.3.1 Technical Concern Description

The second kind of student subject considers that the observer notification should
occur just in time – right when the corresponding object change takes place. Hence, the
notification occurs right after the assignment of values to the corresponding fields.

The main argumentation for such an approach is that additional code in the
corresponding methods potentially takes too much time to execute. Typical examples
for such time-consuming code are integrity rules that need to be checked (for example
to check null-assignments, checking whether there is already a person with the same
name and the same address, etc.). Consequently, in case the observers require to be
notified as soon as possible, a notification strategy according the interface-based
observation explained in the previous section is inappropriate since the notification of
observers occurs to late.

Figure 7-2 illustrates the corresponding interaction and the required resulting
behavior after the aspect is woven. In contrast to Figure 7-1, the notification of
observers is not achieved at the end of the method, but somewhere in between – right
after the assignment of the corresponding fields.

7.3.3.2 Concern Design Dimensions

In analogy to the previous example, the dynamicity of the underlying join point model is
not important. The class Student does not have any subtypes nor supertypes and no

7 - Design Dimensions-Based Comparison and Selection 223

method definition join points inherited from other classes. Hence, it is irrelevant
whether instances of Student (dynamic join points) are properties being addressed, or
whether the corresponding source code elements (static join points) in the Student
class are being addressed.

Student

String firstName
String lastName
String street
String city
int zip
void setFirstName(String)
String getFirstName()
void setLastName(String)
String getLastName()
….

s:Student

setFirstName(fn)

...original code fragment...

notifyObservers()

...original code fragment...

firstName := fn

Figure 7-2. Simple Student class with state-change-based observation.

However, in contrast to the previous examples a different kind of join point is
needed: Instead of referring to structural join points, this examples requires the
adaptation of behavioral join points which represent the state changes (i.e. field
assignments in the underlying programming language).

The properties of such behavioral join points and the corresponding property
addressing correspond to the previous example: The properties being addressed are the
name of the class Student itself as well as the names of the fields defined within the
class Student (static, local, atomic join point properties with a direct
correspondence).

7.3.3.3 Appropriate Systems

The main difference of this example to the previous example is that (instead of
structural join points) behavioral join points need to be selected and adapted. By
comparing the abstract join point models of the aspect-oriented systems described in
Chapter 6, it can be observed that AspectS is a system that does not provide behavioral
join points. Consequently, AspectS can be considered inappropriate to handle the state-
change-based subject observation129.

Investigating the abstract join point models of all other systems these are considered
to be appropriate. However, reflecting on the concrete join point models of the systems
it turns out that this estimation is slightly preliminary: The concrete join point model of
Hyper/J includes method calls as behavioral join points only – field assignments are not
part of the concrete join point model. Consequently, Hyper/J must be removed from
the set of possible appropriate systems.

129 For the same reason the role concept is inappropriate, because it also does not provide behavioral join
points.

224 7 - Design Dimensions-Based Comparison and Selection

7.3.4 Interface-based, polymorphic subject observation

7.3.4.1 Technical Concern Description

The third kind of Student subject being addressed considers the existence of
inheritance in the business object’s class to be observed. Instead of having all fields and
methods define in a class Student, there is a superclass Person that defines a
number of fields and attributes.

Student

int studentID

void setStudentId(int)
int getStudentId(int)
….

p:Student

setFirstName(fn)

...original code ...

notifyObservers()

...

Person

String firstName
String lastName
String street
String city
int zip
void setFirstName(String)
String getFirstName()
void setLastName(String)
String getLastName()
….

p:Person

setFirstName(fn)

...original code ...

...

Customer

Figure 7-3. Class Student in inheritance hierarchy.

Figure 7-3 illustrates a corresponding class hierarchy for the class Student.
Student extends class Person and adds the additional field studentID. To
illustrate that the class Person is also used as superclass for other classes the figure
shows an additional class Customer which is a subclass of Person. Furthermore,
the figure illustrates two collaborations that involve objects of classes coming from the
hierarchy. The first collaboration considers an object created from class Student. If
such an object receives a state-changing set-method its observers should be notified. In
case other objects which are not created from class Student (or any other subtype)
receive such a message, this should only result in the execution of the original method,
i.e. no aspect-specific code is to be executed. Of course, the same is true for objects
directly instantiated from class Person.

7.3.4.2 Concern Design Dimensions

Based on the concern description it can be concluded that the corresponding aspect-
oriented system requires structural join points (in particular method definition join
points in the concrete join point model) - since setter methods need to be adapted.

7 - Design Dimensions-Based Comparison and Selection 225

In contrast to the previous examples, a static join point model is problematic. Static
join points are appropriate for the selection of the set methods defined in class
Student (and corresponding subclasses) since all executions of such methods
represent the corresponding join points to be adapted. This is not the case in class
Person. For example, if a set-method in class Person is being invoked, the
corresponding object might be either directly instantiated from Person (i.e. it is no
student), or it might be instantiated from a different (non-Student) subclass. In case
an aspect-oriented system with a static join point model would be chosen, it is the
developer’s task to specify within the corresponding (behavioral, and conditional
constructive) join point adaptation additional conditions that check for the runtime type
of the object receiving the set-message. In case the runtime type turns out to be a
Student, the notification of the observers has to be performed. Otherwise, the
original code has to be performed.

Consequently, in such an approach the join point adaptation contains code fragments
that logically belong to the join point selection – i.e. in this case the condition that
checks for the actual runtime type of object receiving the message. As discussed in 7.2
this approach is not considered as being appropriate.

Based on the discussion it can be concluded that the example requires an aspect-
oriented system with a dynamic and structural join point model.

Furthermore, the example requires information about runtime type of the target
object receiving the message. Consequently, a meta property is required here.

7.3.4.3 Appropriate Systems

Since a dynamic join point model is required here, the approaches of Sally and Hyper/J
are inappropriate to modularize the concern described here. The join point models of
AspectJ as well as AspectS are appropriate. In respect to the required meta-property,
both systems provide corresponding meta properties. Hence, AspectJ as well as AspectS
are appropriate.

7.3.5 Interface-based, adapted, polymorphic subject observation

7.3.5.1 Technical Concern Description

Another variation from of the observer pattern comes from the application of the
adapter pattern. Instead of providing its own fields for storing the address information,
the class Person applies a simple (object-based) version of the adapter pattern
[GHJV95]: A Person object refers to an Address object and adapts its interface and
simply forwards all messages to it. The original Address class does not provide an
interface matching the desired naming convention. The class Person provides such an
interface (see Figure 7-4).

The intention of the proposed design is to reuse the existing class Address in the
context of a Person object. Furthermore, this example assumes once more that the
notification of observers should be realized depending on the reception of
corresponding state changing methods rather than the assignments that actually lead to
the state change.

The application of the adapter pattern is a known best practice in object-oriented
systems and the proposed design is reasonable and straightforward. However, it has a

226 7 - Design Dimensions-Based Comparison and Selection

number of significant changes with respect to the (aspect-oriented) implementations of
the observer pattern and the subsequent requirements for aspect-oriented systems.

One characteristic is that the place within the inheritance hierarchy where observers
attach and detach themselves differs from the positions where state changes occur that
lead to the notification of observers. In the previous examples a state change of
Student objects resulted into additional messages notifyObservers to the same
Student object. The adapter-based design requires that state changes of an
Address object results into the message notifyObservers being sent to a
different object – the referencing Student object. Furthermore, if the state of an
address object changes (that is possibly used by a different object not of type
Student) no additional actions need to be done.

Student

int studentID

void setStudentId(int)
int getStudentId(int)
….

Person

String firstName
String lastName

void setFirstName(String)
String getFirstName()
void setLastName(String)
String getLastName()
….

...

Address

String street
String city
int zip

String street()
void street(String)
….

p:Address

s:Student

2. ...original code ...

Customer

3. ...notifyObservers ...

p:Address

c:Customer 1. street(s)

1. street(s)

Figure 7-4. Class Student in inheritance hierarchy and adapted
Address with interface based observation.

Figure 7-4 outlines collaborations that illustrate the desired behavior of the observer
notification. In case an Address object referenced by a non-Student object (e.g.
Customer object in Figure 7-4) receives a state changing message (e.g. the message
street) no aspect-specific action needs to be executed because no Student object
changes its state. In case an Address object referenced by a Student object receives
the same message, notifyObserver needs to be sent to the corresponding student
object and, of course, the original method needs to be executed.

Apart from that, the collaborations described in Figure 7-3 are still valid here: A
student object receiving a state changing method (including such methods for address
objects) needs to notify its observers.

7.3.5.2 Concern Design Dimensions

It can be concluded from the concern description that an appropriate aspect-oriented
system requires dynamic and structural join points - state changing methods need to
be adapted depending on the actual type of the receiving object as well as depending on
the relationships of that object.

7 - Design Dimensions-Based Comparison and Selection 227

One characteristic of the example is (in addition to the ones for the interface-based,
polymorphic observer implementation) that the triggering of observer notification
depends on the actual type of the owning object, i.e. the actual type of the object
owning an Address object. The relationship to the owning object is a current data-
property. The owning object’s type information is a current metadata property. This
ownership information is not directly available at the corresponding join point because
the relationship described in Figure 7-4 is unidirectional from class Person to class
Address. Hence, the corresponding property is non-local.

In the example, another design dimension of join point adaptation has to be
considered: The notification message has to be sent to a different object than the one
receiving the state-changing method. Consequently, the context being provided by the
join point is not sufficient to perform the corresponding adaptation. Instead, a variable
join point abstraction is required whereby the corresponding variable corresponds to
the target object to which the message notifyObservers has been sent.

7.3.5.3 Appropriate Systems

In fact, reflecting on the implementations of the design dimensions in actual aspect-
oriented systems (Chapter 6), no system turns out to be appropriate. The argumentation
for such inappropriateness can be done in a number of different ways.

Sally as well as Hyper/J turn out to be inappropriate because they do not provide a
dynamic join point model. Hence, they are not able to specify within their selection
language the runtime type of the object whose state is about to change. However, the
inappropriateness can also be described by the absence of a variable join point
abstraction: Neither Hyper/J nor Sally provide the ability to abstract over the join point
context which is about to be adapted. Consequently, it is not possible to pass a
reference of the object owning the address object to the join point adaptation.

AspectJ fulfills almost all requirements. Especially, the characteristics of a variable
join point adaptation is fulfilled by AspectJ. Nevertheless, AspectJ does not provide a
data property that reflects on object relationships which is required for determining the
owning object of an address object. Consequently, AspectJ also is not able to express
the ownership relationship via its selection constructs and is not considered to be an
appropriate system. The inappropriateness of AspectJ to handle this observer
implementation can also be argued from a different perspective. The only (dynamic)
non-local property provided by AspectJ is the call stack. However, this observer
implementation requires a different kind of (dynamic) non-local property.

AspectS does not provide (in correspondence to Sally and Hyper/J) a variable join
point abstraction. Consequently, AspectS is also not able to express the adaptation in an
appropriate way. Hence, in order to send the corresponding notification to the
observers AspectS would require to retrieve the corresponding reference to the owning
object from within its join point adaptation.

7.4 Chapter Summary and Conclusion
This chapter discussed in section 7.2 the potential to compare aspect-oriented systems
based on their implementation of the aspect-oriented design dimensions. Furthermore,
the chapter expressed a number of observer implementations in terms of the design

228 7 - Design Dimensions-Based Comparison and Selection

dimensions. Then, this description is compared to the design dimension
implementations of actual systems (section 7.3). This comparison showed that by
expressing a given crosscutting concern in terms of the design dimensions it is possible
to estimate the appropriateness of a given system (which is also explained in terms of
the design dimensions) to handle such a concern.

The design dimensions turn out to be useful for an abstract comparison of aspect-
oriented systems as well as for the selection of aspect-oriented systems for a given
crosscutting problem. However, they permit only to estimate whether two systems are
appropriate to handle crosscutting concern. This is due to the fact that the design
dimensions abstract from a number of implementation specific details. For example, it
has been noticed for the state-change-based observer implementation that from the
abstract join point model it cannot be concluded that Hyper/J is not appropriate.
Hyper/J provides behavioral join points, but not the right ones (field assignments are
not provided by Hyper/J). Information from the concrete join point model was
required to determine the inappropriateness of Hyper/J to handle the observer
implementation. Consequently, the design dimensions are able to express exactly
whether a system is not able to handle a given crosscutting concern.

Nevertheless, with the aid of the design dimensions it is possible to estimate the
appropriateness of an aspect-oriented system without the need to know implementation
specific details. This estimation already provides a first selection and reduces the effort
to learn all known aspect-oriented systems: Only those systems that turn out to be
appropriate from the design dimension’s perspective need to be studied. Furthermore,
the design dimensions determine implicitly a guide to how to proceed with the
evaluation of possible aspect-oriented solutions. In the mentioned example, the
different implementations of the join point model in Hyper/J needed to be studied in
detail. Consequently, a crosscutting concern described in terms of the design
dimensions also permits a structured approach of learning in detail whether a system is
appropriate.

8

RELATED WORK

8.1 Introduction
Chapters 3 and 4 described implementations of aspect-oriented systems and systems
directly related to them are discussed in the corresponding chapters. Hence,
implementations of aspect-oriented systems are not considered here, in this chapter, as
related work. The main reason for this decision is that the main part of this thesis – the
design dimensions of aspect-oriented systems – is not focused on a specific aspect-
oriented implementation technique. Consequently, mainly approaches that either classify
aspect-oriented systems (or programming systems in general) or that introduce
conceptual models for such systems are considered as related work for this thesis.

There are approaches that also provide a conceptual understanding of systems
similar to the here proposed design dimensions – although their focus in not on aspect-
oriented systems. Furthermore, there are works that directly stem from the aspect-
oriented literature that are related to the aspect-oriented design dimensions.

8.2 Conceptual Descriptions of Object-Oriented
Systems

For object-oriented systems there are a number of works giving a conceptual
description of the key characteristics of object-oriented software development and
object-oriented systems without relying on specific techniques and specific languages
semantics.

Probably the most popular conceptual description of object-oriented systems is being
provided in [Wegn87] where object-oriented systems are described by the (informal)
equation:

object-oriented = objects + classes + inheritance130

130 However, it should be noted that this view on object-oriented languages slightly changed since
prototypical languages (see for example [Lieb86, Taiv96]) are nowadays also commonly accepted called
object-oriented languages although they do not provide a class-construct.

230 8 - Related Work

In [Wegn87] terms like object, class, inheritance, and delegation are being
introduced in an informal way. Likewise to this thesis the intention of [Wegn87] is to
describe the design space of object-oriented systems.

Further works like for example [WeZd88] include conceptual descriptions of
different kinds of inheritance mechanisms. Also, [CaWe85] gives an (informal)
conceptual classification of different kinds of polymorphism131 that distinguishes for
example between universal and ad-hoc polymorphism. Such a classification provides
with an abstract conceptual understanding of the underlying concepts and mechanisms
to developers of object-oriented languages as well as to developers using a certain
object-oriented language. [Snyd86] describes the relationship between different kinds of
inheritance and encapsulation in an informal way and specifies a number of
requirements for encapsulation.

The here proposed design dimensions correspond to the mentioned works above in
a way that they also provide a conceptual understanding of a certain approach (in
contrast to the previous ones, to the aspect-oriented approach) and deliver such a
conceptual understanding by a non-formal framework. Similar to [Wegn87] (for the
object-oriented approach) the intention of the design dimensions is to describe the
design space for aspect-oriented systems.

Nevertheless, the focus of the design dimensions is also on the assessment of a
system in respect to whether it is able to handle a certain crosscutting problem. Such a
mapping of problem and solution is not the focus of previously mentioned
classifications for object-oriented systems.

Also, in correspondence to the mentioned approaches above the design dimensions
provide a vocabulary for developers in order to communicate different kinds of systems
and different kinds of design decisions that certain systems can be based on.

8.3 Enumeration-Based Crosscutting, Lexical
Crosscutting, Quantification, and Obliviousness

In the aspect-oriented literature there are already a number of terms that describe
characteristics of aspect-oriented systems on an abstract level. Examples for such terms
are enumeration-based crosscutting [GyBr03], lexical crosscutting [LLM99],
quantification and obliviousness [FiFr00, Film01]. While the first two terms describe
special characteristics of aspect-oriented systems, the latter ones try to describe the core
ingredients of aspect-orientation in general.

The terms enumeration-based and lexical crosscutting have been already exhaustively
discussed in section 5.4.4. In general, both terms are not defined precise enough to
determine the underlying characteristics of an aspect-oriented system.

131 [CaWe85] also gives some formal descriptions of different kinds of polymorphism based on the
lambda-calculus. Nevertheless, the conceptual understanding of different kinds of polymorphism is
being extracted by reasoning on different kinds of inheritance implementations.

8 - Related Work 231

However, with the help of the here proposed aspect-oriented design dimensions
both terms can be defined more precisely.

• The term enumeration-based crosscutting as illustrated in [GyBr03] refers to the
characteristic that join point properties require to be explicitly numerated.
Consequently, such enumeration is a closed join point value addressing (see
section 5.4.4.2) and a stand-alone property addressing (see section 5.4.4.3). Since
the examples given in [GyBr03] refer furthermore to elements that are directly
extracted from the application’s syntax, the join point properties are extracted in
a direct way (see section 5.4.4.1).

• The term lexical crosscutting as illustrated in [LLM99] refers to static
properties132(5.4.3.1) and direct property values (see section 5.4.4.1) that are
addressed in a lexical way (see section 5.4.4.1).

Based on an explanation using the aspect-oriented design dimensions, the difference
between both terms can be easily distinguished. Enumeration-based crosscutting
emphasizes the closed value addressing, while lexical crosscutting emphasizes the lexical
addressing of the underlying join point selection language.

The terms obliviousness and quantification are often used to describe the core
elements of aspect-orientation (see for example [TuKr03, KHH+01, Nord01] among
many others). Section 5.1.2 discussed exhaustively the inadequacies of the terms
obliviousness and quantification. In general, the problem is that both terms are too
generic as if they are able to express the conceptual model underlying aspect-oriented
systems. From this thesis’s point of view the elements join point model, join point
selection, and adaptation are too essential for the conceptual understanding of aspect-
oriented systems and cannot (and should not) be replaced by abstractions that are even
more general. Furthermore, although both terms permit to convey a general impression
of aspect-oriented software development, they are too general to differentiate the
aspect-oriented approach from other approaches (see section 5.1.2 for a corresponding
example). Also, the terms obliviousness and quantification try to describe the common
characteristics of aspect-oriented systems but do not try to describe variabilities among
them. Hence, based on these terms it is not possible to compare different systems.

In contrast to the previous terms the here proposed design dimensions represent a
much finer grained conceptual model for aspect-oriented systems that gives not only a
general idea of aspect-oriented systems as a whole but also a conceptual understanding
of the ingredients of aspect-oriented systems.

8.4 Join Point Model by Masuhara et al.
[MKD03] identifies a number of characteristics of join point models. Such
characteristics include the concept of join points and distinguishes between lexical join
points that represent locations in the program text and dynamic join points that are run-time actions,

132 In [LLM99] the authors only refer to elements from the code that can be extracted via a syntactical
analysis. Consequently, the underlying properties are static ones. Possibly, the authors (although not
explicitely mentioned [LLM99]) also refer to dynamic properties. In such a case the term lexical
crosscutting does not imply any statement in respect to the underlying properties.

232 8 - Related Work

such as events that take place during the execution of the program. These characteristics of join
points can be directly mapped to the join point models explained in section 5.3. The
term lexical join point as used in [MKD03] is similar to static join points: Both have a
direct representation in the code. The term dynamic join point as used in [MKD03] is
equivalent to dynamic and behavioral join points as introduced in section 5.3.3.
However, both terms do not permit to distinguish all kinds of potential join points.

1. Understanding lexical join points as pure textual elements is not sufficient: Systems like
for example AspectS provide static join points although they are not derived from
the program text but from the system’s metaobjects. Furthermore, the term textual
elements does not consider the difference between join points representing
structural elements and those representing behavioral elements.

2. The term dynamic join point as used in [MKD03] is equivalent to dynamic and
behavioral join points as introduced in section 5.3.3. The term does not reveal the
ability to have dynamic join points that represent structural elements.

Dynamic and structural join points are not described by the proposed model.
Furthermore, the proposed model does not explain the relationship between the
elements that identify join points and the join points itself. As discussed in section
5.4.3.1, the distinction of whether or not a join point is dynamic or not is not only a
matter of the join point itself, but also a matter of the distinguishing properties provided
by a certain class of join point. I.e. if a system does not provide any dynamic properties,
the underlying join point model is inherently static.

Furthermore, [MKD03] distinguishes between means of identifying join points and means
of effecting join point. The phrase means of identifying join points corresponds to the concern of
join point selection, but it does not reveal what kind of design decisions such a selection
language and the corresponding encoding is based on.

Similarly, the phrase means of effecting join point identifies join point adaptation as a
separate concern in the design of an aspect-oriented system but it does not reveal what
different ways of effecting join points exist.

Another important difference between the here proposed characterization and the
one proposed in [MKD03] is that this thesis explicitly distinguishes between the join
point model and the join point adaptation. This is due to the fact, that a join point
might be a structural join point, its the adaptation could be behavioral. Conceptual
differences between systems that provide dynamic join point models like AspectJ and
AspectS cannot be described by the conceptual model system as proposed in [MKD03].
Consequently, the model does not permit to describe the differenced among aspect-
oriented systems, but only their parallels.

Finally, it can be concluded that although the model described in [MKD03] proposes
a good characterization of aspect-oriented systems, it does not provide distinguishing
features to compare different aspect-oriented systems.

8 - Related Work 233

8.5 Modeling Framework for
Aspect-oriented Systems

In [MaKi03] a modeling framework for aspect-oriented systems is proposed. The
framework models aspect-oriented mechanisms as a weaver that combines two input
programs to produce a woven system.

A weaver is modeled as a 11-tuple where each element of the tuple represents a
different view on the system: There are elements for representing the set of join points,
the set of join point adaptations, the set of elements that represent distinguishing
characteristics to identify join points, etc. Afterwards, based on that framework, a
number of implementations are expressed in terms of the 11-tuple that represent
different aspect-oriented mechanisms (like for example pointcuts and advice in AspectJ,
composition strategies in Hyper/J, etc.).

The framework describes commonalities between weavers whereby the elements of
the 11-tupel represent common characteristics of aspect-oriented systems, but the
approach does provide distinguishing features that can be used to compare different
systems. The implementation of pointcut and advice rather suggests that there are no
conceptual differences between systems that provide an explicit selection of behavioral
join points and behavioral join point adaptation. Hence, such differences that exist
between systems cannot be described.

Furthermore, the modeling framework does not reveal what potential design
decisions exist for different aspect-oriented systems. For example, it does not describe
how join point properties potentially differ and what different kinds of join point
selections an aspect-oriented system may provide.

An interesting observation of the proposed implementations of open classes in
[MaKi03] (which correspond to introductions in AspectJ) is a class definition is also
described as a join point. This corresponds to the mapping of class definitions to static
class definition join points in AspectJ (see section 6.3).

8.6 Two-dimensional Taxonomy of Aspect-Oriented
Systems

Aspect-oriented system are characterized in [RaSu03] by means of a 2-dimensional
taxonomy. One dimension represents the richness of the underlying pointcut language and one
dimension represent the level of weaving. The taxonomy distinguishes between simple and
rich pointcut languages along one axis and type and instance level weaving in the other axis.

The approach is very similar to the here proposed design dimensions: They identify
orthogonal dimensions along which aspect-oriented system can be classified. According
to this, AspectJ is classified as a language with a rich pointcut language which provides
instance and type level weaving. According to this, the taxonomy provides already a first
foundation for the comparison of aspect-oriented systems: Systems that are mapped to
different points in the 2x2 matrix differ and permit to describe other kinds of
crosscutting concerns. However, the work in [RaSu03] hardly discusses what exactly
such kinds of crosscutting concerns are.

234 8 - Related Work

 Nevertheless, the taxonomy does not reveal the underlying criteria which classify a
pointcut language to be rich or not. Hence, it is not possible to apply the taxonomy to a
new system without applying the term richness in a rather intuitive way. Furthermore,
characteristics like how properties are extracted from the underlying base program are
not considered.

8.7 Join Point Designation Diagrams
Join point designation diagrams (JPDDs) as introduced in [SHU04] permit to
specify join point selection in a visual way using the UML [OMG01]. The intention of
JPDDS is to concentrate on the way of how join points are selected when modeling
aspects133.

Thereto, JPDDs extend the existing UML metamodel and provide a number of
features for specifying variables and selections within UML diagrams. For example,
JPDDs permit to specify variables for signatures or parameters in order to specify
additional constraints on them later on. Furthermore, JPDDS introduces additional
symbols like for example path expressions that abstract over message chains. Also,
JPDDS permit to combine diagrams expressing join point selections and shared
variables between them134.

The applicability of JPDDS is shown in [SHU04] via expressing known join point
selection criteria from the aspect-oriented literature.

In general, the here proposed design dimensions differ significantly from JPDDs:
The design dimensions explain the design space of aspect-oriented systems while
JPDDs are one specific aspect-oriented approach based on the base language UML.

Nevertheless, JPDDs have in common that the conceptual model as introduced in
section 5.2 corresponds to JPDDs: JPDDs emphasize the separation between join point
selection constructs and join point adaptation constructs135. In principle, it should be
possible to map JPDDs directly to the design dimensions. However, this mapping is out
of scope of this thesis.

8.8 Viewpoints
Viewpoints [FKN+92] permit to specify and integrate multi perspectives on a
heterogeneous software system. Heterogeneous means in this context that viewpoints
permit to describe the relationship between software elements coming from
representation styles (also called domains in viewpoints). Examples of such

133 In fact, the whole approach is not only restricted to join point selection but includes also means for
specifying the adaptation of join points.

134 The underlying mechanisms for sharing variables can be compared to the language approach of Sally as
introduced in Chapter 3: The underlying selection language is closely related to a logical programming
language and type information as provided by the UML are being used for specifying selections.

135 In fact, the design of JPPDs was highly influenced by the work presented in this thesis.

8 - Related Work 235

representation styles are Petri Nets, functional hierarchies or action tables (see
[FKN+92]).

In addition to domains, viewpoints contain a variety of elements that permit to
describe different software elements. Furthermore, the viewpoint framework permits to
describe relationships among different viewpoints.

In general, the affinity between the viewpoint approach and aspect-oriented software
development has been notices already in the literature (cf. e.g. [GBN+03, TO00,
TOHS99]). It seems as if viewpoints itself can be considered as an approach of aspect-
oriented software development on a very abstract level: Instead of having a concrete
programming language with a specific semantics and corresponding language constructs
that select and adapt modules, viewpoints describe element across different
programming languages. From this point of view, the here proposed aspect-oriented
design dimensions are quite similar, because they also provide such an abstract view.

However, the here proposed design dimensions intend to describe the commonalities
and differences of actual aspect-oriented systems. The focus of viewpoints is to
integrate different technologies coming from different sources. Consequently, the
addressed domain of the design dimensions and viewpoints is different.

Whether the resulting design dimensions also represent a reasonable conceptual
model for viewpoints has not been studied throughout this thesis. However, because of
the variety of underlying technologies of viewpoints, it seems rather doubtable that it is
reasonable to explain viewpoints in terms of the design dimensions.

8.9 Taxonomy of Software Change
In [BMZ+04] a taxonomy of software change is proposed. Although this taxonomy
does not explicitly refer to aspect-oriented systems, there are a number of parallels
between the proposed taxonomy of software change and the here proposed design
dimensions.

The taxonomy distinguish between a number of themes and dimensions of software
change which are extracted from the focus of when (temporal properties) do changes occur,
where (objects of change) do changes occur, and how (change support) changes are
accomplished136. The here identified ingredients of aspect-oriented system are very
similar. Join points can be regarded as the objects of change, and join point adaptations
can be regarded as the change support. Dynamicity of weaving can be regarded as the
temporal property of changes.

However, since the taxonomy proposed in [BMZ+04] has a different intention than
the here proposed dimensions of aspect-oriented system design, the taxonomy does not
help to distinguish between different kinds of aspect-oriented systems on a finer grained
level. For example, the design dimensions of join point properties focus on a very
detailed description of the system with respect to how a join point is extracted and what
properties it has.

136 The taxonomy furthermore classifies what (system properties) changes occur. However, this thesis does not
see any direct correspondance to the design dimensions in respect to such system properties.

236 8 - Related Work

8.10 Design Patterns
The work proposed in this thesis has a number of parallels to design patterns (cf. for
example [GHJV95, BMRS96] among many others). The background of patterns comes
from the work of Christopher Alexander [Ale79] which originates in the area of
architecture:

• Each pattern is a three-part rule that expresses a relation between a certain context, a problem,
and a solution.

• As an element in the world, each pattern is a relationship between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain spatial configuration which
allows these forces to resolve themselves.

• As an element of language, a pattern is an instruction which shows how this spatial
configuration can be used, over and over again, to resolve the given system of forces, wherever the
context makes it relevant.

Design patterns are the application of the patterns idea to software construction137.
The main intention of design patterns is to document recurring problems and their
solutions in software development. There are a number of different notations for design
patterns (cf. e.g. [RiZü96]), i.e., the way of how each pattern is documented. In general,
design patterns describe a context, a problem, a set of forces, and a solution.
Depending on the underlying notation, patterns might also describe a set of known
uses, consequence, related patterns, etc..

The solution part is being described mostly in terms of code examples that illustrate
possible applications of the pattern. For example, throughout this thesis a number of
typical implementations of design patterns are being used like observer (section 1.2.2.1),
visitor (section 1.2.2.2), singleton (section 3.3.1), decorator (section 3.3.3), and
adapter (section 7.3.5) are taken from the catalog described in [GHJV95]. However,
such implementations do not represent the solution-part of the pattern, although they
occur quite often in exactly that way as being described. In fact, the solution-part of
patterns is just an illustration of a possible solution: Each pattern comes with a large
number of different implementations. For example, section 1.2.2.1, 1.2.2.2, and 7.3
briefly discuss some possible variations of the solution.

The patterns as described for example in [GHJV95, BMRS96, Zdun01] are not
described in a formal way: Context, forces and solutions are described in an informal
way. Consequently, understanding and applying a pattern is still a process that requires
the interpretation of the reader: It is not possible to compute whether a design pattern’s
context matches the developer’s context, whether the problem matches the developer’s
problem, nor what concrete solution is appropriate.

Although the misinterpretation is a potential source of error (or the misuse of a
certain pattern), the benefit of design patterns is commonly accepted (see for example
[PUPT02] for an empirical study on design patterns).

137 In fact, a number of authors consider design patterns to be just a very special kind of applying the
pattern idea to software construction (cf. e.g. [RiZü96]).

8 - Related Work 237

Among many advantages of design patterns described in literature the following ones
occur very often (see for example [PUPT02, p. 596]):

• Design patterns encourage developers to apply best patterns.
• Design patterns improve communication, both among developers and from

developers to maintainers.
The difference between the here described design dimensions of aspect-oriented

systems and the design pattern approach is that the design dimensions describe the
design space for aspect-oriented systems. The intention is to describe a large variety of
design alternatives developers have in order to build an aspect-oriented system. Design
pattern catalogs like [GHJV95] describe in contrast to this a number of typical solutions
for a given problem: Their intention is not to describe the whole design space for a
given problem. Furthermore, design patterns exist of different levels of abstractions.
For example, the template method design pattern [GHJV95] is closely related to the
underlying code base while other design patterns like reflection [BMRS96] provide a
more abstract view on the problem and the corresponding solution.

However, there are a number of parallels between the design dimensions and design
pattern.

First, the intention of both is the same: Providing a foundation for developer to
communicate design decisions. The design dimensions provide an abstract vocabulary
to communicate the kind of design decisions the aspect-oriented system is based on. In
the same way, pattern catalogs or pattern languages provide an abstract vocabulary that
help developer to communicate design decisions in a certain domain.

Second, the design dimensions help developer to get an understanding of the
underlying aspect-oriented system they use. This corresponds to the benefit gained from
documenting software using design patterns. If an aspect-oriented system is equipped
with the design dimensions the system is based on (which corresponds to the mapping
of the design dimensions for a number of chosen system in section 6), such information
helps developers to understand the systems, since a vocabulary known from other
systems can be reused in order to understand a new one.

Third, since the dimensions are very abstract views on aspect-oriented systems, each
dimension provides a large number of implementations. This corresponds to the
abstract idea provided by each pattern, which also results into a number of different
implementations.

8.11 Aspect-Oriented Design Patterns
Aspect-oriented design patterns as introduced for examples in [HaCo03, HSU03]
represent often occurring problems in the design of software systems base on aspect-
oriented languages.

Some aspect-oriented patterns have already been explained and used throughout this
thesis, for example container introduction (see sections 2.2.1 and 3.2.1) and abstract
aspect (see section 2.2.4), although they were not introduced here in pattern form. In
[HSU03] such patterns are introduced using the Alexandrian form (see [RiZü96] for a
description of the Alexandrian form and alternative forms).

238 8 - Related Work

The aspect-oriented design patterns describe recurring problems and recurring
solutions for such problem in aspect-oriented systems. Consequently, such design
patterns already imply a number of parallels between such systems. However, these
parallels are not explicitly written down: It is up to the developer to determine whether
his system provides language constructs in order to implement such patterns in an
appropriate way.

Similar to the aspect-oriented design patterns, the here proposed design dimensions
represent an abstract view on aspect-oriented systems. However, the aspect-oriented
patterns focus on applications written in an aspect-oriented system while the design
dimensions focus on the aspect-oriented languages and systems itself: While the aspect-
oriented patterns operate on the application level, the design dimensions operate on the
language level.

8.12 Design Patterns for Aspect-Oriented
Systems

In [Zdun04] a pattern language for the construction of aspect-oriented system is
provided based on a number of patterns present in [Zdun01]. Exemplary patterns of the
pattern language are parse-tree-interpreter, message interceptor, hook injector and
invocation context.

The parse-tree-interpreter describes the implementation of an aspect-oriented system
based on parse-tree information where the parse-tree interpreter provides full parse-tree
information. Message interceptors address the problem of implementing control tasks
over the message flow, such as interception, modifications of messages, or traces, in a
programming language that does not support such techniques natively. Hook injector
describe the addition of explicit hooks within the base application that are used to
invoke aspect-specific behavior directly or indirectly. The invocation context provides
dynamic execution context in order to determine the caller and the callee of a message
send. The invocation context is used to determine based on dynamic information
whether aspect-specific code is to be invoked.

Furthermore, [Zdun04] discusses how a number of different aspect-oriented systems
can be understood in terms of the pattern language.

In general, the work proposed in [Zdun04] and the here proposed design dimensions
of aspect-oriented systems are closely related since both provide an abstract view on
aspect-oriented systems. Both approaches provide a vocabulary to developers in order
to communicate design decisions underlying aspect-oriented systems. Furthermore, the
method of extracting design elements and proving their benefit is the same in both
approaches: The patterns were extracted based on an abstract reasoning on aspect-
oriented systems and their appropriateness is being shown via explaining aspect-
oriented systems in terms of such patterns. The method of extracting and showing the
appropriateness of the design dimensions chosen throughout this thesis corresponds to
this approach.

The main difference is that the pattern language is mainly focused on the
implementation of the weaver, while the design dimensions mainly concentrate on the
conceptual model of aspect-oriented systems. For example, [Zdun04] does not contain

8 - Related Work 239

any description of the underlying conceptual model of aspect-oriented systems
consisting of join point decomposition, join point selection, and join point adaptation,
which is according to section 5.2 considered to be an essential part of aspect-oriented
systems. Furthermore, the conceptual model of join points as described in 5.3 is not
considered in [Zdun04].

The pattern language described in [Zdun04] can be considered mainly as a pattern
language for implementing weavers. Consequently, it fits into the conceptual model of
weavers as proposed in section 5.6. While the design dimensions of weavers are quite
abstract and do not directly tell the developer how to implement them, the pattern
languages provides concrete proposals of how each pattern can be implemented (see
also [Zdun01]). For example, hook injectors are a way to implement weavers based on
code transformation (see section 5.6.2). Consequently, it seems reasonable to combine
the insights of the design patterns with the design dimensions of the weavers. However,
this has been out of the scope of this thesis.

9

CONCLUSION

9.1 Summary
This thesis introduced so-called design dimensions of aspect-oriented systems. Such
dimensions describe the design space of aspect-oriented systems by a number of
orthogonal dimensions for the different ingredients. The identified ingredients of
aspect-oriented systems are namely the join point model, the join point selection
language (consisting of the encoding of join point properties and join point addressing),
the join point adaptation, and the weaver.

The design dimensions are extracted by analyzing of different characteristics of
aspect-oriented with respect to such ingredients, and are documented in a textual way.
The applicability of the design dimensions has been shown by mapping the aspect-
oriented approaches AspectJ, Hyper/J, AspectS, Sally, and Morphing Aspects to them.
Furthermore, their applicability has been shown by illustrating how these dimensions
help to estimate the appropriateness of a system to solve a given crosscutting problem.

Chapter 1 (Introduction) briefly introduces the motivation for aspect-oriented software
development and illustrated the problem domain being addressed by aspect-oriented
systems. Thereto the chapter introduces the necessary vocabulary like composition,
decomposition, decomposition criteria, separation of concerns, crosscutting concern, crosscutting concern,
crosscutting code, etc.

The design dimensions are motivated by a lack of a conceptual view on aspect-
oriented systems. Thereto, this thesis introduced 5 different kinds of aspect-oriented
systems. First, the systems AspectJ, Hyper/J, and AspectS (Chapter 2 - Examples of
Aspect-Oriented Systems) were introduced. Then, the system Sally (Chapter 3 - Sally –
Specifying Generic Aspects) as well as the aspect-oriented approach Morphing Aspects
(Chapter 4 - Morphing Aspects) have been introduced, which both have been
implemented as part of this thesis. These systems reveal a large variety of language
constructs and idioms that are implemented in aspect-oriented systems. Hence, these
systems represent the foundation for illustrating and arguing for the design dimensions.

Chapter 5 (Design Dimensions of Aspect-Oriented Systems) represented the main part of
this thesis. Before introducing the design dimensions, the chapter discussed in detail the
inadequacies of the known terminology in aspect-oriented software development and
argues for the need of an appropriate abstract conceptual model for aspect-oriented
systems. Then, the chapter characterized aspect-oriented systems as software systems
having a base language (and a base application), a join point representation (based

242 9 - Conclusion

on a corresponding join point model) of the base system, constructs for specifying
join point selections, constructs for specifying join point adaptations, and a weaver
that technically realized the integration of the aspect-specific code. Based on this model,
a number of design dimensions were proposed for the join point model, join point
properties (representing the available data of join points), join point property addressing,
join point adaptation, and weaving. A main characteristic of these design dimensions
(with only few exceptions) is that they are orthogonal. Consequently, design decisions of
the same features can be described in terms of different design dimensions independent
of each other.

Chapter 6 (Implementations of Design Dimensions) applied the design dimensions in order
to describe the aspect-oriented systems AspectJ, Hyper/J, AspectS, Sally, and Morphing
Aspects. Furthermore, the role concept was explained in terms of the design
dimensions.

Chapter 7 (Design Dimensions-Based Comparison and Selection) described how the design
dimensions can be used in order to estimate the appropriateness of aspect-oriented
systems to modularize a given crosscutting concern. Thereto, the chapter discussed first
how the design dimensions can be used to compare different aspect-oriented systems
(that are already described in terms of the design dimensions). Then, the chapter
expressed different implementations of the observer design pattern in terms of the
design dimensions. These examples were compared with the implementations of the
design dimensions as explained in Chapter 6. The example showed that it is possible to
express a given crosscutting concern in terms of the design dimensions and that an
estimation of a set of aspect-oriented systems that are able to handle the crosscutting
concern is possible.

Chapter 8 (Related Work) discussed work related to the here proposed design
dimensions.

9.2 Future Works
The design dimensions provide a large variety of possible future works upon them.
Future implementations of aspect-oriented systems may make it reasonable to think
about an evolution of the design dimensions – in case it turns out to that there are
different common tendencies in the future in the way how indirect join point addressing
is achieved, it might be reasonable to differentiate different implementations of indirect
addressing on a finer level or granularity.

The best benefit can be gained from the design dimensions if there is a large number
of mappings of existing aspect-oriented systems to them. In such a case choosing an
appropriate implementation in order to modularize a crosscutting concern potentially
leads to a large number of different implementations so that additional technical
concerns (like desired base languages, desired weaving techniques, tool support, etc.)
can be taken into account. Consequently, future works include also the description of
additional aspect-oriented systems in terms of the design dimensions.

In application development typically a large number of different concerns appear
whereby an analysis of the concerns may reveal that some concerns should be better
handled by one system while other concerns should be handled by another system. In
such a situation it is desirable to know whether it is possible to apply different systems

9 - Conclusion 243

at the same time and what needs to be considered if different systems are applied at the
same time. However, the design dimensions do not explain the relationship between
different techniques with respect to whether they may be applied at the same time in the
same application. Hence, an analysis of conflicts between different kinds of aspect-
oriented systems is needed as well as a set of best practices how to handle such
conflicts. Such an analysis may be done in terms of the design dimensions.

The area of aspect-oriented software development is relatively new and there is still
the lack of best practices and guidelines that determine how to build high quality
aspects. In the presence of such guidelines it might turn out that certain design
dimensions are more important than others. Consequently, the process of selecting
appropriate systems requires to be adapted in the future based on such guidelines.

The design dimensions were extracted based on the different kinds of
implementations observable in current aspect-oriented systems. However, for the design
of new aspect-oriented systems it seems desirable to have guidelines starting from the
problem description of concrete crosscutting concerns to corresponding language
features. Consequently, it seems reasonable to write down a number of design
dimensions as a pattern language to guide developers from a problem to exemplary
solution implementations.

9.3 Discussion and Conclusion
The main motivation of this work was the observation that there are currently no
criteria available that determine the aspect-orientedness of systems that permit to compare
aspect-oriented systems, nor to estimate the appropriateness of aspect-oriented systems
with respect to their ability to modularize a given crosscutting concern. Especially for
the last point it has been necessary to study known aspect-oriented systems deeply
before being able to state whether they are able to handle such a given concern. The
first two points result in a fuzzy understanding of the term aspect-orientation. This
makes it hard to communicate the key characteristics of aspect-oriented systems as well
as the benefit of aspect-orientation in general.

The proposed design dimensions and the corresponding description of aspect-
oriented systems - that identified the core ingredients join point model, join point
properties, property addressing, join point adaptation, and weaving - provide a
reasonable conceptual understanding of aspect-oriented systems. On the one hand some
design dimensions (like the design dimensions of join point models) are abstract enough
to provide a significant impression of the aspect-oriented system without the need to
explain any language specific element. Others (like dynamicity and level of
correspondence for join point properties) are closely related to the implementation.
Furthermore, the design dimensions of a certain ingredient of an aspect-oriented system
reflect on different possible perspectives when providing certain features.

However, the proposed dimensions also have some drawbacks. First, there are
situations where the underlying design dimensions are not clearly defined and it is up to
the user of the design dimensions to interpret an unambiguous meaning. For example,
section 5.4.3.4 discussed exhaustively how the locality dimension could be understood
in different ways. Such potential sources of errors in the application of the design
dimensions are known to this thesis. However, in the mapping of the design dimensions

244 9 - Conclusion

to known aspect-oriented systems as well as in the application of the design dimensions
to a set of crosscutting concerns the proposed definitions of the terms turned out to be
sufficient.

There are also examples, where the design dimensions only roughly describe the
underlying design decisions. Examples for such design dimensions are the directness of
join point addressing or level of value sharing. In principle, it would be possible to
describe such dimensions more concretely for example by distinguishing indirect value
addressing by the means of formal languages. However, for current aspect-oriented
systems such a distinction is rather misleading: Either systems provide no indirect
addressing for certain properties at all (like method names for merge relationships in
Hyper/J), or they provide very simplified abstractions (like wildcards in AspectJ and
Hyper/J), or they provide Turing-complete languages to describe possible values
(according to the property addressing of AspectS). However, until now only the use of
wildcards can be considered as a common direction in the aspect-oriented systems in
order to provide lexically abstractions over property values, as it is provided by a large
number of systems. Before considering to distinguish indirect addressing on a finer level
of granularity the future development of aspect-oriented systems has to be examined.

Based on the design dimensions, it is possible to understand aspect-oriented systems
without relying on implementation specific characteristics and system specific
vocabulary. When learning a new aspect-oriented system it is possible to participate
from the understanding of known systems because the differences of the new system
can be explained in terms of the design dimensions. Furthermore, it has been shown
that with the aid of the design dimensions it is possible to estimate the appropriateness
of aspect-oriented systems in order to modularize a given crosscutting concern.
Consequently, the design dimensions represent a valuable contribution to the research
direction of aspect-oriented software development.

BIBLIOGRAPHY

[ABD+89] Atkinson, M.; Bancilhon; F.; DeWitt, D.; Dittrich, K.; Maier, D.; Zdonik, S.:
The Object-Oriented Database System Manifesto. In Proceedings of the 1st
International Conference on Deductive and Object-Oriented Databases,
pages 223-40, Kyoto, Japan, December 1989, pp. 3-20.

[Aks03] Aksit, M. (ed.): Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development, Boston, MA, March 17 - 21, ACM, 2003.

[Aldr04] Aldrich, J.: Open Modules: Reconciling Extensibility and Information Hiding,
Workshop of Software Engineering Properties of Languages for Aspect
Technologies (SPLAT) in conjunction with AOSD, March 18, 2004.

[Ale79] Alexander, C.: The Timeless Way of Building. Oxford Univ. Press, 1979.

[ÅLSM03] Åberg, R. A.; Lawall, J.; Südholt, M.; Muller, G.: Evolving an OS Kernel using
Temporal Logic and Aspect-Oriented Programming. In 2nd AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
Boston, Massachusetts. March, 2003, pp. 7-12.

[AspJ03] AspectJ Programmers Guide, http://eclipse.org/aspectj/, version 1.1.1
(November 03).

[AßLu99] Aßmann, U.; Ludwig, A.: Aspect Weaving with Graph Rewriting. In: Czarnecki,
K.; Eisenecker, U. W. (Eds.): Generative and Component-Based Software
Engineering, 1st International Symposium, GCSE'99, Erfurt, Germany,
September 28-30, 1999, LNCS 1799, Springer-Verlag, 2000, pp. 24-36.

[Aßma03] Aßmann, U.: Automatic Roundtrip Engineering, Electronic Notes in Theoretical
Computer Science, Vol. 82, No. 5, Elsevier, 2003, pp. 854-860.

[ASU86] Aho, A.; Sethi, R.; Ullman, J.: Compilers: Principles, Techniques and Tools,
Addison Wesley, 1986.

[AWB+93] Aksit, M.; Wakita, K.; Bosch, J.; Bergmans, L.; Yonezawa, A.: Abstracting
Object-Interactions Using Composition-Filters. In: Object-based Distributed
Processing, R. Guerraoui, O. Nierstrasz and M. Riveill (Eds.), LNCS,
Springer-Verlag, (1993), pp. 152-184.

[Bare84] Barendregt, H. P.: The Lambda Calculus: Its Syntax and Semantics, North-
Holland, 1984.

[Bato03] Batory, Don S.: A Tutorial on Feature Oriented Programming and Product-Lines.
Proceedings of the 25th International Conference on Software Engineering
(ICSE), May 3-10, 2003, Portland, Oregon, USA. IEEE Computer Society
2003, pp. 753-754.

246 Bibliography

[BCDM02] Bryant, A.; Catton, A.; De Volder, K.; Murphy, G.: Explicit Programming, In:
[Kic02], pp. 10-18.

[BCK98] Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice. Addison-
Wesley, 1998.

[Beck02] Beck, K.: The Metaphor Metaphor, Keynote at 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2002, November 4-8, 2002, Seattle, Washington,
USA.

[BFRJ98] Brant, J.; Foote, B.; Johnson, R. E.; Roberts, D.: Wrappers to the Rescue,
Proceedings of the 12th European Conference on Object-Oriented
Programming (ECOOP), LNCS 1445, 1998, pp. 396-417.

[BHMO04] Bockisch, C.; Haupt, M.; Mezini, M.; Ostermann, K.: Virtual Machine Support
for Dynamic Join Points, In: [Lieb04], pp. 83-92.

[BMDV02] Brichau, J.; Mens, K.; De Volder, K.: Building Composable Aspect-Specific
Languages with Logic Metaprogramming. In: Batory, Don S.; Consel, C.; Taha, W.
(Eds.): Generative Programming and Component Engineering, ACM
SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA, USA,
October 6-8, 2002, Proceedings. LNCS 2487, Springer 2002,
pp. 110-127.

[BMRS96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.: Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons, 1996.

[BMZ+04] Buckley, J.; Mens. T; Zenger, M.; Rashid, A.; Kniesel, G.: Towards a taxonomy
of software change. To appear in: Journal on Software Maintenance and
Evolution: Research and Practice, John Wiley & Sons, 2004.

[BOSW98] Bracha, G.; Odersky, M.; Stoutamire, D.; Wadler, P.: Making the future safe for
the past: Adding Genericity to the JavaTM Programming Language, Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA), Vancouver, British
Columbia, Canada, October 18-22, 1998, SIGPLAN Notices 33(10), 1998,
pp. 183-200.

[Bruc02] Bruce, K. B.: Foundations of Object-Oriented Languages: Types and Semantics, MIT
Press, 2002.

[BSI03] British Standards Institute (BSI): The C++ Standard, John Wiley and Sons,
2nd edition, 2003.

[Cann82] Cannon, H.: Flavors: A non-hierarchical approach to object-oriented programming,
Symbolics Inc., 1982.

[CaWe85] Cardelli, L.; Wegner, P.: On Understanding Types, Data Abstraction, and
Polymorphism, Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985,
pp. 471-522.

[CBE+00] Constantinides, C. A.; Bader, A.; Elrad, T.; Netinant, P.; Fayad , M. E.:
Designing an aspect-oriented framework in an object-oriented environment, ACM
Computing Surveys, 2000, Article No. 41.

Bibliography 247

[CBE00] Constantinides, C. A.; Bader, A.; Elrad, T.: A Two-Dimensional Composition
Framework to Support Software Adaptability and Reuse, Proceedings of the 6th In-
ternational Conference on Software Reuse (ICSR), Vienna, Austria, 2000,
pp. 388-401.

[CDHJ] Cibrán, M. A.; D'Hondt, M.; Jonckers, V.: Aspect-Oriented Programming for
Connecting Business Rules, 6th International Conference on Business
Information Systems, Colorado Springs, USA, June 2003.

[Chib95] Chiba, S.: A Metaobject Protocol for C++, Proceedings of the 10th Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), October; 1995, pp. 285-299.

[Chib00] Chiba, S.: Load-time structural reflection in Java. Elisa Bertino (Ed.): ECOOP
2000 - Object-Oriented Programming, 14th European Conference, Sophia
Antipolis and Cannes, France, June 12-16, 2000, Proceedings. LNCS 1850,
Springer-Verlag (2000), pp. 313–336.

[CHJ03] Cibran, M.; D'Hondt, M.; Jonckers, V.: Aspect-Oriented Programming for
Connecting Business Rules, In: Proc. of the 6th International Conference on
Business Information Systems (BIS'03). Colorado Springs, USA, June 2003.

[CHMB03] Cilia, M.; Haupt, M.; Mezini, M.; Buchmann, A.: The Convergence of AOP and
Active Databases: Towards Reactive Middleware, Proceedings of the 2nd
International Conference on Generative Programming and Component
Engineering (GPCE), Erfurt, Germany, September 22-25, 2003, LNCS
2830, Springer-Verlag, 2003, pp. 169-188.

[CKFS01] Coady, Y.; Kiczales, G.; Feeley, M.; Smolyn, G.: Using AspectC to Improve the
Modularity of PathSpecific Customization in Operating System Code, Proceedings of
the 8th European Software Engineering Conference held jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, September 10-14, 2001, pp. 88-98.

[ClBa05] Clarke, S.; Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme
Approach, Addison-Wesley, 2005.

[CLCM00] Clifton, C.; Leavens, G. T.; Chambers, C.; Millstein, T.: MultiJava: modular
open classes and symmetric multiple dispatch for Java, Proceedings of the 15th
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Minneapolis, Minnesota, USA, October 15-19,
2000. SIGPLAN Notices 35(10), 2000, pp. 130-145.

[CLCM00] Clifton, C.; Leavens, G.; Chambers, C.; Millstein, T.: MultiJava, Modular open
classes and symmetric multiple dispatch for Java, In Proceedings of the 2000 ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2000), Minneapolis, Minnesota,
USA, October 15-19, 2000. SIGPLAN Notices 35(10), October 2000, pp.
130-146.

[ClLe03] Clifton, C.; Leavens, G. T.: Obliviousness, Modular Reasoning, and the Behavioral
Subtyping Analogy, Iowa State University, Department of Computer
Science,Technical Report, TR #03-15, December 2003.

248 Bibliography

[ClWa01] Clarke, S.; Walker, R.: Composition Patterns: An Approach to Designing Reusable
Aspects, pp. 5-14.

[Codd70] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

[Copl98] Coplien, J. O.: Multi-Paradigm Design for C++, Addison-Wesley, 1998.

[Cour85] Courtois, P. J.: On time and space decomposition of complex structures,
Communications of the ACM, Volume 28, No. 6 (1985), pp. 590-603.

[CzEi00] Czarnecki, K.; Eisenecker, U. W.: Generative Programming: Methods Tools and
Applications, Addison-Wesley, 2000.

[Dijk76] Dijkstra, E.: A Discipline of Programming, Prentice Hall, Englewood Cliffs,
New Jersey, 1976.

[DLS+01] Dutchyn, C.; Lu, P.; Szafron, D.; Bromling, S.; Holst, W.: Multi-Dispatch in
the Java Virtual Machine: Design and Implementation, Proceedings of the 6th
USENIX Conference on Object-Oriented Technologies and Systems
(COOTS),January 29 - February 2, 2001, San Antonio, Texas, USA, 2001,
pp. 77-92.

[DV98] De Volder, K.: Type-Oriented Logical Meta Programming, PhD thesis, Vrije
Universiteit Brussel, Belgium, 1998.

[DVDH99] De Volder, K.; D’Hondt, T.: Aspect-Oriented Logic Meta Programming, Pierre
Cointe (Ed.): 2nd International Conference on Meta-Level Architectures
and Reflection (Reflection'99), Saint-Malo, France, July 19-21, 1999, LNCS
1616, Springer-Verlag, 1999, pp. 250-272.

[EAK+01] Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.; Ossher, H.: Discussing
Aspects of AOP, Communication of the ACM, Vol. 44, No. 10, October,
2001, pp. 33-38.

[EMO04] Eichberg, M.; Mezini, M.; Ostermann, K.: Pointcuts as Functional Queries, 2nd
Asian Symposium on Programming Languages and Systems (APLAS 2004),
Taipei, Taiwan, November 4-6, 2004. Proceedings. Lecture Notes in
Computer Science 3302, Springer, 2004, pp. 366-381.

[FECA04] Filman, R. E.; Elrad, T.; Clarke, S.; Aksit, M. (Eds.): Aspect-Oriented Software
Development, Addison-Wesley, 2004.

[FiFr00] Filman, R. E.; Friedman, D. P.: Aspect-Oriented Programming is Quantification
and Obliviousness, Proceedings of the Workshop on Advanced Separation of
Concerns, OOPSLA 2000, Minneapolis, October 2000.

[Film01] Filman, R. E.: What is AOP: Revisited, , Workshop on Multi-Dimensional
Separation of Concerns at ECOOP, Budapest, Hungary, June 18-22, 2001.

[FKN+92] Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Fiielstein, L.; Goedicke, M.:
Viewpoints: A Framework for Integrating Multiple Perspectives in System Development,
International Journal of Software Engineering and Knowledge Engineering,
vol. 2(l), 1992, pp. 31-57.

[Floy79] Floyd, R. W.: The Paradigms of Programming, Communications of the ACM,
Volume 22, No. 8 (1979), pp. 455-460.

Bibliography 249

[FoJo86] Foote, B.; Johnson, R. E.: Reflective Facilities in Smalltalk-80, Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA'86), Portland, Oregon, Proceedings. SIGPLAN Notices 21(11),
November 1986, pp. 327-335.

[Fowl99] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W. F.; Roberts, D.: Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

[GBN+03] Gray, J.; Bapty, T.; Neema, S.; Schmidt, D. C.; Gokhale, A.; Natarajan, B.:
An Approach for Supporting Aspect-Oriented Domain Modeling, Generative
Programming and Component Engineering (GPCE 2003), Springer-Verlag
LNCS 2830, Erfurt, Germany, September 22-25, 2003, pp. 151-168.

[GHJV95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[GoRo89] Goldberg, A.; Robson, D.: Smalltalk 80 – The Language, Addison-Wesley,
1989.

[Gran98] Grand, M: Patterns in Java: Volume. 1, John Wiley & Sons, 1998.

[GrJo89] Graver, J. O.; Johnson, R. E.: A type system for Smalltalk, Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, p.136-150, December 1989, San Francisco, California, United
States, pp. 136-150.

[GSR96] Gottlob, G.; Schrefl, M.; Röck, B.: Extending Object-Oriented Systems with Roles,
ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996,
pp. 268-296.

[GyBr03] Gybels, K.; Brichau, J.: Arranging Language Features for More Robust Pattern-
based Crosscuts, In: [Aks03], pp. 60-69.

[HaCo03] Hanenberg, S.; Costanza, P.: Connecting Aspects in AspectJ: Strategies vs. Patterns,
1st Workshop on Aspects, Components, and Patterns for Infrastructure
Software at AOSD’02, Enschede, The Netherlands, April 23, 2002,
pp. 40-45.

[HaKi02] Hannemann, J.; Kiczales, G.: Design pattern implementation in Java and AspectJ.
Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002,
November 4-8, 2002, Seattle, Washington, USA. SIGPLAN Notices 37(11),
ACM-Press, pp. 161-173.

[HaOs93] Harrison, W.; Ossher, H.: Subject-Oriented Programming (A Critique of Pure
Objects), In: Paepcke, A. (Ed.): Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Eighth
Annual Conference, 26 September - 1 October, Washington, DC, USA,
Proceedings. SIGPLAN Notices 28(10), October 1993, pp. 411-428.

[HaUn01] Hanenberg, S.; Unland, R.: Using and Reusing Aspects in AspectJ, Workshop on
Advanced Separation of Concerns in Object-Oriented Systems at OOPSLA,
Tampa, Florida, October, 2001.

250 Bibliography

[HaUn01a] Hanenberg, S.; Unland, R.: Concerning AOP and Inheritance, Workshop
Aspekt-Orientierung der GI-Fachgruppe 2.1.9, Paderborn, May 3-4, 2001,
pp. 1-6.

[HaUn02a] Hanenberg, S., Unland, R.: A Proposal For Classifying Tangled Code, Workshop
Aspekt-Orientierung der GI-Fachgruppe 2.1.9, Bonn, Germany, February
21-22, 2002, pp. 7-12.

[HaUn02b] Hanenberg, S.; Unland, R.: Roles and Aspects: Similarities, Differences, and
Synergetic Potential, 8th International Conference on Object-Oriented
Information Systems (OOIS) LNCS 2425, Springer-Verlag, 2002, pp. 507-
521.

[HaUn02c] Hanenberg, S., Unland, R.: Specifying Aspect-Oriented Design Constraints in
AspectJ, Workshop on Tools for Aspect-Oriented Software Development at
OOPSLA, Seattle, November 4, 2002.

[HaUn03a] Hanenberg, S.; Unland, R.: Parametric Introductions, In: [Aks03], pp. 80-89.

[HBU01] Hanenberg, S.; Bachmendo, B., Unland, U.: An Object Model for General-
Purpose Aspect Languages, In Bosch, J. (Ed.): Generative and Component-
Based Software Engineering, Third International Conference, GCSE 2001,
Erfurt, Germany, September 9-13, 2001, Proceedings. Lecture Notes in
Computer Science 2186, Springer, 2001, pp. 80-91.

[Herr02] Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collaborations,
In: Aksit, M.; Mezini, M.; Unland, R. (Eds.): Objects, Components,
Architectures, Services, and Applications for a Networked World,
International Conference NetObjectDays, NODe 2002, Erfurt, Germany,
October 7-10, 2002, Revised Papers. Lecture Notes in Computer Science
2591 Springer 2003, pp. 248-264.

[HeSc91] Heuer, A.; Scholl, M. H.: Principles of Object-Oriented Query Languages.
In: Appelrath, H.-J. (Hrsg.), Proceedings der 4. BTW (GI Fachtagung), Nr.
270 der Reihe Informatik-Fachberichte, Springer-Verlag, 1991, pp. 178-197.

[HHU04] Hanenberg, S.; Hirschfeld, R.; Unland, R.: Morphing Aspects: Incompletely Woven
Aspects and Continuous Weaving, 3rd International Conference on Aspect-
Oriented Software Development (AOSD), Lancaster, England, March,
ACM Press, 2004, pp. 46-55.

[HHUK03] Hanenberg, S.; Hirschfeld, R.; Unland, R.; Kawamura, K.: Aspect Weaving:
Using the Base Language's Introspective Facilities to Determine Join Points, Workshop
Advancing the State-of-the-Art in Run-Time Inspection at ECOOP ’03, July
21, Darmstadt, Germany, 2003, pp. 111-126.

[HiHu04] Hilsdale, E.; Hugunin, J.: Advice Weaving in AspectJ, In: [Lieb04], pp. 26-35.

[Hirs02] Hirschfeld, R.: AspectS - Aspect-Oriented Programming with Squeak. In M. Aksit,
M. Mezini, R. Unland (Hrsg.): Objects, Components, Architectures,
Services, and Applications for a Networked World, LNCS 2591, Springer,
2003, pp. 216-232.

[Hirs02b] Hirschfeld, R.: AspectS: Aspects in Squeak, Workshop on Tools for Aspect-
Oriented Software Development at OOPSLA, Seattle, November 4, 2002.

Bibliography 251

[Hirs03] Hirschfeld, R.: Advice Activation in AspectS, Proceedings of the 2nd Workshop
on Aspect-Oriented Software Development by the GI SIG 2.1.9 – Object-
Oriented Software Development, Bonn, February 21-22, 2003, pp. 55-59.

[HKG+01] Hilsdale, E.; Kiczales, G.; Griswold, B., Isberg, W.; Kersten, M., Palm, J.,
Tutorial: Aspect-Oriented Programming with AspectJ, Proceedings of the Joint
European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria, September 2001.

[HMU01] Hopcroft, J. E.; Motwani, R.; Ullman, J. D.: Introduction to Automata Theory,
Languages, and Computation, Addison Wesley Publishing Company, 2001.

[HOU03] Hanenberg, S.; Oberschulte, C.; Unland, R.: Refactoring of Aspect-Oriented
Software, 4th Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts and Applications for a Networked
World (Net.ObjectDays), Erfurt, Germany, September 22-25, 2003,
pp. 19-35.

[HSU03] Hanenberg, S.; Schmidmeier, A.; Unland, R.: AspectJ Idioms for Aspect-Oriented
Software Construction, Proceedings of 8th European Conference on Pattern
Languages of Programs (EuroPLoP), Irsee, Germany, 25th–29th June,
2003, UVK Universitätsverlag Konstanz, 2004, pp. 617-644.

[HSU05a] Hanenberg, S.; Stein, D.; Unland, R.: Eine Taxonomie für aspektorientierte
Systeme, In: Liggesmeyer, P.; Pohl. K.; Goedicke. M. (Eds.): Software
Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik,
March, Essen. Lecture Notes in Informatics 64, GI, 2005, pp. 167-178.

[HSU05b] Hanenberg, S.; Stein, D.; Unland, R.: Roles From an Aspect-Oriented Perspective,
Workshop on Views, Aspects and Roles — VAR '05 in conjunction with
ECOOP, Glasgow, 25th July, 2005.

[HZU05] Hanenberg, S.; Zubairov, R.; Unland, R.: Modularizing Security Related Concerns
in Enterprise Applications – An Case Study with J2EE and AspectJ, Accepted for
publication in : Proceedings of Net-ObjectDays, Erfurt, 2005.

[IKM+97] Ingalls, D. H. H.; Kaehler, T.; Maloney, J.; Wallace, S.; Kay, A. C.: Back to the
Future: The Story of Squeak, A Practical Smalltalk Written in Itself, Proceedings of
the 1997 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA '97), Atlanta, Georgia,
October 5-9, 1997. SIGPLAN Notices 32(10), October 1997, pp. 318-326.

[IPW99] Igarashi, A.; Pierce, B.; Wadler, P.: Featherweight Java: A Minimal Core Calculus
for Java and GJ. Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applications
(OOPSLA '99), Denver, Colorado, USA, November 1-5, 1999, SIGPLAN
Notices 34(10), October 1999. pp. 132-146.

[IwZh03] Iwamoto, M.; Zhao, J.: Refactoring Aspect-Oriented Programs, Workshop in
Aspect-Oriented Modeling With UML, UML'2003, San Francisco,
California, USA, October 20, 2003.

[JoFo88] Johnson, R. E.; Foote, B.: Designing reusable classes, Journal of Object-
Oriented Programming, Vol. 1, No. 5 (1988), pp. 22-35.

252 Bibliography

[JSGB00] Joy, B.; Steele, G.; Gosling, J.; Bracha, G.: JavaTM Language Specification, 2nd
Edition, Addison-Wesley, 2000.

[KCA04] Kniesel, G.; Costanza, P.; Austermann, M.: JMangler – A Powerful Back-End
for Aspect-Oriented Programming, In: Filman, R.; Elrad, T.; Clarke, S.; Aksit, M.
(Eds.): Aspect-Oriented Software Development, Prentice Hall, 2004.

[KDRB91] Kiczales, G.; des Rivières, J.; Bobrow, D. G.: The Art of the Metaobject Protocol,
MIT Press, 1991.

[KeHo98] Keller, R.; Hoelzle, U.: Binary component adaptation. Proceedings of the 12th
Conference on European on Conference Object-Oriented Programming.
LNCS 1445, Springer-Verlag (1998), pp. 307-329.

[KhCo86] Khoshafian, S.; Copeland, G. P.: Object Identity. In: Meyrowitz, N. K. (Ed.):
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA'86), Portland, Oregon, Proceedings. SIGPLAN
Notices 21(11), November 1986, ACM Press, 1986, pp. 406-416.

[KHH+00] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold W.
G.: Semantics-based crosscutting in AspectJ, Workshop on Multi-Dimensional
Separation of Concerns at ICSE, June 6, 2000.

[KHH+01] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W.
G.: An Overview of AspectJ, In: Proceedings of European Conference on
Object-Oriented Programming (ECOOP), LNCS 2072, Springer-Verlag,
2001, pp. 327-353.

[Kic02] Kiczales, G. (ed.): Proceedings of the 1st International Conference on Aspect-Oriented
Software Development, Enschede, The Netherlands, April 22-26, ACM, 2002.

[KiGu02] Kienzle, J.; Guerraoui, R.: AOP: Does It Make Sense? The Case of Concurrency
and Failures. In: Magnusson, B. (Ed.): Proceedings of 16th European on
Conference Object-Oriented Programming, Malaga, Spain, June 10-14,
2002, LNCS 2374, Springer 2002, pp. 37-61.

[KiMe05] Kiczales, G.; Mezini, M.: Aspect-Oriented Programming and Modular Reasoning,
Proceedings of the International Conference on Software Engineering
(ICSE 05). St. Louis, Missouri, May 2005.

[KLM+97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier,
J.-M.; Irwing, J.: Aspect-Oriented Programming. In M. Aksit and S. Matsuoka
(Eds.): ECOOP '97 - Object-Oriented Programming: 11th European Conference,
LNCS 1241, Springer-Verlag, 1997, pp. 220-242.

[Knie00] Kniesel, G.: Dynamic Object-Based Inheritance With Subtyping, PhD Thesis,
University of Bonn, Germany, 2000.

[Knie96] Kniesel, G.: Objects Don't Migrate - Perspectives on Objects with Roles, Technical
Report IAI-TR-96-11, University of Bonn, April 1996.

[KPRS00] Klaeren, H.; Pulvermueller, E.; Rashid, A., Speck, A.: Aspect Composition
Applying the Design by Contract Principle, In: Butler, G., Jarzabek, S. (Eds.):
Generative and Component-Based Software Engineering, Second
International Symposium, GCSE 2000, Erfurt, Germany, October 9-12,
2000, Revised Papers. LNCS 2177, Springer, 2001, pp. 57-69.

Bibliography 253

[KRH04] Kniesel, G.; Rho, T.; Hanenberg, S.: Evolvable Pattern Implementations Need
Generic Aspects, Workshop on Reflection, AOP and Meta-Data for Software
Evolution at ECOOP, Oslo, Norway, June 15, 2004.

[Kris96] Kristensen, B. B.: Object-Oriented Modeling with Roles, Proceedings of the 2nd
International Conference on Object-Oriented Information Systems
(OOIS'95), Dublin, Ireland, 1995, Springer, 1996, pp. 57-71.

[KrØs96] Kristensen, B. B.; Østerbye, K.: Roles: Conceptual Abstraction Theory & Practical
Language Issues. Theory and Practice of Object Systems, Vol. 2, No. 3, 1996, ,
pp. 143-160.

[Kuhn70] Kuhn, T.: Structure of Scientific Revolutions, University of Chicago Press, 1970.

[Labb03] Labbad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, Mannning
Publications, Greenwich, 2003.

[Läm03] Lämmel, R.: Adding Superimposition To a Language Semantics, Workshop on
Foundations of Aspect-Oriented Languages (FOAL’03) at AOSD 2003,
Northeastern University, Boston, Massachusetts, USA, March 17, 2003.

[Lieb04] Lieberherr, K. (ed.): Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD), Lancaster, UK, March 22-26, ACM-
Press, 2004.

[Lieb86] Lieberman, H.: Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems, In Meyrowitz, N. K. (Ed.): Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'86),
Portland, Oregon, Proceedings. SIGPLAN Notices 21(11), November,
1986, pp. 214-223.

[Lieb96] Lieberherr, K.: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, PWS Publishing Company, 1996.

[LLM99] Lieberherr, K.; Lorenz, D.; Mezini, M.: Programming with Aspectual Components,
Technical Report, College of Computer Science, Northeastern University,
March, NU-CCS-99-01, Boston, MA, 1999.

[Lope04] Lopes, C: AOP: A Historical Perspective. In: Filman, R.; Elrad, T.; Aksit, M.;
Clarke, S. (eds.): Aspect-Oriented Software Development, Addison-Wesley,
2004.

[Maes87] Maes, P.: Concepts and Experiments in Computational Reflection, Proceedings on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), Orlando, Florida, 1987, pp. 147 - 155.

[MaKa03] Masuhara, H.; Kawauchi, K.: Dataflow Pointcut in Aspect-Oriented Programming,
In Ohori, A. (Ed.): Proceedings 1st Asian Symposium of Programming
Languages and Systems (APLAS), Beijing, China, November 27-29, 2003,
Lecture Notes in Computer Science 2895, Springer, 2003, pp. 105-121.

[MaKi03] Masuhara, H.; Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mechanisms,
In: Cardelli, L. (Ed.): Proceedings of the 17th European Conference on
Object-Oriented Programming (ECOOP), Darmstadt, Germany, July 21-25,
2003, Lecture Notes in Computer Science 2743, Springer 2003, pp. 2-28.

254 Bibliography

[MaYo93] Matsuoka, S.; Yonezawa, A.: Analysis of inheritance anomaly in object-oriented
concurrent programming languages, in: Agha, G.; Wegner, P.; Yonezawa, A. (Ed.):
Research Directions in Concurrent Object-Oriented Programming, MIT Press, 1993,
pp. 107-150.

[MBL97] Myers, A.; Bank, J.; Liskov, B.: Parameterized types for Java, Symposium on
Principles of Programming Languages, ACM, 1997, pp. 132–145.

[McBa98] McDowell, C. E.; Baldwin, E. A.; Unloading Java Classes That Contain Static
Fields, ACM SIGPLAN Notices, Volume 33, No. 1, January 1998,
pp. 56 - 60.

[McHs03] McDirmid, S.; Hsieh, W. C.: Aspect Oriented Programming with Jiazzi, In
[Aks03], pp. 80-89.

[MeOs03] Mezini, M.; Ostermann, K.: Conquering aspects with Caesar. In: [Aks03],
pp. 90-99.

[Meye98] Meyer, B.: Object-Oriented Software Construction, Prentice Hall, Upper Saddle
River, 2nd edition, 1997.

[MIT01] MIT Technology Review, Ten emerging technologies that will change the world,
Januar/Februar, 2001.

[MKD03] Masuhara, H.; Kiczales, G.; Dutchyn, C.: A Compilation and Optimization
Model for Aspect-Oriented Programs, Proceedings of Compiler Construction
(CC2003), LNCS 2622, Springer-Verlag, 2003, pp.46-60.

[MSC02] Microsoft Corporation, Microsoft Visual C++ .NET Language Reference,
Microsoft Press, 2002.

[NCT04] Nishizawa, M.; Chiba, S.; Tatsubori, M.: Remote Pointcut - A Language Construct
for Distributed AOP, In [Lieb04], pp. 7 – 15.

[NeZd99] Neumann, G.; Zdun, U.: Enhancing object-based system composition through per-
object mixins. In Proceedings of Asia-Pacific Software Engineering
Conference (APSEC), Takamatsu, Japan, December 1999.

[Nord01] Nordberg, M. E. III: Aspect-Oriented Dependency Inversion, Workshop on
Advanced Separation of Concerns in Object-Oriented Systems at OOPSLA,
Tampa, October, 2001.

[OKK+96] Ossher, H.; Kaplan, M.; Katz, A.; Harrison, W.; Kruskal, V.: Specifying Subject-
Oriented Composition, TAPOS - Theory and Practice of Object Systems,
volume 2, number 3, 1996, Wiley & Sons, pp. 179-202.

[OMG01] Object Management Group (OMG), Unified Modeling Language (UML)
Specification, Version 1.5, 2003 (OMG Document formal/03-03-01).

[OsTa01] Ossher, H.; Tarr, P.: Using multidimensional separation of concerns to (re)shape
evolving software. Communication of the ACM, 44 (10), 2001, pp. 43-50.

[Oster94] Ousterhout, J.: Tcl and the Tk Toolkit, Addison Wesley, 1994.

[PaJa98] Palsberg, J.; Jay, C.B.: The Essence of the Visitor Pattern, 22nd International
Computer Software and Applications Conference, August 19-21, 1998,
Vienna, Austria. IEEE Computer Society 1998, pp. 9-15.

Bibliography 255

[Parn72] Parnas, D. L.: On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, Vol. 15, No. 8 (1972), pp. 1053-1058.

[Pern90] Pernici, B.: Objects with Roles, in: F.H. Lochovsky, R.B. Allen (Eds.):
Proceedings of the Conference on Office Information Systems, SIGOIS
Bulletin, vol. 11, no. 2/3, ACM Press, New York, 1990, pp. 205-215.

[PFFT02] Pinto, M.; Fuentes, L.; Fayad, M. E. ;Troya, J.M.: Separation of Coordination in a
Dynamic Aspect Oriented Framework, Proceedings of the 1st International
Conference on Aspect-Oriented Software Development (AOSD),
Enschede, The Netherlands, April 22-26, 2002, pp. 134 - 140.

[PGA02] Popovici, A.; Gross, T.; Alonso, G.: Dynamic Weaving for Aspect-Oriented
Programming, In: [Kic02], pp. 141 - 147.

[PGA03] Popovici, A.; Gross, T.; Alonso, G.: Just in Time Aspects: Efficient Dynamic
Weaving for Java, Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD), Boston, MA, March 17 - 21,
2003, pp. 100 - 109.

[Pier02] Pierce, B.: Types and Programming Languages, MIT Press, 2002.

[POM03] Pichler, R.; Ostermann, K.; Mezini, M.: On Aspectualizing Component Models.
In Software Practice and Experience, Volume 33, Issue 10, pp. 957-974,
Wiley Publishers, 2003, pp. 957 - 974.

[Pras03] Prasad, M. D: Typecasting As a New Join Point in AspectJ, 13th Workshop for
PhD Students in Object-Oriented Systems at 17th European Conference on
Object-Oriented Programming (ECOOP).

[Pree95] Pree, W.: Design Patterns for Object-Oriented Software Development, Addison-
Wesley, 1995.

[PSDF01] Pawlack, R.; Seinturier, L.; Duchien, L. Florin, G.: JAC: A Flexible Solution for
Aspect-Oriented Programming in Java, Proceedings of Reflection 2001, Kyoto,
Japan, September 25-28, 2001, LNCS 2192, Springer 2001, pp. 1-24.

[PUPT02] Prechelt, L.; Unger-Lamprecht, B.; Philippsen, M.; Tichy, W. F.: Two
Controlled Experiments Assessing the Usefulness of Design Pattern Documentation in
Program Maintenance. IEEE Trans. Software Eng. 28(6), 2002, pp. 595-606.

[RaCa03] Rayside, D., Campbell, G. T.: An Aristotelian understanding of object-oriented
programming. Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA
2000), Minneapolis, Minnesota, USA, October 15-19, 2000. SIGPLAN
Notices 35(10), pp. 337-353.

[RaCh03] Rashid, A.; Chitchyan, R.: Persistence as an aspect, In: [Aks03], pp. 120-129.

[Rash02] Rashid, A.: Weaving Aspects in a Persistent Environment. SIGPLAN Notices,
Volume 37, No. 2, February 2002, pp. 36-44.

[RaSu03] Rajan, H.; Sullivan, K.: Need for Instance Level Aspect Language with Rich Pointcut
Language, Proceedings of the Workshop on Software Engineering Properties
of Languages for Aspect Technologies (SPLAT) held in conjunction with
AOSD 2003, Boston, MA, USA, March 18, 2003.

[Riel96] Riel, A. J.: Object-Oriented Design Heuristics, Addison-Wesley, 1996.

256 Bibliography

[Riv96] Rivard, F.: Smalltalk: a reflective language. In Proceedings of Reflection '96, San
Francisco, California, April 21-23, 1996.

[RiZü96] Riehle, D.; Züllighoven, H.: Understanding and using patterns in software
development. Theory and Practice of Object Systems, 2(1), 1996, pp. 3-13.

[SCT03] Sato, Y; Chiba, S.; Tatsubori, M.: A Selective Just-in-Time Aspect Weaver,
Proceeding of the Second International Conference on Generative
Programming and Component Engineering (GPCE), Erfurt, Germany,
September 2003, pp. 189-208.

[SeMo04] Sereni, D.; de Moor, O.: Static analysis of aspects, In. [Aks03], pp. 30-39.

[SGC02] Sullivan, K.; Gu, L.; Cai, Y.: Non-Modularity in Aspect-Oriented Languages:
Integration as a Crosscutting Concern for AspectJ, In: Kiczales, G. (ed.):
Proceedings of the 1st International Conference on Aspect-Oriented
Software Development (AOSD), Enschede, The Netherlands, April 22-26,
ACM-Press, 2002, pp. 19 - 26.

[SHU02] Stein, D.; Hanenberg, S.; Unland, R.: A UML-based aspect-oriented design
notation for AspectJ, In: [Kic02], pp. 106 - 112.

[SHU04] Stein, D.; Hanenberg, S.; Unland, R.: Query Models, In: Baar, Th.; Strohmeier,
A.; Moreira, A.; Mellor, St.: Proc. of the 7th International Conference on the
Unified Modeling Language (UML 2004), Lisbon, Portugal, October 11-15,
2004, LNCS 3273, Springer-Verlag, 2004, pp. 98-112.

[SHU05] Stein, D.; Hanenberg, S.; Unland, R.: Visualizing Join Point Selections Using
Interaction-Based vs. State-Based Notations, Appears in: Desel, J.; Frank, U.: Proc.
of Workshop on Enterprise Modelling and Information Systems
Architectures (EMISA 2005, in conjunction with ER 2005), Klagenfurt,
Austria, October, 24-25, 2005, LNI.

[SLL03] Skotiniotis, T.; Lieberherr, K.; Lorenz, D. H.: Aspect Instances and their
Interactions, Workshop on Software-engineering Properties of Languages for
Aspect Technologies held in conjunction with AOSD 2003, Boston, MA,
USA, March 18, 2003.

[SmSm77] Smith, J. M.; Smith, D. C. P.: Database Abstractions: Aggregation and
Generalization, ACM Transactions on Database Systems, Vol. 2, No. 2
(1977), pp. 105-133.

[Snyd86] Snyder, A.: Encapsulation and Inheritance in Object-Oriented Programming
Languages. Norman K. Meyrowitz (Ed.): Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'86),
Portland, Oregon, Proceedings. SIGPLAN Notices 21(11), 1986, pp. 38-45.

[SpGS02] Spinczyk, O.; Gal, A.; Schröder-Preikschat, W.: AspectC++: An Aspect-
Oriented Extension to C++, Proceedings of the 40th International Conference
on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002) , Sydney, Australia, February 18-21, 2002.

[Stee90] Steele, G: Common Lisp: the Language, 2nd Edition, Digital Press. 1990.

[StHa05] Störzer, M.; Hanenberg, S.: A Classification of Pointcut Language Constructs,
Workshop on Software-Engineering Properties of Languages and Aspect

Bibliography 257

Technologies (SPLAT) in conjunction with 4th International Conference on
Aspect-Oriented Software Development (AOSD), Chicago, USA, March
14-18, 2005.

[Stör03] Störzer, M.: Analytical problems and AspectJ. In: Bachmendo, B.; Hanenberg,
S.; Herrmann, S.; Kniesel, G.: Proceedings of 3rd Workshop on Aspect-
Oriented Software Development of the German Informatics Society, Essen,
March, 2003, pp. 39-44.

[StSh94] Sterling, L.; Shapiro, E.: The Art of Prolog: Advanced Programming Techniques,
MIT Press, 2nd edition, 1994.

[StSu78] Steele, G.; Sussman, G. J.: The Art of the Interpreter of, the Modularity Complex
(Parts Zero, One, and Two). MIT AI Lab. AI Lab Memo AIM-453. May 1978.

[Sun04a] Sun Microsystems, JavaBeans Homepage, http://java.sun.com/
products/javabeans/, last access: June 2004.

[Sun04b] Sun Microsystems, Enterprise JavaBeans Homepage, http://java.sun.com/
products/ejb/, last access: June 2004.

[Sun04c] Sun Microsystems, JDKTM 5.0 Documentation , http://java.sun.com/j2se/
1.5.0/docs/, last access: March 2004.

[Taiv96] Taivalsaari, A: On the Notion of Inheritance. In: ACM Computing Surveys, Vol.
28, No. 3, 1996, pp. 439-479.

[TCIK00] Tatsubori, M.; Chiba, S.; Itano, K.; Killijian, M.: OpenJava: A Classbased Macro
System for Java, Reflection and Software Engineering, LNCS 1826, Springer-
Verlag, 2000, pp.117-133.

[TO00] Tarr, P.; Ossher, H.: Hyper/J™ User and Installation Manual, IBM
Corporation, 2000.

[TOHS99] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S. M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns, In 21st International Conference on
Software Engineering (ICSE), 1999, pp. 107–119.

[TuKr03] Tucker, D. B.; Krishnamurthi, S.: Pointcuts and Advice in Higher­Order
Languages, In: [Aks03], pp. 158-167.

[USE04] Workshop Series on Unanticipated Software Evolution,
http://www.cs.uni-bonn.de/~gk/use/, last access: March 2004.

[VeHe03] Veit, M.; Herrmann, S.: Model-View-Controller and Object Teams: a Perfect Match
of Paradigms, In: [Aks03], pp. 140-149.

[WaVi04] Walker, R.; Viggers, K.: Implementing protocols via declarative event patterns. In:
Taylor, R. N., Dwyer, M. B. (Eds.): Proceedings of the 12th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2004, Newport Beach, CA, USA, October 31 - November 6,
2004. ACM 2004, pp. 159-169.

[Wegn87] Wegner, P.: Dimensions of object-based language design. In: Meyrowitz, N. K.
(Ed.): Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'87), October 4-8, 1987, Orlando, Florida,
SIGPLAN Notices 22(12), 1987, pp. 168-182.

258 Bibliography

[WeZd88] Wegner, P.; Zdonik, S. B.: Inheritance as an Incremental Modification Mechanism or
What Like is and Isn’t like, In: Gjessing, S., K. Nygaard (Eds.): Proceedings of
European Conference on Object-Oriented Programming (ECOOP), Oslo,
Norway, August 15-17, 1988, LNCS 322, Springer-Verlag, 1988, pp. 55-77.

[WKD02] Wand, M.; Kiczales, G.; Dutchyn, C.: A Semantics for Advice and Dynamic Join
Points in AspectOriented Programming, Workshop on Foundations Of Aspect-
Oriented Languages (FOAL) at AOSD'02, Enschede, The Netherlands,
April 22, 2002.

[Wuyt01] Wuyts, R.: A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation, PhD thesis, Vrije Universiteit
Brussel, Belgium, 2001.

[Zdun01] Zdun, U.: Language Support for Dynamic and Evolving Software Architectures, PhD
thesis, Department of Mathematics and Computer Science, University of
Essen, Germany, November 2001.

[Zdun04] Zdun, U.: Pattern language for the design of aspect languages and aspect composition
frameworks. IEE Proceedings Software, 151 (2), April 2004,
pp. 67-83.

