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Abbreviations  
 
 
 
4-HC  4-hydroperoxy-cyclophosphamide  
5-FU  5-fluorouracil  
AGM  aorta-gonad-mesonephros 
APC  allophycocyanin 
BFU-E   burst-forming unit-erythroid  
BrdU bromodeoxyuridine  
BM bone marrow 
BMP bone morphogenetic protein 
CAFC  cobblestone area-forming cell  
CDK  cyclin dependent kinase  
CFC  colony forming cell  
CFU  colony forming unit 
CFU-S  spleen colony-forming unit  
CFU-S8 day 8 CFU-S  
CFU-S12 day 12 CFU-S  
CMPs  common myeloid progenitor 
CSF  colony-stimulating factor 
FACS  fluorescence-activated cell sorting  
FITC  fluorescein isothiocyanate 
FL  flt3 ligand  
flt3 fms-like tyrosine kinase-3  
G-CSF  granulocyte colony-stimulating factor 
GM-CSF granulocyte-macrophage colony-stimulating factor 
Gfi1 growth factor independence 1  
GFP  green fluorescent protein  
GMP  granulocyte/monocyte-restricted progenitor  
HSC hematopoietic stem cells  
Id  inhibitor of DNA binding 
KL  c-kit ligand  
LKLF  lung Krüppel-like factor  
IL  interleukin  
LSK  lin-c-kit+Sca-1+  
LTC-IC   long-term culture-initiating cell 
LT-HSC  long-term HSC  
MEP  megakarytic/erythroid progenitor  
MHC  major histocompatibility complex  
MKP  monopotent megakaryocyte-committed progenitor 
MPP multipotent progenitor 
NK natural killer  
PcG  Polycomb group 
PE  phycoerythrin 
PIAS  protein inhibitor of activated STAT  
Rb  retinoblastoma  
SCF  stem cell factor 
SDF stromal cell-derived factor 
SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel  



Shh  sonic hedgehog  
STAT  signal transducers and activators of transcription  
ST-HSC short-term-HSC  
TCR  T cell receptor  
TPO  thrombopoietin  
VLA  very-late antigen  
WT  wild-type  
YS  yolk sac 
 

 



1.   Introduction 
 
 
 
1.1   Hematopoiesis  

 
The healthy human individual daily produces an enormous number of differentiated 

blood cells to replace cells lost due to normal turnover as well as to illness or trauma. A 

variety of homeostatic mechanisms allow blood cells to respond quickly to bleeding, 

infection or other stress situations and to return to normal levels when the stress is 

resolved. This orchestrated, highly dynamic and developmental process of blood 

production and homeostasis is termed hematopoiesis. 

 
The hematopoietic system is derived from the mesodermal germ layer early in 

embryogenesis (Muller et al., 1994). The hemangioblast, a common progenitor, gives rise 

to vascular endothelium and hematopoietic cells (Choi et al., 1998). The development of 

blood cells occurs in two waves during mouse embryogenesis. The first and less well-

characterized wave, called primitive hematopoiesis, takes place in the visceral yolk sac 

(YS) on the seventh day of gestation (Moore et al., 1970). A second wave, termed 

definitive hematopoiesis, occurs in the aorta-gonad-mesonephros (AGM) region in 

intraembryonic areas, then shifts to fetal liver which is the main source of hematopoietic 

cells in fetal life, and finally resides in bone marrow (BM) around birth time (Johnson 

and Moore, 1975; Muller et al., 1994; Dzierzak and Medvinsky, 1995; Medvinsky and 

Dzierzak, 1996; de Bruijn MF, et al, 2000). A recent study reported the generation of 

definitive hematopoietic stem cells (HSCs) from both YS and AGM region (Matsuoka et 

al., 2001b). Once established, the hematopoietic system contributes to lifelong 

hematopoiesis in a highly regulated manner.     

 
 
1.2   Hematopoietic cells 

 
The hematopoietic system can be envisioned as a series of functional compartments: stem 

cells, progenitor cells, precursor cells and mature cells (Quesenberry et al., 2001). As the 

half-life of mature hematopoietic cells varies from several hours to years, a continuous 
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production of end-stage cells from HSCs is required throughout the life span of the 

organism. In general, models of stem cell regulation are hierarchical (Quesenberry et al., 

2001) in that a primitive multipotential stem cell gives rise to a proliferating progenitor 

pool, which in turn produces to recognizable differentiated cells. During the transition 

from stem cells to differentiated cells, the proliferative potential is lost, while specific 

differentiated features are acquired. Terminally differentiated cells are incapable of 

further development.  Thus, mature blood cell formation occurs as a result of a series of 

maturation cell divisions.  
 
 
1.2.1   Hematopoietic stem cells 

 
HSCs are defined as cells that have the ability to perpetuate themselves through self-

renewal and to be responsible for the generation of the blood-forming and immune 

(hematolymphoid) systems through differentiation. The hematopoietic stem cell 

compartment is made up of rare primitive cells that are multipotential (maintain the 

capacity to give rise to all lineages of blood cells) and have a high self-renewal capacity 

(give rise to “identical” daughter stem cells to maintain its original pool). The total 

number of stem cells is strictly regulated via both extrinsic and intrinsic mechanisms, 

resulting in the stability of a stable stem cell pool (Domen et al., 2000; Weissman, 2000a; 

Calvi et al., 2003; Lemischka and Moore, 2003; Zhang et al., 2003). 

 
In vivo limiting dilution analysis of sorted HSCs allowed the isolation of subsets of 

multipotent cells: long-term HSCs (LT-HSCs) and short-term-HSCs (ST-HSCs) 

(Harrison and Astle, 1997; Adolfsson et al., 2001; Christensen and Weissman, 2001; 

Guenechea, et al., 2001;). The long-term subset self-renews for the entire life of the host, 

while the short-time subset retains self-renewal capacity for a short period of time 

(approximately 8 weeks). The highly self-renewing LT-HSCs can transit into ST-HSCs 

that possess limited self-renewal activity. ST-HSCs subsequently generate multipotent 

progenitors (MPPs) that give rise to a successive series of intermediate committed 

progenitors to further generate the multiple hematopoietic lineages.   
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HSCs have an impressive regenerative potential, as demonstrated by transplantation 

experiments using limited numbers of cells (Weissman, 2000b). The regeneration of the 

hematolymphoid system following a lethal dose of whole-body irradiation or 

chemotherapy became the basis for the use of bone marrow transplantation (Thomas, 

1991). As the best-characterized stem cell population, HSCs have been isolated from 

mice and humans, used extensively in therapeutic settings as the vital elements in bone-

marrow transplantation as well as in gene therapy (Kurre and Kiem 2000). When a bone 

marrow or blood stem cell transplantation is performed, it appears that the progenitors 

contribute to the engraftment for only a short period of time, while long-term blood 

production is realized by HSCs. HSCs can rapidly home to bone marrow (Hendrikx, et al 

1996), and settle in a bone marrow niche (Nilsson et al., 2001). The enormous potential 

of HSCs is demonstrated by the fact that very few HSCs or even single HSCs are capable 

of repopulating the entire hematopoietic system of a lethally irradiated recipient 

(Lemishka et al., 1986). 

 
 
1.2.2   Hematopoietic progenitor cells  

 
HSCs generate mature cells through a series of binary decisions during which 

progressively restricted progenitors commit to alternative cell fates. In the process of 

commitment from HSCs to progenitors, cells exquisite some growth factor receptors, lose 

others, and become mitotically active. The primary function of these hematopoietic 

progenitor cells is to increase the number of mature cells. Accompanied by excessive 

proliferation, the progenitor cells undergo sequential differentiation with a decrease of 

self-renewal capacity (Quesenberry et al., 2001).  

 
Each stage of differentiation of multipotent cells involves functionally maturation steps. 

The progenitor cell compartment is comprised of oligopotential, bipotential and 

monopotential progenitor cells, which have been characterized as exclusively committed 

to the production of restricted progeny. These progenitor cells are generally defined 

functionally by the capacity of the cells to form colonies in vitro. The progeny of mouse 

HSCs includes two kinds of oligolineage-restricted cells: common lymphoid progenitors 
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(CLPs) which are the progenitors for T lymphocytes, B lymphocytes, and natural killer 

(NK) cells (Kondo et al., 1997), and common myeloid progenitors (CMPs), which 

generate myeloerythroid lineage and further give rise to granulocyte/monocyte-restricted 

progenitors (GMPs) and megakarytic/erythroid progenitors (MEPs) (Akashi et al., 2000).  

Downstream of GMPS and MEPs are more mature progenitors, which are further 

restricted in the number and type of lineages they can generate (Figure 1).  
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Figure 1. Proposed model of murine hematopoiesis based on prospectively isolatable bone marrow 
populations 
 
HSCs are subdivided into long-term self-renewing HSCs (LT-HSCs), short-term self-renewing HSCs (ST-
HSCs), and multipotent progenitors (MPPs). They give rise to common lymphoid progenitors (CLPs) and 
common myeloid progenitors (CMPs). CMPs give rise to granulocyte/macrophage progenitors (GMPs) and 
megakaryocyte/erythrocyte progenitors (MEPs). One of the most important issues in stem cell biology is to 
understand the mechanisms that regulate HSC self-renewal and commitment to differentiation. (Scheme 
according to Reya et al., 2001) 
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1.3   Identification, enrichment and isolation of HSCs and progenitors 

 
1.3.1    Functional HSC assays     
 
Much progress has been made on the development of reagents and practical and 

quantitative assays to characterize HSCs. However, functional assays are still the only 

reliable ways to identify HSCs.   

 
The existence of HSCs and oligopotent progenitors within the hematopoietic system was 

initially shown by in vivo clonogenic assays. Till and McCulloch discovered that mouse 

bone marrow contains highly proliferative progenitors capable of giving rise to colonies 

of hematopoietic cells within the spleens of lethally irradiated hosts (Till and McCulloch, 

1961). Thus, spleen colony-forming unit (CFU-S) assays became the cornerstone for 

much of our subsequent understanding of hematopoiesis. However, the colonies 

generated at day 10 after transplantation are composed of myeloerythroid cells, and only a 

fraction of the cells from these colonies have self-renewal potential and are capable of 

long-term multilineage reconstitution when re-injected into mice (Siminovitch et al., 1963; 

Lepault et al., 1993). Recent studies demonstrated that the vast majority of day 8 CFU-S 

(CFU-S8) are derived from MEPs (Nakorn et al, 2002), while about half of day 12 CFU-S 

(CFU-S12) are derived from the HSC/MPP compartment and the other half are derived 

from the MEP/CMP populations (Spangrude et al., 1988; Morrison and Weissman, 1994; 

Nakorn et al., 2002).  Thus, the spleen-colony forming assays are only valuable to assay 

primitive progenitors. 

 
Although HSCs undergo continuous self-renewal and differentiation to provide a 

continuous supply of hematopoietic cells throughout the organism lifespan (Cheshier et 

al., 1999), serial transplantation studies have suggested that HSCs can only be 

transplanted 5−7 times in mice (Harrison et al., 1978; Harrison and Astle, 1982; Harrison 

et al., 1990), indicating that the self-renewal capacity of HSCs may be intrinsically 

limited or at least subjected to exhaustion (Harrison and Astle, 1982; Harrison et al., 

1990).  Therefore, serial transplantation can be used for the evaluation of self-renewal 

ability of HSCs. 
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Another approach to quantitatively assess LT-HSC is competitive transplantation. The 

number and function of HSCs in each donor of a particular genotype can be tested by 

mixing donor bone marrow cells with a constant number of competitive bone marrow 

cells with a distinguishable marker (such as CD45.1, CD45.2, GFP), and measuring the 

relative ability of the donor cells to repopulate in stem-cell-depleted recipients (Harrison, 

1980; Szilvassy et al., 1990).  

 
In addition to in vivo assays, on the basis of long-term bone marrow culture, the “long-

term culture-initiating cells” (LTC-IC) assay (Sutherland et al., 1989) and the 

“cobblestone area-forming cell” (CAFC) assay  (Ploemacher et al., 1991; Neben et al., 

1993) were developed as in vitro assays to determine the frequency of primitive 

hematopoietic cells. In the LTC-IC assay, LTC-IC-derived colony-forming cells (CFC) in 

semi-solid cultures are scored as readout. Alternatively, CAFC assay is visually assessed 

by the appearance of the cobblestone areas (tightly knit group of phase-dark, angular cells 

in the stroma) in phase contrast microscopy.  

 
 
1.3.2   Functional assays for hematopoietic progenitors 
 
The colony-forming cell assays were developed in the 1960s (Bradley and Metcalf, 1966; 

Pluznik and Sachs, 1965).  Since then, many variations of the basic technique have been 

developed to allow quantification of progenitor cells that possess the ability to proliferate, 

differentiate and develop into phenotypically and functionally mature cells. In this test, 

cells are grown in vitro in a semi-solid matrix (tissue culture medium containing agar as a 

gelling agent or other highly viscous media, containing methylcellulose, plasma gel or 

fibrin clots). These semi-solid media reduce cell movement and allow individual 

progenitor cells to develop into cell clones that are identified as single colonies. These 

cells capable of generating colonies are called colony forming cells (CFC) or colony 

forming units (CFU).  

 
The generation of hematopoietic colonies in a colony formation assay depends on the 

continuous presence of so-called colony-stimulating factors (CSF).  In early experiments, 

colony-stimulating factors were provided by feeder cells or conditioned medium. The 
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diversity of hematopoietic colony stimulating factors in early culture systems caused 

ambiguous results. This problem was solved by the use of purified, recombinant form of 

hematopoietic colony-stimulating factors. The development of in vitro clonogenic assays 

has defined subsets of oligopotent progenitors for all myeloid lineage cells (mixed 

colony-forming cells, CFU-Mix) (Johnson and Metcalf, 1977), for granulocytes and 

macrophages (CFU-GM) (Ichikawa et al., 1966), and for megakaryocytes and 

erythrocytes (McLeod et al., 1976). Monopotent CFUs for granulocytes (CFU-G), 

macrophages (CFU-M), erythrocytes (CFU-E) (Stephenson et al., 1971), or 

megakaryocytes (CFU-Mk) (Metcalf et al., 1975) were also reported. 

 
In retrospect, the nature of particular colony stimulating factors can be inferred 

sometimes after staining of these colonies and close examination of the morphology of 

the cells that have developed. Colony formation assays, therefore, allow the study of the 

influences of given growth factors or cytokines on the determination of the lineage along 

which colony forming cells differentiate. 

 
 
1.3.3   Enrichment and isolation of HSCs and progenitors 
 
HSCs and progenitors are very rare in both bone marrow cell populations and peripheral 

blood cell populations. The low frequency of HSCs and progenitors prevented the 

detailed understanding of their properties and application for clinical therapy. Whereas 

functional experiments provided evidence that stem cells exist, they did not allow the 

isolation of HSCs. However, on the basis of these functional HSC assays, different ways 

and markers have been developed over the years to phenotypically define, prospectively 

isolate and enrich candidate stem cell as well as progenitor cell populations using a high-

speed cell sorter based on the presence or the absence of surface markers (usually 

detected by monoclonal antibodies), or biochemical markers (lectins, vital dyes such as 

Rhodamine 123 and Hoechst 33342).  

 
The majority of HSC enrichment protocols rely on fluorescence-activated cell sorting 

(FACS), which allows cells to be positively selected based on the expression of a set of 

cell surface proteins. Murine stem cells have been defined based on their undifferentiated 
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characteristics (i.e., absence of lineage markers), as well as specific positive markers, 

such as Sca-1 and c-Kit. Most protocols use antibodies against lineage markers to exclude 

cells expressing proteins characteristic of a mature hematopoietic cell. This enrichment 

protocol permits the isolation of stem cell populations in which more than 80% of the 

cells have the potential to reconstitute the hematopoiesis (Lagasse et al., 2001). 

Combined staining with 4 to 5 markers (such as Lin-/lowSca-1highc-Kithighflt3- and Lin-

/lowSca-1highc-KithighCD34-) allows an up to 2000-fold enrichment of to the HSC 

population (Uchida and Weissman, 1992; Morrison and Weissman, 1994; Zhao et al., 

2000; Adolfsson et al., 2001; Christensen et al., 2001). Meanwhile, bone marrow 

progenitors including CLPs (Kondo et al., 1997), CMPs, GMPs, MEPs (Akashi et al., 

2000) and monopotent megakaryocyte-committed progenitors (MKP) (Nakorn et al., 

2003) have been prospectively isolated from mouse bone marrow.  

 
Another approach for isolation of HSCs is based on the relative quiescence of stem cells 

and used the DNA binding dye Hoechst 33342 and the mitochondrial binding dye 

rhodamine 123. The lineage negative cells are isolation using magnetic beads, followed 

by Hoechst and Rhoda mine staining (Lemishka et al., 1986; Wolf et al., 1993) and 

enrichment of Hoechstlow and Rhodaminelow cells by FACS. Recently, Goodell and 

colleagues developed a method to isolate HSCs relying on the ability of stem cells to 

pump out the Hoechst dye (Goodell et al., 1996 and 1997). The murine bone marrow 

cells were stained with Hoechst 33342, and then the intensity of Hoechst fluorescence 

was analyzed simultaneously at two emission wavelengths. An extremely small and 

homogeneous population of cells revealed, and termed as “Hoechst-stained side 

population (SP)”. These cells have phenotypic markers of multipotential HSCs, and 

enable to contribute to both lymphoid and myeloid lineages in transplanted hosts.  

 
The number of HSCs that can be obtained from animals is still very small, and it is very 

difficult to expand HSCs in vitro. Hence, most experiments need to be performed with a 

very low number of cells. Another problem is that the markers used to identify HSC may 

not directly correlate with their potential as stem cells, because none of the stem cell 

markers is known to be HSC-specific, and most of these markers are not known to be 

essential to stem cell function. Moreover, these markers can differ depending on alleles, 
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strains, developmental stages and activation stages (Randall and Weissman 1997; Sato et 

al., 1999; Matsuoka et al., 2001a; Henckaerts et al., 2002). For example, CD34 

expression on LT-HSC has been found to be reversible and dependent not only on the 

activation state of the cells but also the developmental stage of the donor (Matsuoka et al., 

2001a; Sato et al., 1999). The difference between negative and low expression of many of 

the markers used in such isolation protocols can be subtle. Thus, even the most rigorous 

isolation protocols currently available result in only relatively homogeneous HSC 

populations or highly enriched HSC populations, in which some of the cells fail to 

demonstrate pluripotency and/or long-term reconstituting ability (Morrison and 

Weissman, 1994). New markers and methods are required to allow the prospective 

isolation of stem and progenitor cells.  

 
 
1.4   Proliferation of HSCs 

 
1.4.1   The cell cycle status of hematopoietic stem cells  
 
Regulated expansion of a small stem cell subset is necessary both to sustain a steady state 

level of mature blood cells and to compensate hematological stress. The hematopoietic 

tissues of an adult mouse must replace approximately 2.4 × 108 red blood cells and 

4 × 106 nonlymphoid peripheral blood cells each day. Therefore, a subset of HSCs must 

undergo a massive expansion to produce mature blood cells. Such demands necessitate 

strict control over proliferation of hematopoietic stem cells and progenitor cells. On one 

side, maintenance of cell production requires a highly cytokine-responsive progenitor cell 

pool with prodigious proliferative capacity and a smaller population of stem cells 

intermittently feeding daughter cells into the proliferative compartment. On the other side, 

the stem cell pool itself is relatively quiescent and cytokine resistant, a state that seems to 

be necessary for the prevention of premature depletion during times of stress. It has been 

shown that most primitive hematopoietic stem cells are in G0 stage of cell cycle; only 5% 

of LT-HSCs are in S/G2/M phases (Cheshier et al., 1999). The explanation might be 

either only a few hematopoietic stem cells are in cell cycle and contributing to blood cell 

production, or alternatively HSCs are constantly undergoing cell division, but these cells 

have prolonged active cell cycle or repeatedly entering and leaving the cell cycle. 
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The clonal succession model proposes that most of primitive hematopoietic stem cells are 

dormant or quiescent, and are thus protected from depletion or exhaustion. The 

production of blood cells is maintained sequentially by one or just a few hematopoietic 

stem cells at any time. The quiescent HSCs do not contribute to hematopoiesis until the 

proliferative capacity of the active HSCs clone is exhausted (Hodgson and Bradley, 1979; 

Lerner and Harrison, 1990). Significant proportions of immunophenotypically isolated 

stem cell candidates are in G0 phase of the cell cycle, which are defined by 2N DNA 

content on Hoechst staining and by low metabolic rates (pyroninlow, or Rhodaminelow) 

(Morrison and Weissman, 1994). This is consistent with the finding that functionally 

selected HSCs are resistant to cell cycle-specific killing drugs such as 5-fluorouracil (5-

FU) or 4-hydroperoxy-cyclophosphamide (4-HC) (Berardi et al., 1995). 

  
Although cell cycle analysis revealed that HSCs are relatively quiescent at any one point 

in time, this does not reflect the proliferation history of HSCs. Studies with cell cycle-

specific killing drugs did not distinguish between cells that are truly dormant and cells 

that are either in prolonged cell cycle or intermittently entering and exiting cell cycle at a 

slow rate. To overcome this obstacle, the proliferation history of HSCs was investigated 

with in vivo bromodeoxyuridine (BrdU) labeling to determine the rate of HSCs entering 

the cell cycle over time. BrdU can be incorporated into DNA during DNA synthesis and 

label the nuclei of dividing cells which have transited S phase while progressing through 

the cell cycle. Cheshier and coworkers immunophenotypically purified the LT-HSC 

subsets and found that about 50% of LT-HSCs incorporated BrdU by 6 days and more 

than 90% incorporated BrdU by 30 days; 99% of LT-HSCs had incorporated BrdU by 

6 months. On average, 99% of lineage-negative HSCs with long-term self-renewing 

capabilities divided every 57 days, and approximately 8% of LT-HSCs asynchronously 

entered the cell cycle daily (Cheshier et al., 1999).  These data demonstrate that although 

most of LT-HSCs are quiescent in G0 at any given time, all HSCs are recruited into cycle 

regularly.  

 
These results were confirmed by several groups using different species (Mahmud et al., 

2001), different mouse strains (Bradford et al, 1997), and different stem cell separation 
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methods (Bradford et al, 1997; Abkowitz et al. 2000). Furthermore, HSC cycling appears 

to increase with age (Morrison et al., 1996). Thus, long-term in vivo BrdU incorporation 

indicated that hematopoietic stem cell are slowly proceeding through cell cycle and 

constantly undergo cell division. 

 
 
1.4.2   Changing engraftable multipotent stem cell phenotype with cell cycle transit 
 
A number of investigators observed a functional heterogeneity associated with cell cycle 

status of both murine and human HSCs. When immunophenotypically purified murine 

HSCs were fractionated into subsets from G0/G1 phase or S/G2/M phase, it could be 

observed that cells in G0/G1 phase have long-term engraftment capacity, while cells in 

S/G2/M phase show a decreased long-term engraftment capacity  (Fleming et al, 1993a; 

Orschell-Traycoff et al, 2000). The ability for long-term in vivo engraftment is more 

pronounced in cells in the G0 phase than cells in other cell cycle phases (Szilvassy et al., 

2000; Huttman et al., 2001). Similarly, studies with human HSCs which were purified 

from bone marrow, cord blood or peripheral blood showed that their ability as 

transplantable stem cells in NOD/SCID mice was restricted to the G0 or G0/G1 fraction, 

cells in S/G2/ or M phase had minimal engraftment potential (Gothot et al., 1997, 1998; 

Glimm et al., 2000; Summers et al., 2001).  Furthermore, many studies showed that 

cytokine stimulation can induce HSCs to enter the cell cycle (Nilsson, et al., 1997; Reddy 

et al., 1997), which resulted in a loss of engraftment capacity of bone marrow cells 

(Peters et al., 1996; Habibian et al., 1998), supporting a reversible fluctuating engraftment 

phenotype associated with cell cycle phase position. 

 
 
1.4.3   Cell cycle-related shifts in the engraftment phenotype is associated with an 

altered  gene expression profile of HSCs  

 
Early studies showed that the cell cycle dependent engraftment fluctuations may be due 

to a homing defect (Yamaguchi et al., 1998). Different adhesive characteristics and very-

late antigen 4 (VLA-4) expression levels were observed in CD34+ human progenitors in 

the G0/G1 and S/G2/M phases. Recently, it has been shown that gene expression patterns 

 11



shift in HSCs through the cell cycle in correlation with the cell cycle related alterations of 

stem cell phenotype, and that a wide variety of genes were found to be modulated in their 

expression with cell cycle progression (Lambert et al., 2003). These include genes 

involved in cytokine receptor expression, DNA damage and repair, RNA splicing, 

intracellular signaling, energy metabolism, cell cycle regulation, cytoskeleton, apoptosis 

regulation, and chromatin modification, indicating that a major shift of gene expression 

takes place between two specific cell cycle states. Non-cycling HSC selectively express 

mainly transcription regulators and protein synthesis factors, while they are fully capable 

of repopulating a myeloablated transplant recipient. In contrast, cells in S/G2 have turned 

down most of the originally active genes, and express cell cycle related as well as 

chromatin remodeling genes (Lambert et al., 2003).  

 
 
1.5   Regulation of stem cell self-renewal 

 
One of the most important issues in stem cell biology is to understand the mechanisms 

that regulate self-renewal.  In the past 10 years, based on gain-of-function and loss-of- 

function mouse models, some genes and signaling pathways have been found to play an 

important role in regulating self-renewal of HSCs.  

 

1.5.1   Cyclin dependent kinase (CDK) inhibitors  
 
The stochastic progression into the cell cycle depends on a matrix of expression levels of 

diverse cell cycle regulators. Slow cycling of HSCs necessitates the presence of 

appropriate cell cycle machinery to effect passage into and through G1 phase. It has been 

shown that the intrinsic mitotic clocks regulate the cell cycle differently in stem cells than 

in more committed progenitors.  

 
As CDKs regulate the cell cycle at different checkpoints, their different inhibitors are 

natural candidates for proteins that oppose cell cycle progression. Mice lacking 

p21cip1/waf1, a G1 specific CDK inhibitor, have a larger HSC pool, an increase in stem cell 

cycling accompanied by an increased susceptibility of the stem cell compartment to 5-

FU-induced cell death and to rapid stem cell exhaustion upon serial transplantation 

 12



(Cheng et al., 2000a). This suggests that p21cip1/waf1 normally acts to limit cycling of 

hematopoietic stem cells, and is required for stem cell quiescence. In contrast, p27kip1, 

another G1 specific inhibitor, does not affect stem cell number, cell cycling, or self-

renewal, (Cheng et al., 2000b), and p27kip1-deficient mice exhibited normal stem cell 

numbers as measured by CAFC assays, and serial bone marrow transplantation (Cheng et 

al., 2000b). However, deficiency of p27kip1 markedly exhibited increased hematopoietic 

progenitor cell activity (Fero et al., 1996; Cheng et al., 2000b). The progenitor cell pool 

cycles more actively in these mice, as determined by colony formation by progenitor cells 

and 5-FU susceptibility of progenitor cells (Cheng et al., 2000b). These data support the 

notion that distinct members of the CDK inhibitor family have differentiation stage-

specific roles in the stem cell and the progenitor cell compartments.  

 
 
1.5.2   Signaling pathways 
 
Accumulated evidence showed that many signaling pathways associated with 

oncogenesis, such as the Notch, Sonic hedgehog (Shh) and Wnt signaling pathways, may 

also regulate stem cell self-renewal.  

 
 
1.5.2.1   Notch 
 
Notch receptors are transmembrane proteins, which interact with a family of proteins 

containing a highly conserved Delta-Serrate-Lag-2 (DSL) domain in the extracellular 

region that serve as ligands (Milner and Bigas, 1999; Artavanis-Tsakonas, et al., 1999). 

In general, Notch-mediated cellular interactions have been shown to play a central role in 

regulating cell-fate decisions of various multipotent precursors (Milner and Bigas, 1999; 

Artavanis-Tsakonas, et al., 1999). The Notch ligand, Jagged-1, was found to be a potent 

activator of the Notch signaling pathway in a variety of cell types, mediating signals via 

cellular interactions with adjacent Notch-expressing cells. A role for Jagged-Notch 

signaling pathway in hematopoiesis was suggested since Notch was found on the 

hematopoietic cells and Notch ligands was found on bone marrow stromal cells (Karanu 

et al., 2001). An effect of Notch signaling on hematopoietic precursors has been 

suggested since numbers of murine primitive precursors increased upon incubation with 
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exogenously presented Notch ligands (Jones et al., 1998; Varnum-Finney et al., 1998). 

Recently, it has been shown that human Jagged-1 can maintain and expand primitive 

hematopoietic cells capable of multilineage reconstitution in vivo (Karanu et al., 2000). 

Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors 

lymphoid over myeloid lineage outcome (Stier et al., 2002) Constitutive Notch1 signaling 

in hematopoietic cells established immortalized, cytokine-dependent cell lines that 

generated progeny with either lymphoid or myeloid characteristics both in vitro and in 

vivo (Varnum-Finney et al., 2000). These data are consistent with the concept that Notch 

activation promotes HSC self-renewal, or at least the maintenance of their 

multipotentiality.  

 
 
1.5.2.2   Wnt 
 
Wnts are secreted glycoproteins that mediate cell-to-cell communication during 

development. Activation of Wnt-Wnt receptor complexes results in stabilization and 

accumulation of a protein called β-catenin which can translocate to the nucleus and bind 

and activate transcription factors of the TCF/LEF family thereby initiating transcription 

of TCF/LEF target genes. The Wnt signaling cascade has been shown to control early 

lymphopoiesis (van de Wetering et al., 2002) and gain of function approaches suggested 

that purified Wnt3A could act as stem cell growth factors and promote the self-renewal of 

HSCs  (Reya et al., 2003; Willert et al., 2003; Murdoch et al., 2003). Overexpression of a 

dominant active form of β-catenin (lacking the NH2-terminal phosphorylation domain) in 

long-term cultures of HSCs expands the pool of transplantable HSCs determined by both 

phenotype (Thy1.1lowLin-/lowSca1+c-kit+) and function (ability to reconstitute the 

hematopoietic system in vivo). In contrast, ectopic expression of Axin, which negatively 

regulates β-catenin by enhancing its degradation, leads to inhibition of HSC proliferation, 

increased death of HSCs in vitro, and reduced reconstitution in vivo. These data suggest 

that ß-catenin–mediated Wnt signaling is critical for a normal homeostasis of HSCs.  

 
In contrast to earlier reports, inactivation of the β-catenin gene in bone marrow 

progenitors does not impair their ability for self-renewal and to reconstitute all 

hematopoietic lineages (myeloid, erythroid, and lymphoid), even in competitive mixed 
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chimeras (Cobas et al., 2004), suggesting that β-catenin-independent pathways may exist 

to mediate Wnt signaling in the hematopoietic compartment.  

 
 
1.5.3   Transcription factors  
 
1.5.3.1   Ikaros 
 
Ikaros is a member of a family of zinc finger transcription factors, and is expressed in 

primitive and definitive hematopoietic precursors that reside within early hematopoietic 

sites, the yolk sac and fetal liver (Georgopoulos et al., 1992). It is also present in a rare 

bone marrow population that is enriched for HSCs (Lin-Sca1+c-Kit+) (Kelley et al., 1998; 

Klug et al., 1998). Ikaros expression is downregulated during differentiation along the 

monocyte/macrophage and erythroid pathways but is maintained throughout granulocyte 

maturation (Klug et al., 1998). Ikaros is essential for specification of cells in lymphoid 

lineages (Georgopoulos et al., 1994; Wang et al., 1996)   

 
Mice homozygous for an Ikaros null mutation display a more than 30-fold reduction in 

long-term repopulation units, whereas mice homozygous for an Ikaros dominant negative 

mutation have no measurable activity. A progressive reduction in multipotent CFU-S14 

progenitors and the earliest erythroid-restricted precursors (burst-forming unit-erythroid, 

BFU-E) is also detected in the Ikaros mutant strains consistent with the reduction in HSCs.  

(Nichogiannopoulou et al., 1999) 

  
 
1.5.3.2   Bmi1 
 
Bmi1 is a member of the PcG (Polycomb group) family of transcriptional repressors that 

control development by the regulation of genes associated cell growth and differentiation. 

Studies of Bmi1-deficient mice revealed that the absence of Bmi1 results in progressive 

loss of all hematopoietic stem cells (van der Lugt et al., 1994). It has recently been shown 

that Bmi1 is necessary for efficient self-renewing cell divisions of adult HSCs (Park et al., 

2003). In addition, lack of Bmi1 compromises the proliferative potential of leukaemic 

stem cells and progenitor cells, leading to transplant failure of the leukemia (Lessard and 

Sauvageau, 2003). Taken together with the detection of high levels of Bmi1 in human 
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AML stem cells (Lessard and Sauvageau, 2003), these results suggest that Bmi1 is also 

required for the self-renewal of leukemic stem cells. Similar to Bmi1, another member of 

PcG genes, the rae28 gene, has been shown to have a crucial role in sustaining the 

activity of HSCs to maintain hematopoiesis (Ohta et al., 2002). 

 
The molecular mechanism by which Bmi1 affects the generation of HSCs has been 

revealed (Park et al., 2003).  Bmi1 modulates HSC self-renewal through the regulation of 

genes important for stem cell fate decisions, as well as survival genes, antiproliferative 

genes, and stem cell-associated genes. Microarray analysis showed that Bmi1 target genes 

such as p16Ink4a and p19Arf (Jacobs et al., 1999) were elevated in bone marrow cells of the 

Bmi1-/- mice (Park et al., 2003). Enforced expression of p16Ink4a and p19Arf in HSCs leads 

to senescence and apoptosis of normal HSC, respectively (Park et al., 2003). In neural 

stem cells, p16Ink4a deficiency partially restored the ability of Bmi1-deficient stem cells 

for self-renewal (Molofsky, et al., 2003).  

 
 
1.5.3.3   Homeobox (Hox) genes  
 

Multiple Hox family members are expressed in the most primitive hematopoietic stem 

cell enriched populations, (Sauvageau et al., 1994). Engineered overexpression of several 

different members of the clustered Hox gene family has been shown to have major effects 

on the proliferation and differentiation of both murine and human HSCs and early 

hematopoietic progenitor cells both in vivo and in vitro (Sauvageau et al., 1995; 

Thorsteinsdottir, et al., 1997 and 1999; Antonchuk et al., 2002). Conversely, deficiency 

of both HoxB3 and HoxB4 impaired in vitro proliferative capacity of murine Lin-Sca-1+ 

c-Kit+, and resulted in lower repopulating capability compared to normal littermates 

(Björnsson et al., 2002).  

 
As in murine cells, retrovirally mediated expression of HoxB4 rapidly triggers an increase 

in the number of human HSCs and progenitor cells both measured by in vitro and in vivo 

assays (Buske et al., 2002; Amelia et al., 2003; Krosl et al., 2003a). This growth 

enhancement extended across primitive myeloid-erythroid and B-lymphoid progenitors 
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but did not lead to alterations in the balance of lymphomyeloid reconstitution in vivo, 

suggesting that HoxB4 does not affect control of end-cell output (Buske et al., 2002).  

 
 
1.5.3.4   E2F 
 
E2F family members are transcription factors involved in regulating S-phase progression 

of cell cycle. E2F protein complexes are defined by their ability to bind to a sequence 

element that was identified originally in the adenovirus E2 promoter (Kovesdi et al., 

1987). The transcriptional activity of E2F is composed of a variety of heterodimers 

formed by the association of one of at least six E2F family members (E2F1 to E2F6) 

(Dyson, N. 1998). The E2F family of proteins can be aligned into three distinct groups, 

based on sequence/structural similarity as well as functional roles. E2F1, E2F2, and E2F3 

are structurally similar, potent transcriptional activators (DeGregori et al., 1997). 

Overexpression of each of these E2F proteins is sufficient to drive quiescent cells to re-

enter the cell cycle. In contrast, a second group of E2Fs, which includes E2F4 and E2F5, 

as well as a recently described, alternate version of E2F3 termed E2F3b (Leone et al., 

2000), are thought to primarily function in the active repression of E2F target genes in 

quiescent cells by recruiting the retinoblastoma (Rb) family members. The third group is 

defined by the recently described E2F6 protein, which functions as a transcriptional 

repressor through a mechanism independent of pRB family members (Ogawa et al., 2002; 

Trimarchi et al., 2001). E2F family members play critical roles in cell cycle progression 

by regulating the expression of genes involved in nucleotide synthesis, DNA replication, 

and cell cycle control (Trimarchi and Lees, 2002). 

 
The precise functional roles of individual E2F proteins in hematopoiesis are only poorly 

understood. The combined loss of E2F1 and E2F2 results in decreased hematopoietic 

cellularity of all examined hematopoietic compartments including bone marrow, thymus, 

lymph nodes and spleen, as well as significant reductions in the numbers of red blood 

cells, lymphocytes, and monocytes in the peripheral blood. Moreover, E2F1/E2F2 double-

knockout bone marrow precursors competed poorly with wild-type (WT) precursors 

during hematopoiesis (Li et al., 2003). E2F4 deficient mice showed a deficiency of 

various mature hematopoietic cell types together with an increased number of immature 
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cells in several lineages (Rempel et al., 2000), suggesting a critical role for E2F4 activity 

in controlling the maturation of cells. E2F6 associates with numerous known PcG 

proteins in vivo, including the onco-protein Bmi1 (Trimarchi et al., 2001). This suggests 

that the transcriptionally repressive properties of E2F6 are mediated through its ability to 

recruit the PcG complex.  

 
 
1.5.4   Interaction among regulators of stem cell self-renewal 
 
HSC self-renewal is a complicated process, the knowledge of which is still limited. Many 

studies have shown links between several regulatory proteins and signaling pathways. For 

instance, sonic hedgehog protein (Shh) induces expression of bone morphogenetic protein 

(BMP) 4, HoxD11 and HoxD13, while HoxD12 regulates Shh expression in a positive 

feedback loop (Knezevic et al., 1997; Roberts et al., 1995). BMP4 has been shown to 

regulate HoxC8 expression (Shi, et al., 1999). In addition, expression of the HoxA9 gene 

is also affected in Bmi1-deficient hematopoietic tissues and neurospheres (Park et al., 

2003; Molofsky, et al., 2003). Other factors important for maintenance of hematopoietic 

activity include molecules such as Pbx1 (Krosl et al., 2003b) and Rae28 (Ohta et al., 

2002), both have connections to Hox proteins. It has also been shown that β-catenin 

could upregulates HoxB4 and Notch1 in HSCs (Reya et al., 2003). 

 
Many studies have demonstrated that cytokines can regulate the expression of p21cip1/waf1 

and p27kip1. The high level of p21cip1/waf1 expression in stem cells could result in part from 

autologous production of TGF-β1 (Eaves et al., 1991; Hatzfeld et al., 1991) which is anti-

proliferative. In addition, it has been reported that the edd gene and the c-fos gene exert 

their antiproliferative effects through p21cip1/waf1 (Lessard et al., 1999; Okada et al., 1999) 

and p21cip1/waf1 has been suggested to be a transcriptional target of HoxA10 (Bromleigh et 

al., 2000).  
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1.6   The transcription factor Gfi1 and hematopoiesis 

 
1.6.1  The transcription factor Gfi1 
 
The Growth factor independence 1 (Gfi1) gene was originally identified as a proto-

oncogene during the analysis of proviral integration sites and their associated target genes 

in the NB2 rat lymphoma cell line after retroviral infection with the non-acute 

transforming Moloney murine leukemia virus (MoMuLV) (Gilks et al., 1993). Later, the 

Gfi1 locus in the human and mouse genomes was mapped to chromosomes 1p22 and 5 

respectively (Bell et al., 1995; Roberts and Cowell, 1997).  The Gfi1 gene encodes a 55-

kD nuclear zinc finger transcription factor, which is a member of a protein family that 

includes Gfi1b (Fuchs et al., 1997; Rödel et al., 1998; Tong et al., 1998) as well as the 

murine proteins Snail and Slug (Grimes et al., 1996; Zweidler-McKay et al., 1996). All 

proteins of the Gfi1 family share six carboxy-terminal C2-H2 zinc finger domains and a 

characteristic N-terminal 20 amino acid stretch that was termed “SNAG” domain 

(Zweidler-McKay et al., 1996; Grimes et al., 1996; Tong et al., 1998) since it is well 

conserved between Gfi1 and the proteins Snail and Slug which bear similar zinc finger 

domains (Figure 2). 
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Gfi1 and Gfi1b are 97% homologous in the zinc finger region, and both proteins bind to 

virtually identical DNA consensus sequences. Experiments with reporter genes driven by 

synthetic promoters containing Gfi1 binding sites suggested a transcriptional repressor 

activity of Gfi1 (Grimes et al., 1996; Zweidler-McKay et al., 1996). Gfi1 binds to a 

specific DNA target sequences and this ability depends on the presence of some but not 

all of its zinc finger domains. Further mutational studies clearly delineated that this 

activity depends on the DNA binding activity of Gfi1 and on an intact N-terminal SNAG 

domain. The SNAG domain is responsible for nuclear localization and transcriptional 

repression (Grimes et al., 1996).   

 
An alternative activity of Gfi1 has been discovered through its interaction with PIAS 

(protein inhibitor of activated STAT) 3, which is an inhibitor of signal transducers and 

activators of transcription (STAT) 3 (Rödel et al., 2000). PIAS3 can bind to activated, 

tyrosine phosphorylated STAT3 dimers and is able to down-regulate the activity of 

STAT3 as a transcriptional transactivator (Chung et al., 1997). By virtue of its interaction 

with PIAS3, Gfi1 is able to relieve STAT3 from PIAS3-mediated inhibition with the 

consequence of an enhanced STAT3 response (Rödel et al., 2000). This suggested a role 

of Gfi1 in a set of specific cytokine-signaling pathways because STAT3 is activated in 

response to a number of cytokines, among them Interleukin (IL) -2, IL-6, IL-10, or G-

CSF. 

 
 
1.6.2   Gfi1 in lymphomagenesis 
 
Several studies with cultured cells indicated that a constitutive Gfi1 expression can relieve 

peripheral mature T cells from a requirement of IL-2 to overcome a G1 arrest (Grimes et 

al., 1996) or could help sustain cell proliferation of IL-2-dependent cells in the absence of 

the cytokine (Zörnig et al., 1996), indicating a role of Gfi1 in IL-2-dependent cell cycle 

progression of T cells. Similarly, the Gfi1 gene is a frequent target of proviral insection, 

and is transcriptionally activated by retroviral insertion in T cell lymphomas that arise in 

mice induced by infection with MoMuLV (Gilks et al., 1993; Zörnig et al, 1996; Schmidt 

et al., 1996, 1998a and 1998b; Scheijen et al., 1997). The constitutive expression of Gfi1 

targeted to T cells by virtue of the proximal lck promoter predisposed mice to the 
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development of T cell lymphoma at low frequency (Schmidt et al., 1998a), indicating 

Gfi1 has a low oncogenic potential. Gfi1 acts as a dominant oncogene when 

overexpressed, and cooperates strongly with Pim (a cytoplasmic serine/threonine kinase) 

and Myc (an HLH-LZ transcription factor) in accelerating progression of T cell 

lymphomagenesis in the respective transgenic mice or in MoMuLV-infected mice 

(Schmidt et al., 1996, 1998a and 1998b; Zörnig et al., 1996; Scheijen et al., 1997).  

 
 
1.6.3   Gfi1 in lymphopoiesis 
 
Gfi1 is expressed at very high levels in thymic lymphoid cells compared with other 

organs and cell lineages (Gilks et al., 1993; Grimes et al., 1996; Schmidt et al., 1998a; 

Karsunky et al., 2002a and 2002b). Protein and RNA analyses showed that Gfi1 is 

expressed during T cell development beginning in the early stages of pre-T cell selection 

until the point where T cells express both CD4 and CD8 surface markers (Schmidt et al., 

1998b), which suggested a role of Gfi1 in early T cell development. In mature CD4 or 

CD8 single positive (SP) T cells, Gfi1 expression is low or at least not readily detected 

but can be rapidly upregulated following T cell receptor (TCR) stimulation (Rödel et al., 

2000). It has been demonstrated that Gfi1 inhibits activation-induced T cell death by 

overriding a G1 cell-cycle checkpoint (Karsunky et al., 2002a). Gfi1 regulates IL-

4/STAT6-dependent Th2 cell proliferation (Zhu et al., 2002) and IL-6/STAT3-mediated 

proliferative responses to antigenic stimulation (Rödel et al., 2000). Induction of Gfi1 by 

IL-4 increases Th2 cell expansion by promoting proliferation and preventing apoptosis 

(Zhu et al. 2002).  

 
Overexpression of Gfi1 in transgenic mice results in a reduction of peripheral CD4+ and 

CD8+ cells by inhibiting “beta-selection”, a process that allows the preferential expansion 

of cells with a functional TCR beta-chain (Schmidt et al., 1998b). These results 

demonstrated that Gfi1 participates in the regulation of beta-selection-associated pre-T 

cell differentiation, and is important for disposal of those T cell precursors unsuccessful 

in T cell receptor rearrangement. In a loss-of-function model, mice lacking Gfi1 show 

reduced thymic cellularity (about 10% that of wild-type mice) due to an increased cell 

death rate, lack of proliferation, and a differentiation block in the very early uncommitted 
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CD4-/CD8-/c-Kit+ cytokine-dependent T cell progenitors that have not yet initiated VDJ 

recombination  (Yücel et al., 2003). In addition, Gfi1-deficient mice show increased 

major histocompatibility complex (MHC) class I-restricted positive selection, and a 

significant bias toward the production or selection of CD8+ cells, suggesting a 

requirement of Gfi1 for a correct CD4/CD8 lineage decision (Yücel et al., 2003). This 

demonstrates that Gfi1 is generally required for a normal production of T cell progenitors 

and their differentiation. 

 
 
1.6.4   Gfi1 in myelopoiesis 
 
Gene targeting has recently revealed that Gfi1-deficient mice are unexpectedly 

neutropenic (Karsunky et al., 2002a), demonstrating Gfi1 contributions to myelopoiesis. 

Mature neutrophils are absent in Gfi1-/- mice, while atypical immature mono-myeloid 

cells accumulate in the bone marrow and peripheral blood, suggesting that the 

differentiation from Gfi1-/- precursors is severely skewed toward the monocyte/ 

macrophage lineage as a result of either a block of the granulocyte lineage or enhanced 

differentiation towards the monocyte/macrophage lineage. It has been recently found  that 

heritable Gfi1 mutations cause human neutropenia and fail to repress neutrophil elastase 

(ELA2) (Person et al., 2003), encoding neutrophil elastase, mutations of which are the 

major cause of inherited human neutropenia syndromes (Horwitz et al., 1999; Dale et al. 

2000). Two heterozygous mutations were found. The 1412A to G transition causes 

N382S amino acid mutation in the fifth zinc finger of Gfi1, subsequently abolishing the 

DNA binding activity of Gfi1. The second mutation is a 1475A to G transition in the 

sixth zinc finger of Gfi1, causing the coding sequence substitution K403R. The K403R 

mutation does not affect DNA binding but could perturb protein-protein interaction. Both 

mutations act in a dominant negative manner when expressed competitively with the 

wild-type protein. In both mice and humans with Gfi1 mutations, myeloid progenitor 

cells fail to differentiate to mature neutrophils, causing the accumulation of monocytes 

and abnormal cells that blend features of monocytes and granulocytes, thus highlighting  

essential contributions of Gfi1 to delineating the two cell types. 
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1.6.5   Target genes of Gfi1 
 
A number of potential target genes have been proposed to be mediators of downstream 

effectors of Gfi1 function. In the lymphoid system, the transcription regulator lung 

Krüppel-like factor (LKLF), and the helix loop helix proteins inhibitor of DNA binding 

(Id) 1 and Id2 are supposed to be potential target genes of Gfi1 (Yücel et al., 2003).  

 
In myeloid cells, Duan and Horwitz investigated 34 genes as potential Gfi1 targets, based 

on functional contributions to myelopoiesis, and found 16 of the tested genes to be direct 

Gfi1 targets. These genes include cell-cycle regulators (p21cip1/waf1, E2F5, E2F6, and c-

Myc), transcription factors (Ets2, C/EBPα, C/EBPε), growth factors and their receptors 

(IL2, Jak3, IL-6R, IL8) and neutrophil elastase (ELA2) (Duan and Horwitz, 2003). 

Cluster analysis of expression patterns and chromatin immunoprecipitation data revealed 

that Gfi1 targets a subset of genes affecting the differentiating hematopoietic lineages and 

therefore plays a relatively superior role in the hierarchy of factors governing stem cell 

differentiation.  

 
 
1.7   The aim of the work  
 
It has been shown that Gfi1 is expressed in the hematopoietic and immune systems, and 

lack of Gfi1 leads to defects in both myeloid and lymphoid hematopoiesis (Karsunky et 

al., 2002; Yücel et al., 2003). These results have been confirmed by the data from Gfi1-

deficient mice generated by another group (Hock et al., 2003), and by the dominant 

negative mutations of Gfi1 found in neutropenic patients (Person et al., 2003).  

 
However, the knowledge about Gfi1 is limited in relatively mature compartments of the 

hematopoietic system. Since self-renewal is required for HSCs to persist for the lifetime 

of the animal to maintain the stem cell function, to understand the mechanisms that 

regulate self-renewal is one of the most important issues in stem cell biology. The 

expression pattern and the function of Gfi1 in HSC compartment and in subsets of 

progenitor compartment are still unclear. Does Gfi1 contribute to development of HSCs 

and progenitors? Does loss of Gfi1 result in alteration of numbers of HSCs and 

progenitors in adult mouse bone marrow at steady stage? Does Gfi1 affect the functions 
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of HSCs, such as self-renewal, proliferation, and differentiation? Does Gfi1 play a role in 

regulation of hematopoiesis at stress stage? What are the mechanisms by which Gfi1 

regulate hematopoiesis? The aim of the present study is to answer above questions using 

generated Gfi1 mutant mice, flow cytometry analysis, functional assays for HSCs and 

progenitors as well as other molecular cell biology techniques.     
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2.   Materials and Methods  

 
 

2.1. Materials 
 
 
Chemicals  
 

The chemicals used in the present study were from Fluka, Neu-Ulm; Invitrogen, 

Karlsuhe; Merck, Darmstadt; Roche, Mannheim; Roth, Karlsuhe; Serva, Heidelberg 

and Sigma, Deisenhofen. 

 

Reagents for CFC-assay 
 

Fetal bovine serum (FBS)  PAA Laboratories, Austria 

Iscove’s modified DMEM (IMDM)  Invitrogen Corporation 

Dulbecco’s PBS (DPBS) Invitrogen Corporation 

Penicillin-streptomycin Invitrogen Corporation 

L-Glutamine                                                Invitrogen Corporation 

2.3% methylcellulose GIBCO/BRL,  Germany     

Recombinant murine GM-CSF PeproTech, USA 

Recombinant murine IL-3 PeproTech, USA 
 

Antibodies for flow cytomertric analysis 
 

        Specificity                                        Clone              Conjugation                  Source 
 
BrdU   3D4   FITC  PharMingen, 

     USA 

CD3 145-2C11 APC PharMingen 

CD4  RM4-5 PE, biotin PharMingen 

CD8 53-6.7 biotin PharMingen 

CD16/CD32 (Fcγ receptor III/II)  2.4G2 PE, biotin PharMingen 

CD11b (Mac1)  M1/70  PE, PerCP-Cy5.5 PharMingen 
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CD19   6D5  FITC Caltag, USA 

CD34   RAM34 FITC, PE  PharMingen 

CD45.1   A20  PE PharMingen 

CD45.2  104   biotin PharMingen 

CD45R/B220  RA3-6B2 APC PharMingen   

CD127 (IL-7Rα chain)  B12-1  biotin PharMingen 

CD127 (IL-7Rα chain)   SB/14  PE PharMingen 

c-Kit (CD117) 2b8     FITC, APC  PharMingen 

Flt3 (CD135, Flk2) AF10.1 PE PharMingen 

Gr-1 (Ly6G)  RB6-8C5  FITC, PE PharMingen 

Sca-1 (Ly6A/E)  E13-161.7  FITC, PE, biotin PharMingen 

Streptavidin    PE, PerCP-Cy5.5 PharMingen 

Ter119 (Ly-76) Ter119 biotin PharMingen 

CXCR4  2b11  PE PharMingen 

VLA4 (CD49d)  9C10  PE PharMingen 

VLA5 (CD49e)  5H10-27 PE PharMingen 

 

Biotinylated lineage cocktail 

 
CD11b# 100 µl 

Gr-1# 100 µl   

CD3# 100 µl 

CD45R/B200# 100 µl 

Ter119# 100 µl 

CD4  10 µl 

CD8 10 µl 

# Antibodies from BD PharMingenTM Biotin-conjugated Mouse Lineage Panel Kit 
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Antibody for Western blot 
 
      Specificity     Clone                   Origin                                    Source 

 

p21waf1/cip1   Ab5   rabbit polyclonal  Oncogene, USA 

p27kip1 Ab2 mouse monoclonal CALBIOCHEM, Bad Soden 

E2F5  E-19     rabbit polyclonal  Santa Cruz, USA 

E2F6  anti-sera  rabbit  polyclonal  Dr. Stefan Gaubatz, Marburg 

 

Kits 
 

Ammonium chloride lysing reagent  PharMingen 

Cytofix/Cytoperm Kit  PharMingen 

Enhanced chemiluminescence plus (ECL) detection system 

               Super Signal West Dura  PIERCE, Bonn 

 

Methylcellulose medium 

30 ml  FBS  

40 ml  2.3% methylcellulose   

  1 ml  2-mercaptoethanol (7µl in 10 ml H2O)       

  1 ml    Penicillin-streptomycin  

  1 ml   L-Glutamine                                                   

10 ml  10% bovine serum albumin                      

17 ml  IMDM                                                      

The media were mixed and aliquoted into Falcon tubes (# 2059) for a final volume 
of 3.6 ml each tube, which is sufficient material to generate triplicate plates. Store at 
-20°C. Individual tubes can be thawed at 37°C and used as needed. 

 

Tellesniczky’s solution: 

375 ml  70 % ethanol  

18.75 ml  glacial acetate acid  

37 ml 37% formaldehyde solution  

add water to 500 ml  
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Staining buffer for FACS analysis 

PBS supplemented with 10% FBS 
 

 
Hoechst buffer  
 100 ml  Hanks' balanced salt solution  
 20 mM  HEPES 
 0.1 %(w/v)  glucose  
 10 ml  FBS 

 
 

Whole Cell Extract (WCE) Buffer  

50 mM  Tris-HCl, pH7.8 

250mM  NaCl  

0.2 mM  EDTA  

1 mM  DTT 

10% (w/v) glycine 

0.5% (v/v) NP-40 

 

Transfer Buffer 

5.82 g  Tris base     

2.93 g  glycine   

3.75 ml  10% SDS   

200 ml  methanol    

add water to 1000 ml  

 
 
4×protein loading buffer 

80mM  Tris-HCl, pH 6.8 

3.2% (w/v) SDS  

8% (v/v)  β-mercaptoethanol 

0.002% (v/v)  bromphenolblue 

1.6% (v/v) glycerin 
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10× TBS (Tris-buffered saline) 

24.2g Tris base 

80g  NaCl 

adjust pH to 7.6 

 

Wash Buffer (TBST) 

1× TBS, 0.1% Tween-20 

 
 
2.2   Mice  

 
Gfi1-deficient mice were generated by homologous recombination in R1 embryonic stem 

cells and have been previously described (Karsunky et al., 2002a). Wild type and Gfi1-/- 

mice were bred and maintained under specific pathogen free conditions at the animal 

facility of the Institut für Zellbiologie, Universitätsklinikum Essen in individually 

ventilated  cages. Mice that were used for analyses were healthy 4-8-week-old animals 

from a more than 20 generation backcross with C57BL/6 mice. Gfi1:GFP knock-in mice 

were generated by Raif Yücel in a similar way as the Gfi1-/- animals with the exception 

that a GFP open reading frame was inserted immediately downstream of the Gfi1 

translation initiation codon and that the neo casette was flanked by loxP sites which 

allowed its germline deletion upon expression of a Cre recombinase. Gfi1 heterozygotes 

did not show any distinct phenotype and were used along with WT mice as controls. All 

animal experiments were carried out according to the German animal protection law and 

were done under a license granted by the Bezirksregierung Düsseldorf/NRW, Germany 

(Nr.:G004/98Z). 

 
 
2.3 Flow cytometry analysis and sorting  

 
2.3.1   Preparation of single cell suspension 

 
All phenotypic analysis was performed in parallel using cells from age-matched Gfi1-/- 

and WT control mice (4 to 8 weeks old). The femurs were dissected after the mice were 

 29



sacrificed by CO2 inhalation. The bone marrow cells were harvested by flushing the 

femurs with PBS. The bone marrow cells were passed through a 23 G needle to obtain a 

single cell suspension, and, if necessary, were passed again through a nylon mesh after 

ammonium chloride (PharMingen) lysis of the red blood cells. The bone marrow cells 

were washed with PBS supplemented with 10% FBS, then the total nucleated cell 

numbers were calculated using a CASY-1 cell counter (Schärfe System). Subsequently, 

the cells were resuspended in PBS (for bone marrow transplantation) or in staining buffer 

(for antibody Staining). 

 
 
2.3.2   Flow cytometry analysis and sorting of HSC and progenitors  

 
To define HSCs and progenitors, bone marrow cells from one mouse were suspended in 

450 µl staining buffer. 150 µl of the cell suspension were transferred to a 5-ml tube for a 

single reaction. The cells were incubated with biotinylated lineage antibody cocktail 

(B220, Gr-1, CD11b, CD3, CD4, CD8, and TER-119) together with other antibodies 

(table 1) for 15 minutes at 4°C. After washing with 4 ml of staining buffer, the cells were 

resuspended in 150 µl of staining buffer and incubated with 1 µl of PerCP-Cy5.5-

conjugated Streptavidin for 15 minutes at 4°C. Stained cells were analyzed with a 

FACSCalibur (Becton Dickinson) using CellQuest software as described before (Kondo 

et al., 1997; Akashi et al., 2000; Adolfsson et al., 2001; Christensen and Weissman, 

2001).  

 
To analyze the GFP expression in Gfi1GFP/+ HSCs, the bone marrow cells were stained 

with biotinylated lineage cocktail and PE-conjugated-anti-Sca-1 and APC-conjugated-

anti-c-Kit antibodies, followed by PerCP-Cy5.5-conjugated Streptavidin staining.  

 
To analyze the GFP expression in CLPs, the bone marrow cells were stained with 

biotinylated lineage cocktail followed by staining with PerCP-Cy5.5-conjugated 

Streptavidin. The Lin- cells were sorted on a FACSDiVa (Becton Dickinson), centrifuged 

and resuspended  in  150 µl  of  staining  buffer. The sorted cells were stained with 

antibodies against Sca-1 (PE), c-Kit (APC) and IL-7Rα (biotin) for 15 minutes at 4°C, 

followed by staining with PerCP-Cy5.5-conjugated Streptavidin for 15 minutes at 4°C. 
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                             Table 1.  Antibodies for staining of  HSCs and progenitors  

     Antibodies                                  HSC                CLP        CMP/GMP/MEP 
 
biotinylated lineage cocktail   15 µl    15 µl 15 µl 

Sca-1-FITC     1 µl 1 µl  

c-Kit-APC 1 µl 1 µl 1 µl 

Flt3-PE (or CD34-PE)  1 µl 

IL-7R α chain-PE  1µl  

CD34-FITC   1 µl 

CD16/CD32-PE   1 µl 

Sca-1-biotin   1 µl 

IL-7R α chain-biotin   1 µl 

 

For CMPs/GMPs/MEPs, the bone marrow cells were first stained with biotinylated 

lineage cocktail together with biotinylated antibodies against Sca-1 and IL-7Rα , and 

then stained with PerCP-Cy5.5-conjugated Streptavidin. The Lin-Sca-1-IL-7Rα- cells 

were sorted on a FACSDiVa, and stained with antibodies against CD34 (PE), c-Kit (APC) 

and Fcγ receptors (biotin) for 15 minutes at 4°C.  After washing with 4 ml of staining 

buffer, the cells were resuspended in 150 µl of staining buffer and stained with PerCP-

Cy5.5-conjugated Streptavidin for 15 minutes at 4°C. 

 
 
2.4   Expression analysis of Gfi1 by RT-PCR 

 
This experiment was kindly performed by Dr. Karsunky (Stanford University, USA). 

Bone marrow cells were harvested from C57BL/6, Thy1.1 mice and sorted according to 

the following criteria: HSC: Lin-c-Kit+Sca-1+Thy1.1low, CMP: Lin- c-Kit+ Sca-1-CD34+ 

CD16/32int, GMP: Lin-c-Kit+Sca-1-CD34+CD16/32low, MEP: Lin-c-Kit+Sca1-CD34- 

CD16/32low, CLP: Lin-c-Kit+ Sca-1+Thy1.1-IL-7Rα+. Total RNA from 2000 double sorted 

cells was isolated using TRIzol Reagent (Invitrogen) according to manufactures protocol 

and 10 µg/ml linear acrylamide (Ambion) was used as a carrier. All RNA samples were 

treated with DNase1 to avoid genomic DNA contamination and reversed-transcribed into 
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cDNA using the SuperScript First Strand Synthesis System with random hexamers 

according to manufacture’s protocol. Per PCR 1 µl of cDNA (equivalent of cDNA from 

100 cells) and the following primer were used for amplification:  

Gfi1: 5’ CTG CTA CAA GAG GAG GCA TCA-3’  

        5’-GAA GCA CAG AAC ACA GGC TCT-3’  

β-actin: 5’-ACG AGG CCC AGA GCA AGA GAG G-3’, 

             5’-AGC CAC CGA TCC ACA CAG AGT A-3’ 

 
 
2.5   Bone marrow transplantation 

 
The mice used as recipients were 8–12 week old. The lethal preconditioning regimen for 

HSC and bone marrow reconstitution was 9.6 Gy total body irradiation, given in two 

doses with a 4-hour interval using a 137Cs radiation source at Institut für Medizinische 

Strahlenbiologie, Universitätsklinikums Essen with the help of Prof. Müller. After 

irradiation mice were given antibiotic water (1.1 g/L neomycin sulfate and 106 U/L 

polymyxin B sulfate) for at least 12 weeks to reduce the chance of infection from 

opportunistic pathogens.  

 
Donor bone marrow cells were prepared as described above. The cell suspensions were 

adjusted to an appreciated concentration for injection. In all experiments, 200 µl of cells 

were injected into lethally irradiated recipient mice. 

 
 To confirm that Gfi1 deficient HSCs have an intrinsic defect and to exclude influences of 

a potentially defective bone marrow microenvironment in Gfi1-/- mice, 4x106 WT or 

Gfi1-/- bone marrow cells were injected into lethally irradiated CD45.1 mice. 4 months 

after transplantation, the frequencies of HSCs and early progenitors derived from donor 

bone marrow cells (CD45.2+) in recipients’ bone marrow were measured by flow 

cytometry and described in above. To identify the donor derived cells, biotin-conjugated 

anti-CD45.1 antibodies were added to the biotinylated lineage cocktail. Reconstitution of 

donor myeloid cells was monitored by staining bone marrow cells with antibodies against 

CD45.2 (PE), CD11b (PerCP-Cy5.5), and Gr-1 (FITC).   
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Vice versa, 3x106 CD45.1 WT bone marrow cells were injected into lethally irradiated 

WT or Gfi1-/- mice (both CD45.2+). 4 months after transplantation, the frequencies of 

HSCs and early progenitors derived from donor bone marrow (CD45.1+) were measured 

by flow cytometry and described above. To identify the donor-derived cells, biotin-

conjugated anti-CD45.2 antibody was added to the biotinylated lineage antibody cocktail. 

Reconstitution of donor myeloid cells was monitored by staining bone marrow cells with 

antibodies against CD45.2 (PE), CD11b (PerCP-Cy5.5), and Gr-1 (FITC).   

 
For competitive transplantation, WT or Gfi1-/- bone marrow cells (both CD45.2+) were 

mixed with competitor CD45.1+ bone marrow cells at a ratio of 1:1 (2×105 CD45.2 

versus 2×105 CD45.1 cells per mouse) or 10:1 (2×106 CD45.2 versus 2×105 CD45.1 cells 

per mouse), and injected into lethally irradiated CD45.1 recipient mice.  

 
The same experiments were performed using 500-sorted WT or Gfi1-/- LT-HSCs mixed 

with 2x105 competitor CD45.1 bone marrow cells. 4000-sorted WT or Gfi1-/- Lin-Sca-1+ 

c-Kit+Flt3- cells were sorted into 5-ml tubes then mixed with 1.6x106 competitor CD45.1 

bone marrow cells. The mixed cells were centrifuged, and resuspended in 1.6 ml of PBS. 

200 µl of the mixed cells were injected into lethally irradiated CD45.1 recipient mice. 

 
Donor-derived cells were distinguished from endogenous host cells by the expression of 

different CD45 antigens (CD45.1 vs. CD45.2). The peripheral blood was collected from 

retroorbital venous sinus of anesthetized mice into EDTA-containing tubes at different 

time points (3, 10 and 22 weeks).  After ammonium chloride (PharMingen) lysis of the 

red blood cells, cells were washed, and resuspended in 150 µl of staining buffer.  

Antibodies against CD45.2 (PE), CD11b (PerCP-Cy5.5), and Gr-1 (FITC) were used to 

measure reconstitution of donor derived myeloid cells, while reconstitution of donor 

derived lymphoid cells was measured by staining with antibodies against CD45.2 (PE), 

CD3 (APC), and CD19 (FITC).   

 
In some experiments, bone marrow cells were harvested at the end of experiments. 

Percentage of donor Lin-Sca-1+c-Kit+ cells was detected by staining with the biotinylated 

lineage cocktail together with antibodies against CD45.2 (PE), c-Kit (APC), and Sca-1 
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(FITC) as described above.   

 
 
2.6   Short-term radioprotection assay 

 
Cell suspensions containing various amounts of WT or Gfi1-/- bone marrow cells were 

injected into lethally irradiated wild-type recipient mice. The animal survival frequency 

was plotted for each group over a time period of 35 days. 

 
 
2.7   Spleen colony-forming assays  

 
5x104 WT or Gfi1-/- bone marrow cells were injected into lethally irradiated (9.6Gy) 

wild-type recipient mice via the lateral tail vein (10 mice each group).  Mice were killed 8 

days or 12 days after the injection, and their spleens were fixed in Tellesniczky’s fixative 

solution for at least 7 days for macroscopic examination. Irradiated mice injected with 

PBS were included as control in all experiments. 

 
      

2.8   CFC assays 

 
Single-cell suspensions of bone marrow were prepared as described in 2.3.1. Cell 

concentration was adjusted to 1×106/ml. 90 µl of single cell suspensions were added to 

methylcellulose media (2.5×104 cells/ml). Purified recombinant murine IL-3 and murine 

GM-CSF were used at the concentrations indicated in the results. After mixed thoroughly 

with 3 ml syringe, the mixture was plated in triplicate in 1 ml of methylcellulose medium 

in 35-mm petri dishes and incubated for 7 days at 37°C and 5% CO2. Individual colonies 

(defined by >50 cells) were scored at day 8 post-plating. 

 
2.9   Analysis of adhesion molecule expression on HSCs 
 
Bone marrow cells were stained with antibodies for surface markers (lineage antibody 

cocktail, anti-c-Kit-APC, anti-Sca-1-FITC), and anti-CXCR-4-PE, or anti-VLA-4-PE, or 

anti-VLA-5-PE, respectively. Lin- Sca-1+c-Kit+ population was gated for analysis of 

adhesion molecule expression. 
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2.10   BrdU incorporation 

 
Mice were initially injected intraperitoneally with 1.8 mg of BrdU in 200 µl of PBS and 

then were continuously given BrdU at 1 mg/ml in the drinking water. At different time 

points (1,2,5 and 10 days), bone marrow cells were harvested and were first stained for 

surface markers (lineage antibody cocktail, c-Kit, Sca-1). After washing with PBS 

supplemented with 10% FBS, the cells were resuspended with 100 µl of 

Cytofix/Cytoperm buffer (from Cytofix/Cytoperm Kit, PharMingen) and incubated for 1 

hour at room temperature. The fixed and permeabilized cells were washed once with 1 ml 

of Perm/Wash buffer (from Cytofix/Cytoperm Kit, PharMingen), and incubated with 100 

µl of diluted Dnase I (300 µg/ml in DPBS) for 1 hour at 37°C.  After washing with 1 ml 

of Perm/Wash buffer, the cells were incubated with FITC-conjugated anti-BrdU antibody 

in Perm/Wash buffer for 20 minutes at room temperature. The cells were washed with 1 

ml of Perm/Wash buffer, and resuspended in PBS supplemented with 10% FBS for flow 

cytomertric analysis.  Bone marrow cells from mice without BrdU-injection were stained 

with antibody against surface marker and BrdU, and used as negative control. 

 
 
2.11  Cell cycle analysis of HSCs 

 
Bone marrow cells were stained with antibodies for surface markers (biotinylated lineage 

cocktail, c-Kit-APC, Sca-1-FITC) as described above, and resuspended in 1 ml of 

Hoechst buffer.  Cells were incubated with Hoechst 33342 for 45 minutes at 10µg/ml at 

37°C. Pyronin Y was then added to a final concentration of 1 µg/ml, and cells were 

incubated for another 15 minute prior to analyzed with a FACSDiVa to determine the cell 

cycle profile of Lin-c-Kit+Sca-1+ cells  

 

2.12   Western blot 
 
The bone marrow cells were lysed with WCE buffer plus protease inhibitors, incubated 

on ice for 20 minutes, then centrifuged at 14,000 rpm for 10 minutes at 4°C. The 

supernatant (whole-cell extract) was transferred to a fresh Eppendorf tube and stored at  

-80°C. 
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Denaturing sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) were prepared 

with 12% separating gels and 5% stacking gels. 50 µg of protein extracts were added in 

4×loading buffer, denatured at 95°C for 5 minutes, loaded onto the gels and 

electrophoresed in running buffer at 120 V for about 90 to 120 minutes. The samples 

were transferred from the gel to a HybondTM-C Extra membrane (Amersham Bioscience) 

using Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad). The membrane was stained with 

Ponceau S solution to ensure equal protein loading and transfer. The membrane was 

washed with TBST, blocked with 5% non-fat dry milk powder in TBST for 60 minutes at 

room temperature, and incubated with primary antibody overnight at 4°C. After being 

washed with TBST, the membrane was incubated with Horseradish peroxidase-

conjugated secondary antibody in TBST for 60 minutes at room temperature. The 

membrane was washed in TBST, and immunoreative proteins were visualized with the 

ECL detection system, followed by exposure to X-ray film.  
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3.    Results 
 
 
 
3.1   Generation and functional testing of the Gfi1:GFP knock-in mice  
 
To investigate the function of Gfi1, Gfi1 deficient mice have been generated by 

homologous recombination in embryonic stem cells, replacing part of the coding 

sequence with a neoR cassette (Karsunky et al., 2002a). Intercrossing of Gfi1+/- mice 

produced Gfi1 null mice (Gfi1-/-) that completely lacked expression of Gfi1 protein. Gfi1 

heterozygotes did not show any distinct phenotype, while mice lacking Gfi1 showed 

multilineage defects in hematopoiesis such as reduced numbers of lymphoid cells, 

monocytosis and severe neutropenia (Karsunky et al., 2002a; Yücel et al., 2003; Hock et 

al., 2003).  

 
To further understand the role of Gfi1 in modulation of hematopoiesis, it is essential to 

precisely delineate the magnitude and compartmentalization of Gfi1 expression in 

different hematopoietic lineages at different differentiation stages during hematopoiesis. 

Since the green fluorescent protein (GFP) has been proven remarkably useful in tracking 

intracellular protein localization in vitro and recently for localizing expression to cellular 

subsets in vivo (Monroe et al., 1999), Raif Yücel used gene targeting to generate a knock-

in mouse mutant in which the Gfi1 coding region was replaced by the gene encoding GFP 

(Yücel et al., submitted). The GFP gene was inserted in-frame with the ATG translation 

initiation codon of Gfi1, thereby placing it under the transcriptional control of the Gfi1 

regulatory elements (Figure 3). The targeting construct was designed to replace exon 3 to 

5 of Gfi1 by GFP and included a selectable marker gene (Neo) flanked by loxP sites 

(Figure 3). All endogenous Gfi1 regulatory sequences were maintained after homologous 

recombination. Therefore, GFP is expressed in place of the endogenous Gfi1 allele under 

the transcriptional control of the Gfi1 regulatory elements. The Gfi1:GFP heterozygous 

knock-in mice (Gfi1GFP/+) derived from the targeted ES cells were mated with CMV-Cre 

transgenic mice, which express Cre recombinase transiently in the early blastocyst, to 

remove the neomycin resistance gene at the germline level. To minimize genetic 

background effects on the analysis of the role of Gfi1 in hematopoiesis, Gfi1GFP/+ mice 
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without the neomycin gene were backcrossed into C57BL/6 mice. Intercrossing of 

Gfi1GFP/+ mice produced Gfi1GFP/GFP mice that completely lacked expression of Gfi1 

protein.  
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As expected from experiments with previously described mice heterozygous for the Gfi1 

allele (Karsunky et al., 2002a; Yücel et al., 2003), Gfi1GFP/+ mice were indistinguishable 

from their WT littermates and from the previously described animals that carry a neo 

resistance marker gene in the Gfi1 locus disrupting one Gfi1 allele (Gfi1+/-) (Karsunky et 

al., 2002a; Yücel et al., 2003; Yücel et al., submitted). Hematopoietic parameters of 

Gfi1GFP/+ mice appeared normal, both with respect to developing populations as defined 

by surface marker expression and with respect to total thymocyte and bone marrow cell 

numbers. Thus, the results from Gfi1GFP/+ mice reflected the situation under physiological 

conditions. 

 
 
3.2  Gfi1 expression in adult mouse bone marrow hematopoietic cells 
 
3.2.1  Gfi1 is expressed in myeloid cells but is absent in erythroid cells 
 
To evaluate the expression of Gfi1 in various hematopoietic cell populations in adult mice, 

cells were harvested from several hematopoietic tissues in Gfi1GFP/+ heterozygous 

animals and analyzed for GFP expression by flow cytometry. FACS analysis showed a 

single peak representing GFP-expressing cells in the thymus, lymph nodes and spleen, 

suggesting that most of the cells in these tissues express Gfi1 albeit at different levels. In 

contrast, in the bone marrow of adult mice there were consistently two populations of 

nucleated cells that expressed different levels of GFP, ranging from absent/low levels to 

high levels of expression compared to WT control (Figure 4). This indicated that Gfi1 

gene is not expressed in all hematopoietic cell populations in adult mouse bone marrow.  
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Figure 4. Gfi1 is heterogeneously
expressed in adult mouse bone marrow
hematopoietic cells  
 
FACS analysis was performed on total
nucleated bone marrow cells isolated from
Gfi1+/+ and Gfi1GFP/+ mice. A
representative FACS plot is shown for
GFP expression in total nucleated bone
marrow cells. Note that two peaks of GFP-
expressing cells are present in Gfi1GFP/+

mice.
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To more closely examine the significance of the different GFP-expressing populations in 

the bone marrow, we analyzed Gfi1-GFP expression in various lineages by flow 

cytometry. As expected, GFP expression was not observed in Ter119+ nucleated 

erythroid cells.  Analysis of GFP expression in myeloid cells (CD11b+) of bone marrow 

(Figure 5) revealed two subsets of GFP-expressing cells in immature mono-myeloid 

population (CD11b+Gr-1-/low), while a single positive subset of GFP-expressing cells 

existed in mature granulocyte population (CD11b+Gr-1high). These data were consistent 

with the results from previous experiments (Karsunky et al., 2002a; Hock et al., 2003), 

suggesting that Gfi1 is present in myeloid but absent in erythroid lineage cells.  
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Figure 5. Expression of Gfi1 in myeloid and erythroid cells 
 
Bone marrow cells were stained for the myeloid cell surface markers (C
surface marker (Ter119). Myeloid and erythroid subsets were gated re
fluorescence. Gfi1+/+ histograms (gray line) were overlaid with Gfi1GFP/+

highly expressed in granulocytes (CD11b+Gr-1high cells) but absent in 
while two peaks of GFP-expressing cells was found in immature mono-
/low cells).  
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3.2.2   Expression of Gfi1 in HSCs and subsets of hematopoietic progenitor cells 
 
Gfi1 expression in hematopoietic stem cell and early progenitor compartments was 

analyzed by measuring the fluorescence of GFP in the Gfi1GFP/+ mice. Using 

multiparameter flow cytometry and cell sorting, cells were isolated with surface marker 

expression patterns that discriminate among HSCs, CLPs, CMPs and more lineage- 

restricted GMPs and MEPs (Adolfsson et al., 2001; Christensen et al., 2001; Kondo et al., 

1997; Akashi et al., 2000). A high intensity of green fluorescence was found in bone 

marrow Lin-Sca-1+c-Kit+ (LSK) population which contains LT-HSCs, ST-HSCs and  
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MPPs (Adolfsson et al., 2001; Christensen et al., 2001), indicating that the Gfi1 gene is 

expressed in the entire HSC compartment (Figure 6a). Similarly, significant GFP 

expression was observed in CLPs (Lin-IL7Rα+Sca-1lowc-Kitlow cells) (Figure 6b) and in 

GMPs (Lin-Sca-1-IL-7Rα-c-Kit+CD34+FcγRhigh) (Figure 6c) but not in MEPs,  (Lin-Sca-

1-IL-7Rα-c-Kit+CD34-FcγRlow cells) and CMPs (Lin-Sca-1-IL-7Rα-c-Kit+CD34+FcγRlow 

cells) (Figure 6c).  

 
To confirm that GFP expression in these cells truly reflected Gfi1 gene expression, HSC 

and progenitor fractions were sorted from bone marrow of C57BL/6, Thy1.1 mice. 2000 

cells for each population were used for RT-PCR analyses.  The expression pattern of Gfi1 

in HSCs and progenitors  was completely concordant with GFP fluorescence in Gfi1GFP/+ 

mice (Figure 7. This experiment was kindly performed by Dr. Karsunky, Standford 

University, USA).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

MPP ST-HSC 
GMP

MEP 

CMP 

CLP

LT-HSC 

Figure 7.  Expression analysis of Gfi1
in HSCs and progenitors by RT-PCR
reaction 
 
2000 HSCs, CMPs, GMPs, MEPs and
CLPs were sorted from bone marrow of
C57BL/6, Thy1.1 mice and used for RT-
PCR analysis of Gfi1 expression. This
experiment was kindly performed by Dr.
H. Karsunky at Stanford University,
USA.  
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3.3   Effect of Gfi1 deletion on the frequencies of HSCs and progenitors 
 

3.3.1   Absence of Gfi1 results in a decrease of HSCs 
 
To continuously produce end-stage hematopoietic cells, HSCs must be capable of self-

renewal to maintain the HSC pool and their more mature progeny. Since expression of 

Gfi1 was found in bone marrow HSCs and progenitors, Gfi1 might play a role to 

maintain the number of HSCs and their downstream progenitors. To test whether the lack 

of Gfi1 resulted in a decrease in stem cell number in the basal state, the frequencies of 

HSCs and hematopoietic progenitors were analyzed in Gfi1-/- mice. Hematopoietic cells 

that lack expression of mature lineage markers (Lin-) and that coexpress Sca-1 and the 

tyrosine kinase receptor c-Kit on their cell surfaces (Lin-Sca-1+c-Kit+, LSK) are highly 

enriched in HSC activity in normal murine bone marrow in steady-state hematopoiesis. 

Strikingly, Gfi1-/- mice showed a depletion of this LSK population in adult bone marrow 

(Figure 8, left panels and Figure 9a).  Further analysis revealed a five-fold reduction of 

frequencies of HSCs with LSK phenotype in total Gfi1-/- bone marrow when compared to 

age matched WT littermates (0.1032±0.0139% and 0.0215±0.0052% for WT and Gfi1-/- 

respectively, n=8, p<0.001, Figure 9a).   

 
Next, further studies were performed to analyze the LT-HSC population and ST-

HSC/MPP population using additional markers such as CD34 and Flt3. LSK cells lacking 

CD34 or Flt3 expression are thought to represent a virtually pure HSC population in the 

bone marrow of adult mice (Adolfsson et al., 2001; Christensen et al., 2001; Goodell et 

al., 1997; Zhao et al., 2000). The fractions of LT-HSCs (Lin-Sca1+c-Kit+CD34- or Lin-

Sca1+c-Kit+Flt3-) and ST-HSCs/MPPs (Lin-Sca1+c-Kit+Flt3+) were dramatically reduced 

2-4 fold and 10-fold respectively (Figure 9a), and Lin-Sca1+c-Kit+Flt3high cells were 

almost completely depleted in Gfi1-/- bone marrow (Figure 8, right panels and Figure 9a), 

indicating that Gfi1-/- LT-HSCs may have a defect in self-renewal and/or in the 

generation of downstream primitive progenitors. 

 
The absolute numbers of phenotypically defined HSCs were also clearly reduced in Gfi1 

deficient mice, since the percentages of HSCs were reduced in Gfi1-/- mice while bone 

marrow cellularity was only slightly reduced in Gfi1-/- mice (Figure 9b). 
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stage of lymphoid and myeloid restricted development, respectively. A significant 

decrease of both CLP and CMP frequencies was observed in Gfi1-/- mouse bone marrow 

compared to the respective compartments in WT mice (Figure 10 and Figure 11). 

Strikingly, the over 40-fold reduction of CLPs (which express Gfi1) in Gfi1-/- mice was 

much more dramatic than the 2-fold reduction of CMPs (which do not express Gfi1) 

(Figure 10 and Figure 11). 
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In contrast to reduced frequencies of HSCs, CMPs and CLPs, the frequency of GMPs 

was not reduced in Gfi1 deficient mice, but rather showed a significant increase with 

regard to the Lin-Sca-1-IL-7Rα-c-Kit+ population and also with respect to total bone 

marrow cell numbers compared to the respective compartments in WT mice. As expected, 

the frequency of MEPs (which do not express Gfi1) was not altered in Gfi1 deficient 

mice compared to WT littermates (Figure 11). 

 
 
3.4   The homozygous Gfi1GFP/GFP mice are functional Gfi1 knock-outs 
 
In contrast to Gfi1GFP/+ mice which do not show any detectable hematopoietic defects, 

homozygous Gfi1GFP/GFP mice which were unable to produce the Gfi1 protein (Yücel et 

al., submitted) showed the same typical phenotypes of Gfi1 deficient animals such as 

monocytosis and neutropenia (Karsunky et al., 2002a; Hock et al., 2003) (Figure 12 a and 

b), loss of thymocytes and developmental defects during T cell differentiation (data not 

shown, Yücel et al., 2003 and submitted), and also a depletion of the LSK population in 

bone marrow (Figure 12c). 

 
 
3.5   Defects of Gfi1-/- HSCs and progenitors are cell autonomous 

 
To confirm that Gfi1 deficient HSCs have an intrinsic defect and to exclude influences of 

a potentially defective bone marrow microenvironment in Gfi1-/- mice, an excess of Gfi1 

deficient bone marrow cells (CD45.2+) were transplanted into lethally irradiated WT 

hosts (CD45.1+). The phenotype of Gfi1 deficient mice with regard to frequencies of stem 

cells and progenitors, or previously reported hallmarks (neutropenia, accumulation of 

monocytic cells and reduced numbers of thymocytes (Karsunky et al., 2002a; Yücel et al., 

2003; Hock et al., 2003) could be exactly reproduced in the transplanted hosts (Figure 13), 

suggesting that the hematopoietic defects in Gfi1-/- mice should be cell autonomous.  

 
Vice versa, CD45.1+ WT bone marrow cells were transplanted into lethally irradiated 

Gfi1 deficient mice (CD45.2+) to test whether Gfi1 deficient mice have intact bone 

marrow microenvironment. Normal numbers of HSCs, progenitors, neutrophils and  
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Figure 13. Defects in Gfi1-/- mice are cell autonomous 
 
4x106 WT or Gfi1-/- bone marrow cells were injected into lethally irradiated CD45.1 mice (n=4 for each 
group). 4 months after transplantation, the frequencies of HSCs and early progenitors in recipients’ bone 
marrow derived from donor bone marrow cells (CD45.2+) were measured by flow cytometry. The 
phenotype of Gfi1 deficient mice with regard to frequencies of stem cells and progenitors (a), neutropenia 
(b) and reduced numbers of thymocytes (c) could be exactly reproduced in the transplanted hosts.  
(LISK: Lin-Sca-1-IL-7Rα-c-Kit+ ).  
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Figure 14. No defects were detected in Gfi1-/- bone marrow stromal environment 
 
3x106 CD45.1 WT bone marrow cells were injected into lethally irradiated WT or Gfi1-/- mice (both 
CD45.2, n=3 to 4 for each group). 4 months after transplantation, the frequencies of HSCs and early 
progenitors derived from donor bone marrow (CD45.1+) were measured. The frequency of HSCs and 
progenitors (a), the development of granulocytes (b) and the number of thymocytes (c) were normal, 
indicating that the microenvironment of Gfi1-/- bone marrow lacks detectable defects.  
(LISK: Lin-Sca-1-IL-7Rα-c-Kit+ ). 
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3.6   Alteration of Gfi1-/- hematopoietic progenitor frequencies  

 
3.6.1  Reduction in numbers of day 8 CFU-S but not day 12 CFU-S in Gfi1-/- mice 
 
To confirm the above described findings from the phenotypic analysis of HSCs and 

progenitors, and to assess the function of HSCs and more committed myeloid progenitors 

of Gfi1-/- mice, CFU-S assays were performed. As shown in Figure 15 and 16, both the 

numbers and the size of CFU-S12 (which are derived from both the HSC/MPP 

compartment and from the CMP/MEP populations) were significantly reduced in Gfi1-/- 

bone marrow transplanted hosts (204+50.7 and 82+25.6 per 106 bone marrow cells 

respectively) (Figure 15 and 16). In contrast, CFU-S8 which are mainly derived from  
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Figure 15. Measures the frequency and functional property of primitive progenitors with in vivo 

spleen colony forming unit (CFU-S) assays 
 
CFU-S assay is an in vivo clonogenic method that measures the frequency and functional property of 
primitive progenitors. 5x104 WT or Gfi1-/- bone marrow cells were injected into lethally irradiated (9.6Gy) 
wild-type recipient mice (10 mice each group).  Mice were sacrificed 8 days or 12 days after the injection, 
and their spleens were fixed for macroscopic examination. Spleen colonies are shown. Note that the size of 
day 12 CFU-S was significantly reduced in Gfi1-/- bone marrow transplanted hosts. 
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MEPs, remained unaltered with regard to numbers and size in irradiated hosts after 

transplantation of WT or Gfi1-/- bone marrow (174+28.2 and 137.3+15.5 per 106 bone 

marrow cells, respectively) (Figure 15 and 16). These results were consistent with 

phenotypically defined results of ST-HSCs, MPPs, CMPs and MEPs. Thus, the lack of 

Gfi1 affected the production of primitive hematopoietic progenitors but not the formation 

of megakaryocyte/erythrocyte progenitors. 
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animals died from the consequences of irradiation within 35 days. However, 

transplantation of 1 x 106 Gfi1-/- bone marrow cells could provide almost full protection 

against irradiation (Figure 17), suggesting that the defect in the short-term radioprotection 

capacity of Gfi1-/- bone marrow cells was mainly due to the depletion of ST-HSC, MPP 

and CMP populations.  
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The specific cytokine sensitivity of myeloid precursor cells can be derived from dose-

response curves obtained by plotting the number of colonies against the concentrations of 

the factor under examination. Dose-response curves for colony formation stimulated by 

IL-3 and GM-CSF were almost identical for Gfi1-/-mice and WT controls (Figure 18, 

lower panels), suggesting that the increased numbers of colonies observed with Gfi1-/- 

cells are not the result from altered cytokine sensitivity of Gfi1-/- myeloid precursor cells.  
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Figure 18. Analysis of myeloid progenitors of Gfi1-deficient mice 
 
Single-cell suspensions from Gfi1-/- bone marrow (closed squares) or from WT bone marrow (open squares) 
were plated in methylcellulose in the presence of the indicated amounts of IL-3 and GM-CSF. Upper panels 
show numbers of colonies per dish in response to increasing cytokine concentration. Lower panels show 
dose–response curves of maximal colony numbers reached per dish at a given cytokine concentration. The 
results are representative for at least five independent experiments each with individual animals. Cytokine 
concentration is in ng/ml.   
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3.7   Decreased long-term reconstitution capacity of Gfi1
-/- HSCs 

 
The capability for self-renewal over the entire lifetime of an organism, the fostering of 

multilineage hematopoiesis and the potency to reconstitute multilineage hematopoiesis 

upon transplantation in a foreign host are the most important features of HSCs. Although 

our phenotypic analysis suggested that the HSC pool size is significantly reduced in 

Gfi1deficient mice, the depletion of stem cells under normal homeostatic conditions may 

not reflect a capacity to self-renew under conditions of stress. Thus, the function of HSCs 

can only be assessed by in vivo reconstitution assays such as bone marrow transplantation.  

 
 
3.7.1    Inadequate self-renewal of Gfi1-/- HSCs  
 
Since the Gfi1-/- bone marrow cells exhibited moderate decrease of radioprotection ability 

in the primary recipients, it was of interest to determine whether these findings would be 

more predominant upon further proliferative stress after transplantation to secondary 

recipients. 1×106 bone marrow cells from WT or Gfi1-/- mice were transplanted into 

lethally irradiated WT mice. 3 months later, secondary transplantations were performed 

with 1 x 106 bone marrow cells from primary recipients which had previously received 

either 1 x 106 WT or Gfi1-/- bone marrow cells. Within six months, four of ten secondary 

recipients that received bone marrow from primary recipients transplanted with Gfi1-/- 

cells died. In contrast, all secondary recipients injected with cells from primary recipients 

previously transplanted with WT bone marrow survived this six-month period. This 

suggested that a lack of Gfi1 is associated with a defect of the repopulation ability of 

HSCs.  

 
 
3.7.2   Decreased competitive reconstitution capacity of Gfi1-/- HSCs  
 
To further determine the long-term reconstituting abilities of Gfi1 deficient bone marrow 

cells, WT or Gfi1-/- bone marrow cells (both CD45.2+) were mixed at a 1:1 ratio with 

competitor CD45.1+ bone marrow cells. The mixtures were transplanted into irradiated 

CD45.1+ recipients and myeloid and lymphoid reconstitution was measured by FACS 

analysis of peripheral blood over a period of 22 weeks. WT bone marrow cells 
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successfully reconstituted both myeloid and lymphoid lineages in irradiated recipients, 

whereas Gfi1-/- bone marrow cells showed a dramatically decreased capacity to 

reconstitute myeloid or lymphoid hematopoiesis (Figure 19, upper panels). The 

possibility could be excluded that the above defect is simply due to the reduction of 

phenotypically defined HSCs in Gfi1-/- bone marrow, because a 10:1 mixture of Gfi1-/- 

bone marrow with CD45.1 competitor cells which provided a large excess of 

phenotypically defined Gfi1-/- HSCs also failed to compete with CD45.1 competitor cells 

to reconstitute hematopoiesis in recipient mice in both myeloid and lymphoid lineages 

(Figure 19, lower panels).  

 
To exclude the influences of the altered lineage profiles (monocytosis, neutropenia and 

lymphocytopenia) or a simple dilution effect in Gfi1
-/- bone marrow, 500 sorted WT or 

Gfi1-/- LT-HSC cells (CD45.2+Lin-Sca1+kit+Flt3-) were mixed with 2x105 of competitor 

CD45.1+ bone marrow cells for competitive transplantation. Gfi1-/- HSCs were unable to 

foster the outgrowth of significant numbers of myeloid or lymphoid cells in irradiated 

hosts up to 22 weeks after transplantation (Figure 20a). Moreover, sorted Gfi1
-/- LT-

HSCs were also unable to give rise to any LSK cells upon transplantation, whereas 500 

sorted WT cells could indeed generate LSK cells in a transplanted host (Figure 20b). 

Such a direct determination of HSC ratios in reconstituted animals showed that the 

competitive disadvantage starts at the level of HSC. 
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Figure 19. Competitive repopulation assay with WT and Gfi1-/- bone marrow cells 
 
2x105 WT or Gfi1-/- bone marrow cells (CD45.2+) were mixed with the same number of competitor 
CD45.1+ bone marrow cells and were injected into lethally irradiated CD45.1+ mice (n=4). Peripheral blood 
was analyzed at various times after reconstitution for WT or Gfi1-/- bone marrow cells (CD45.2+)-derived 
myeloid, B-lymphoid and T-lymphoid cells (upper panels marked 1:1). The same experiments were 
performed using 2x106 WT or Gfi1-/- bone marrow cells (CD45.2+) mixed with 2x105 of competitor 
CD45.1+ bone marrow cells. After injection into lethally irradiated CD 45.1+ mice (n=4) peripheral blood 
was analyzed as indicated above (lower panels marked 10:1).   
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Figure 20. Competitive repopulation assay with sorted WT and Gfi1-/- LT-HSCs 
 
500 sorted WT or Gfi1-/- LT-HSC cells (CD45.2+) were mixed with 2x105 of competitor CD45.1+ bone 
marrow cells and injected into lethally irradiated CD 45.1+ mice (n=4).  
a. Peripheral blood was analyzed 22 weeks after reconstitution for WT or Gfi1-/- bone marrow cells 

(CD45.1-) -derived myeloid, B-lymphoid and T-lymphoid cells.   
b. Bone marrow cells were analyzed 6 months after reconstitution to measure the percentage of LSK cells 

derived from WT or Gfi1-/- LT-HSCs.  Representative diagrams show the contribution of donor derived 
HSCs (CD45.1- LSK) in WT and Gfi1-/- LT-HSCs transplanted recipients.   

 
 

 59



Although influences of a potentially defective bone marrow microenvironment in Gfi1-/- 

mice have been excluded (see chapter 3.5), the defect in HSCs in the bone marrow of 

Gfi1-/- mice could result from an impaired generation of self-renewing HSCs or defective 

stem cell homing. CXCR4 (SDF-1 receptor), VLA-4 and VLA-5 have been shown to be 

important for HSC homing (Peled et al., 1999; Wright et al., 2002; Papayannopoulou and 

Nakamoto, 1993; Craddock et al., 1997; Vermeulen et al., 1998; Scott et al. 2003), Flow 

cytometric analysis revealed no difference between WT and Gfi1-/- LSK cells (Figure 21), 

indicating that loss of Gfi1 does not cause changes in the expression of these receptors. In 

addition, the early engraftment of Gfi1 that was seen at three weeks after transplantation 

was followed by a gradual decrease of Gfi1-/- progeny (Figure 19). Therefore, a homing 

defect of Gfi1 deficient cells appeared as an unlikely explanation for the loss of 

competitive activity of Gfi1-/- HSCs. 
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Figure 21. Expression levels of CXCR4 (SDF-1 receptor), VLA-4 or VLA-5 are expressed at identical 

levels on LSK cells from WT or Gfi1-/- mice 
 
 
3.8   Altered in vivo proliferation kinetics of HSCs in the absence of Gfi1 
 
It has been shown that LT-HSCs are asynchronously dividing, repeatedly entering and 

leaving the cell cycle with a constant fraction in G0 phase under steady-state 
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hematopoietic conditions (Bradford et al., 1997; Cheshier et al., 1999). Obviously, the 

factors impeding HSC proliferation capacity could lead to a decreased repopulating 

ability of HSCs (Park et al., 2003; Björnsson et al., 2003).  However, the enhancement of 

proliferation of HSCs does not result in a subsequent expansion of self-renewing HSCs, 

but results in an exhaustion of HSCs (Cheng et al., 2000a) and a dramatically decreased 

long-term engraftment capacity (Fleming et al, 1993a; Orschell-Traycoff et al, 2000; 

Szilvassy et al., 2000; Huttman et al., 2001). To analyze whether there was a defective 

cell cycle progression in Gfi1-/- HSCs, WT and Gfi1-/- mice were initially injected 

intraperitoneally with 1.8 mg/200 µl BrdU in saline and then continuously given BrdU at 

1 mg/ml in the drinking water. The proliferative history of HSCs was determined by flow 

cytometry at different time points. As shown in Figure 22, the percentage of cells entering 

the cell cycle (BrdU positive) was significantly higher in the Gfi1-/- HSC compartment 

than in WT HSCs, indicating that absence of Gfi1 alters the in vivo proliferation kinetics 

of HSCs. 
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Figure 22. In vivo BrdU incorporation
experiments revealed alteration of proliferation
kinetics of Gfi1-/- HSCs  
 
LSK cells were in vivo labelled with BrdU over
the indicated time period.  Gfi1-/- LSK cells show
a significantly higher incorporation of BrdU than
LSK cells from WT mice. 

 
 
 
 
 
 
 
 
 
3.9   Drastic loss of HSCs in G0 phase in Gfi1-/- bone marrow 
 
To determine whether enhanced BrdU incorporation in Gfi1-/- HSCs is related to an 

increase of the proportion of HSC in cell cycle, the cell cycling status of stem cells was 

determined using the RNA dye pyronin Y (PY, as a measure of quiescence) and DNA dye 

Hoechst 33342. During cell cycle progression, there is a constant increase of cellular 

RNA, mainly because of the increased production of ribosomal RNA (Darzynkiewicz, et 

al., 1979 and 1988). Quiescent cells have, on average, 10-20% of the RNA as their 

 61



cycling counterparts (Johnson et al., 1975). Simultaneous staining of viable cells with the 

RNA-specific fluorochrome PY and the DNA-specific fluorochrome Hoechst has been 

widely used to determine the cell cycle status of many different cell types (Shapiro, 1981). 

By using this technique, the fraction of LSK in G1/S/G2/M versus G0 can be determined, 

revealing the fraction of actively proliferating cells (growth fraction) in vivo (Cheshier et 

al., 1999). As seen in Figure 23, the absence of Gfi1 correlated with a drastic loss of 

HSCs in G0 phase and a significantly higher percentage of Gfi1-/- LSK cells in G2/S/M 

phases compared to WT LSK cells. These findings demonstrated that during steady-state 

hematopoiesis, the ratio of Gfi1-/- cells in active cycle versus G0/G1 is affected compared 

to WT controls, indicating that the decrease of Gfi1-/- HSC long-term reconstituting 

capacity is not caused by a lower proportion of proliferating stem cells during 

endogenous hematopoiesis of adult mice, but might be due to a shift of HSCs from G0 

into the cycle which leads to exhaustion of the stem cell pool and also lowers the 

percentage of cells with high self-renewal potential.  
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Figure 23. Absence of Gfi1 is correlated with a drastic loss of HSCs in G0 phase and an increase of 

the proportion of HSC in cell cycle  
 
a. A combination of DNA and RNA staining of bone marrow cells showed that the absence of Gfi1 

correlated with a drastic loss of HSCs (LSK cells) in G0 phase.  
b. Percentages of HSCs (LSK cells) in different cell cycle phases. Given are average values with standard 

deviations from four WT and Gfi1-/- animals, respectively.  
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3.10 Expression of specific Gfi1 transcriptional target genes was altered in Gfi1-/- 

bone marrow cells  

 
Recently, it has been reported that the genes encoding the cell cycle regulators E2F5, 

E2F6 and also p21cip1/waf1 are putative Gfi1 targets or at least can be considered as 

downstream effectors of Gfi1 (Duan and Horwitz, 2002). Given the established roles for 

Gfi1 in regulation of cell cycle progression, protein expression levels of cell cycle 

regulators were determined by Western blot. As shown in Figure 24, whole bone marrow 

cells from Gfi1 deficient mice expressed significantly higher levels of E2F5 and E2F6 

than WT cells and almost completely lacked p21cip1/waf1 whereas another G1 specific 

negative cell cycle regulator p27kip1 was expressed at comparable levels in both WT and 

Gfi1 null cells. This result suggested that Gfi1 regulates cell cycle progression of HSCs 

through up-regulating or down-regulating the expression of its target cell cycle regulators.  
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 Gfi1-/- WT Gfi1-/-WT Gfi1-/- WTWT  Gfi1-/-

 

 

Figure 24. Expression of specific Gfi1 transcriptional target genes is altered in Gfi1-/- bone marrow 
cells  

 
Protein expression levels of E2F5, E2F6, p21cip/waf1 and p27kip1 in WT or Gfi1-/- bone marrow in two 
independent sets of mice (total number of animals analyzed, n = 4).  
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4.    Discussion  
 
 
 
4.1   Using mouse model systems to study the expression pattern and the function of 

Gfi1 during the process of hematopoietic cell development  

 
In adult mammals, blood cells are generated in the bone marrow through a process named 

hematopoiesis by which the host continuously maintains adequate numbers of terminally 

differentiated cells of different lineages. It is well accepted that hematopoiesis is arranged 

as a hierarchy whereby the mature elements of the hematopoietic system are derived in a 

clonal fashion from HSCs. The bone marrow has the ability to markedly increase the 

production of blood cells to compensate for hematological stresses such as blood loss and 

infection. Thus, the need to continuously produce different types of hematopoietic cells 

necessitates strict control over HSC fate decisions between self-renewal and commitment 

toward lineage-restricted development.  

 
Although the molecular mechanisms responsible for the control of self-renewal and 

differentiation outcomes of HSC divisions remain largely unknown, accumulating 

evidence suggests that self-renewal and commitment of hematopoietic stem cells to a 

distinct lineage is governed by complex external signals that modulate gene expression 

patterns through activation of specific transcription factors (Metcalf, 1998). A number of 

studies have implicated a variety of transcription factors as key regulatory components of 

these processes (Cross and Enver, 1997; Zhu and Emerson, 2002). 

 
The role of transcription factors in regulating hematopoiesis used to be studied in cell 

lines. Since most of these cell lines have unknown and variable mutational histories, 

those in vitro data may not correctly reflect the in vivo function of transcription factors 

under physiological and pathological conditions. To overcome this obstacle, the mouse 

recently has become an irreplaceable model system to study the molecular mechanisms of 

hematopoiesis, because the mouse shares striking physiological, anatomical and genomic 

similarities with humans. Recently, the rapid development of a series of novel techniques 

for manipulating the murine genome has allowed the in vivo modification of virtually any 
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genomic region in a time and tissue specific manner. Such important technological 

developments allowed the generation of ideal mouse model systems that can provide 

more insights into the mechanisms underlying the hematopoietic process under 

physiological conditions (Adams and Cory, 1991; Adams et al., 1999; Bertoncello and 

Williams, 2001; Bernardi et al., 2002). 

 
On the basis of gene-expression studies of the hematopoietic cell population, genes of 

interest have been selected and characterized mostly by using enforced gene expression 

and gene knockout strategies. In particular, production of mutant alleles by gene targeting 

in mouse embryonic stem cells has greatly accelerated genetic dissection of the 

hematolymphoid system. These studies have provided information on positive and 

negative regulators for HSC self-renewal and lineage commitment, differentiation, 

cycling and apoptosis (Adams, et al., 1999; Bertoncello and Williams, 2001; Bernardi et 

al., 2002). The cooperativity between different genes can be tested by cross breeding of 

two gene-mutant strains. A large number of mouse mutants were already generated to 

mimic human hematopoietic disease, to revealed molecular mechanisms underlying 

pathological conditions as well as to determine in vivo the consequences of aberrant gene 

function in vivo (Bernardi et al., 2002).  

 
 
4.2   Expression pattern of Gfi1 in adult bone marrow hematopoietic cells  

 
The importance of Gfi1 in hematopoiesis was revealed by the studies of Gfi1 deficient 

mice and prompted us to investigate the detailed expression pattern of Gfi1 in 

hematopoietic stem and progenitor cells. Since Gfi1-/- mice show multilineage defects 

(Karsunky et al., 2002a; Yücel et al., 2003; Hock et al., 2003), it was of interest to know 

whether Gfi1 acts on a wide spectrum of hematopoietic cells, or, on a limited subset of 

stem cells or progenitor cells and certain lineages.  

 
To understand the role of Gfi1 in modulation of hematopoiesis, it is essential to precisely 

delineate the magnitude and cell type specificity of Gfi1 expression in different lineages 

in different development stages. By taking advantages of a Gfi-1:GFP knock-in mice and 
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characterizing HSCs and progenitors by FACS, the expression pattern Gfi1 in 

hematopoietic cells was determined as shown in Figure 25.    
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Figure 25. Gfi1 expression in adult mouse hematopoietic cells  

 
 
It cannot be ruled out that a difference in the half-life between Gfi1 and GFP proteins 

exists, which may influence interpretation of our FACS results. However, the comparable 

expression pattern of Gfi1 in bone marrow cells estimated by FACS and RT-PCR, 

suggested that flow cytometric analysis of GFP provides an accurate reflection of 

endogenous Gfi1 gene expression. Since Gfi1GFP/+ heterozygous knock-in mice are 

indistinguishable from their wild-type littermates and from the previously described 

animals that carry a neo resistance marker gene in the Gfi1 locus disrupting one Gfi1 

allele (Gfi1+/-), it can be inferred that GFP developmental expression patterns precisely 

mimic those of endogenous Gfi1 under physiological conditions.  

 
Since the GFP marker can be used as a faithful indicator of Gfi1 expression, the 

Gfi1:GFP knock-in mice allowed Gfi1 expression to be assayed in hematopoietic 

populations through simple FACS analyses and electronic gating, and obviate more 

cumbersome and often less informative approaches such as extensive cell sorting coupled 

with RNA and protein analyses. Moreover, this novel model permitted more quantitative 
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judgments with respect to cell numbers and relative expression levels in given 

populations.  

 
 
4.3   Expression pattern of Gfi1 in hematopoietic compartment is correlated with 

function of Gfi1 revealed in Gfi1 deficient mice 

 
The analysis of hematopoietic defects in Gfi1-/- mice showed that expression pattern of 

Gfi1 in hematopoietic compartments is correlated with function of Gfi1 as revealed in 

Gfi1 deficient mice. For example, Gfi1 exhibits a biphasic expression in immature 

myeloid cells (CD11b+Gr-1low), and is highly homogenously expressed in mature 

granulocytes (CD11b+Gr-1high), while Gfi1 deficient mice show severe neutropenia and 

monocytosis. In contrast, Gfi1 is absent in the MEP and enucleated red cells, and no 

obvious defects were found in development of erythrocytes and megakaryocytes in Gfi1-/- 

mice. Collectively, these studies suggest that Gfi1 is required for myeloid differentiation 

and maturation but not for terminal differentiation of erythroid and megakaryocytic 

lineage. Importantly, the correlation between hematopoietic defects and Gfi1 expression 

pattern was further demonstrated by phenotypical and functional analysis of HSCs and 

progenitors in Gfi1-/- mice in the present study (see below). Together, the results suggest 

that Gfi1 is required for multilineage hematopoiesis from early stem cells to late 

committed cells. 

 
 
4.4   Gfi1 is required for the maintenance of homeostasis of stem cell and early 

progenitor populations 

 
HSCs are capable of self-renewal and have a tremendous differentiation potential, a 

single to a few cells being capable of repopulating the entire hematopoietic system of a 

lethally irradiated recipient. The two major goals to study HSCs are to understand these 

capacities at the molecular level and to clarify the mechanisms regulating self-renewal 

and lineage commitment. Several studies have indicated that, in steady-state 

hematopoiesis, the proliferation of HSC is tightly controlled. In mice, HSC numbers 

remain relatively constant throughout most of their adult life, although in very old mice 
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(older than 2 years) their numbers appears to increase, possibly due to accumulation of 

genetic lesions (Morrison et al., 1996).  Recent data indicate that a variety of regulatory 

molecules active in early development may also play a role in the maintenance of 

hematopoietic stem cells with repopulating activity. Lack-of-function mouse models have 

generated important insight into the role of various transcription factors in hematopoiesis 

(such as GATA-2, SCL/tal-1, Rbtn2/Lmo2, AML1, PU.1/Spi1, Ikaros, HoxB6, and 

HoxA9, reviewed by Tenen et al., 1997 and Orkin, 2000).   

 
Since Gfi1 expression has been observed in HSC, CLP and GMP compartments, the 

possibility existed that Gfi1 might also play an important role in early stage of 

hematopoiesis. As shown in the present study, loss of Gfi1 results in alteration of the 

numbers of HSC and certain progenitor populations including CMPs, CLP and GMP 

population.  

 
The depletion of HSC population in Gfi1-/- mice affects the whole HSC compartment (the 

LSK population). Strikingly, Flt3+ fraction in the LSK population was dramatically 

reduced, pointing out severe defects in number of Flt3+ HSCs. Recently, two groups have 

demonstrated that upregulation of Flt3 expression within the bone marrow LSK 

compartment is accompanied by loss of self-renewal capacity (Christensen and 

Weissman, 2001; Adolfsson et al., 2001). Christensen and Weissman reported that in 

LSK compartment, the Thy1.1lowFlt3+ subset contains predominantly ST-HSCs and 

Thy1.1-Flt3+ subset contains predominantly MPPs. Although Adolfsson and colleagues 

found that LSKFlt3+ cells only reconstitute B and T lymphopoiesis but not myelopoiesis 

in vivo and further concluded that LSKFlt3+ cells are progenitors for CLPs, they found 

LSKFlt3+ cells have myeloid differentiation potential in vitro. Moreover, both groups 

showed that LSKFlt3+ cells are generated from LSKFlt3- cells. Taken together, LSKFlt3+ 

compartment was considered to represent progenitors downstream to LT-HSCs and 

upstream to CLPs. The severe depletion of LSK Flt3+ and LSKFlt3high  cells shown in the 

present study might be attributed to the impairment of the ability of Gfi1-/- LT-HSCs to 

generate direct downstream progenitors. 
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Downstream to HSCs, the segregation into CLP and CMP represents the earliest known 

HSC commitment step. Although the frequencies of both CMPs and CLPs were 

decreased in Gfi1-/- bone marrow, the over 40-fold reduction of CLPs (which express 

Gfi1) in Gfi1-/- mice was more dramatic than the 2-fold reduction of CMP (which do not 

express Gfi1). The moderate depletion of Gfi1-/- CMP might be a subsequent result from 

the loss of Gfi1-/- HSC compartment, which may also affect the number of their 

downstream lineage-committed progenitors. In contrast to the decrease of HSC, CLP and 

CMP frequencies, the frequency of GMPs (which express Gfi1) showed a significant 

increase in Gfi1 deficient mice, while the frequency of MEPs (which do not express Gfi1) 

was not altered in Gfi1 deficient mice compared to WT littermates. The fact that not all 

progenitor compartments were compromised suggests that Gfi1 performs complex and 

specific functions in regulating the development of certain, distinct myeloid and 

lymphoid progenitor cell populations.   

 
 
4.5   The alteration of the number of progenitors was confirmed by in vivo and in 

vitro functional assays  

 
Although the findings described above correlate very well with the previously reported 

reduction of thymocytes and peripheral T cells and B cells (Karsunky, et al., 2002a; 

Yücel et al., 2003; Hock et al., 2003), and normal counts of red blood cells and platelets 

in Gfi1-/- mice (Karsunky et al., 2002a; Hock et al., 2003), the functional-identified 

progenitors could only be investigated by in vivo and in vitro functional assays.  

 
First, in vitro colony-forming assays in semisolid media confirmed the role of Gfi1 in 

lineage-committed precursors. Consistent with elevated percentages of GMPs in Gfi1-/- 

bone marrow, progenitors that respond to IL-3 and GM-CSF were all significantly 

increased Gfi1-/- bone marrow. 

 
Second, in vivo spleen colony-forming assays were performed to analyze the role of Gfi1 

in primitive progenitors and myelo-erythroid lineage committed progenitors. The 

unaltered formation of CFU-S8 and the impaired formation of CFU-S12 in Gfi1-/- bone 

marrow transplanted hosts were consistent with unaltered percentages of MEPs, moderate 
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decreased CMP population and a dramatically decreased ST-HSC/MPP population in 

Gfi1-/- bone marrow,  

 
In addition to the decrease in CFU-S12, the short-term radioprotection capacity of Gfi1-/- 

bone marrow cells was also compromised in a dose-dependent manner. This fact 

suggested that the defect in the short-term radioprotection capacity of Gfi1-/- bone 

marrow cells is mainly due to the depletion of ST-HSC, MPP and CMP populations.  

 
The in vivo and in vitro colony-forming assays also revealed that loss of Gfi1 affects the 

functions of early progenitors. The decrease of size of CFU-S12 suggests that Gfi1-/- 

primitive progenitors fail to generate substantial number of progeny.  Although IL-3 and 

GM-CSF both of which can induce differentiation from myeloid precursors into the 

granulocyte and the monocyte/macrophage lineage elicited a significantly higher number 

of colonies from Gfi1-/- bone marrow cells than from WT bone marrow cells, these Gfi1-/- 

colonies contain immature atypical myelo-monocytes but few mature granulocytes 

(Karsunky, et al., 2002a; Hock et al., 2003). Thus, the differentiation from Gfi1-/- myeloid 

progenitors is severely skewed toward the monocyte/macrophage lineage as a result of 

either a block of the granulocyte lineage or enhanced differentiation towards the 

monocyte/macrophage lineage. 

 
 
4.6   Gfi1 is required for the maintenance of long-term reconstitution capacity of 

HSCs 

 
The initial results showed that lack of Gfi1 leads to a decrease of HSC number in adult 

mouse bone marrow, suggesting that Gfi1 could regulate the normal processes that 

control the HSC population size. However, two questions remain open. First, since the 

data from FACS analysis only reflect the level of phenotypically defined HSCs, the level 

of functionally defined HSCs which can only be reliably determined through in vivo long-

term reconstitution studies had to be clarified. Second, the abnormalities in HSCs in 

steady state do not always reflect abnormalities under stress conditions. Despite the 

decrease in HSC frequency in the Gfi1-/- bone marrow, the bone marrow cellularity was 

relatively conserved in Gfi1-/- mice, probably because the reduction of HSCs can be 
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compensated under steady-state conditions. Therefore, whether Gfi1 is required for HSC 

maintenance under stress stage was further addressed.  

 
The dramatic reduction in long-term radioprotection capacity of Gfi1-/- bone marrow cells 

in secondary bone marrow transplantation was the first evidence which prompted that 

Gfi1 plays an important role in HSC self-renewal, at least in response to hematological 

stress caused by lethal irradiation and serial transplantation. When measured the 

reconstitution capacity against wild-type bone marrow cells in a competitive assay, a 

severe depletion in both short-term and long-term repopulating activities is revealed. The 

peripheral blood cells derived from Gfi1-/- bone marrow cells were reduced more 

remarkably after 22 weeks than after 3 weeks post-transplantation, suggesting that defects 

in reconstitution is more prominent in the upper level of the hematopoietic hierarchy in 

Gfi1-/- mice.  Importantly, the impaired competitive capacity could not be relieved by 

increasing the number of transplanted Gfi1-/- bone marrow cells. Even at a 10:1 ratio to 

WT bone marrow, Gfi1-/-  bone marrow cells failed to compete with WT bone marrow 

cells to reconstitute hematopoiesis in recipient mice in both myeloid and lymphoid 

lineage, only limited hemopoietic contribution is observed from Gfi1-/- bone marrow. 

Thus, despite 2-4 fold decrease in phenotypically defined LT-HSC in adults mouse bone 

marrow, there is a quantitative reduction estimated to be more than 30-40-fold in the 

number of functionally-defined HSCs in Gfi1-/- mice. This observation suggested that the 

failure of competetivivity of Gfi1-/- HSCs is not caused only by a decrease of 

phenotypically defined HSCs, but rather seems to be caused by defects in the functions 

(self-renewal, proliferation, differentiation, homing) of HSCs.  

 
In addition to these in vivo experiments, the long-term culture initiating cell (LTC-IC) 

assay was performed by our collaborators (Y, Li in Prof. Dr. U. Duehrsen’s Lab) to 

quantitate primitive hematopoietic progenitors in a co-culture with stroma cells. 

Consistent with the results from in vivo competitive transplantation experiments, a 60-

fold reduction of LTC-IC numbers were observed in cultures started with Gfi1-/- bone 

marrow compared to WT bone marrow. Since the number of LTC-IC correlates with the 

number of HSCs with in vivo repopulating potential, this result supports the notion that 
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the lack of Gfi1 confers a defect to HSCs for their long-term reconstituting capacity and 

the hypothesis that Gfi1 is required to maintain the self-renewal abilities of HSCs. 

 
 
4.7   The defect in HSCs in Gfi1-/- bone marrow could result from the impaired 

generation of self-renewing HSCs 

 
Many factors such as hormones and cytokines influence hematopoietic efficiency, and 

these factors are derived from both hematopoietic and nonhematopoietic cells. The 

defects in bone marrow Gfi1-/- HSCs could result from an impaired generation of self-

renewing adult HSCs, defective stem cell homing, or a defective bone marrow 

microenvironment.  

 
Bone marrow transplantation experiments can determine whether hematopoietic defects 

observed for Gfi1 deficient mice are autonomous to the hematopoietic system by 

examining the capacity of Gfi1 deficient bone marrow to reconstitute hematopoiesis in 

lethally irradiated recipient mice that provide an otherwise normal environment. If the 

defects in the Gfi1-/- mice were secondary to an abnormal microenvironment, then Gfi1-/- 

HSCs would be able to engraft the bone marrow of WT mice efficiently, while WT HSCs 

would show defects in engraftment and/or hematopoietic development in Gfi1-/- mice. 

The phenotype of Gfi1 deficient mice with regard to frequencies of stem cells and 

progenitors, or previously reported hallmarks (neutropenia, accumulation of monocytic 

cells and reduced numbers of thymocytes (Karsunky, et al., 2002a; Yücel et al., 2003; 

Hock et al., 2003) could be exactly reproduced in the transplanted hosts which provide 

otherwise normal environment. Vice versa, WT bone marrow transplanted into irradiated 

Gfi1 deficient mice enable to generate normal numbers of HSCs, progenitors, neutrophils 

and normal numbers of thymocytes. Both experiments indicate that the microenvironment 

in the bone marrow of Gfi1 deficient mice is functional without any detectable defects, 

and confirm that the hematopoietic defects in Gfi1-/- mice are cell autonomous. 

 
The difference in engraftment between Gfi1-/- and WT HSCs in competitive repopulations 

showed a competitive disadvantage of Gfi1-/- stem cells. A homing defect of Gfi1 

deficient cells could be excluded or at least seems unlikely. First, loss of Gfi1 did not 
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alter the expression of adhesion molecules important for HSC homing such as CXCR4, 

VLA-4 and VLA-5 in Gfi1-/- LSK populations. Second, the early engraftment of Gfi1-/- 

bone marrow cells that was seen at three weeks after transplantation was followed by a 

gradual decrease of Gfi1-/- progeny, suggesting that the severe impairment of long-term 

reconstituting abilities of Gfi1-/- HSCs is not a result of a homing defect. In addition to in 

vivo results, reduction of LTC-IC numbers generated from Gfi1-/- bone marrow cells also 

supports the notion, otherwise a reduction in LTC-IC numbers would not be expected.  

 
Alternatively, since loss of Gfi1 leads to neutropenia and decreased B and T cell number 

in Gfi1-/- mice, the failure of generating peripheral blood of Gfi1-/- bone marrow cells 

seen in reconstituted animals might start at the level of HSC or at more differentiated 

cells. The reduction of Gfi1-/- HSCs with long-term repopulating capacity might be 

caused by alterations in lineage commitment of hematopoietic cells, or by failure of 

generating mature progenies, or failure of releasing of Gfi1-/- mature hematopoietic cells 

from bone marrow to peripheral blood.   

 
However, Gfi1-/- HSCs can generate both myeloid and lymphoid hematopoiesis in the 

recipients when they were transplanted without competitive cells, indicating that Gfi1-/- 

HSCs do not lose multilineage differentiation potential. Furthermore, similar to the 

results from analysis of peripheral blood, flow cytometry analysis revealed that bone 

marrow cells from WT mice efficiently reconstituted myeloid cells and lymphoid cells, 

whereas the mice reconstituted with Gfi1-/- marrow lost nearly all donor-derived mature 

hematopoietic cells in bone marrow. Importantly, when competitive transplantation 

experiments were performed with sorted 500 LT-HSCs, a restoration of LSK cells was 

found in mice reconstituted with WT HSCs, whereas mice reconstituted with Gfi1-/- 

HSCs lost nearly all Gfi1-/- LSK population. These results indicate that the defect in Gfi1 

deficient mice is not likely due to alteration of lineage-commitment. The defects  should 

be at a more primitive level, within the stem cell compartment. Taken together, the data 

presented here suggest that Gfi1 is required for self-renewal and maintenance of adult 

HSCs. 
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4.8   Gfi1 is required to maintain hematopoietic stem cell quiescence 

 
High levels of production of mature blood cells are needed to replace their rapid turnover. 

Since the vast majority of HSC population are resistant to cytotoxic agents such as 5-FU 

or hydroxyurea (Harrison DE, 1991; Lerner C and Harrison DE. 1990), it has therefore 

been hypothesized that in the hematopoietic tissue stem cells are relatively quiescent or 

slowly cycling, but their more differentiated offspring have extremely robust proliferative 

potential. Further experiments indicated that LT-HSCs are indeed slowly cycling, 

asynchronously dividing, repeatedly entering and leaving the cell cycle with a constant 

fraction in G0 phase under steady hematopoietic conditions, with a turnover time of 

approximately 30 days (Bradford et al., 1997; Cheshier et al., 1999). Thus, it is 

conceivable the proliferative activity of HSCs is highly restricted in order to prevent 

susceptibility to myelotoxic insult or consumption of the regenerative cell pool. 

 
Regulating cell cycling of the stem cell pool involves a very complex mixture of internal 

and external signals. A number of other molecules have also been reported to have an 

important role in this scheme. Deficiency of Bmi1, HoxB4 and HoxB3 can influence the 

repopulating ability of HSCs by causing a decreased proliferation capacity (Park et al., 

2003; Björnsson et al., 2003). These findings intriguingly point to the possibility that 

regulatory molecules known for their growth-promoting roles in early developmental 

processes may also affect HSC activity. 

 
Interestingly, in addition to the molecules which are needed for maintaining HSC 

proliferation, p21cip1/waf1, a cyclin-dependent kinase inhibitor was shown to be necessary 

for HSC self-renewal by different mechanisms. p21cip1/waf1 plays a role in at least some 

cell types in the transition out of the cell cycle and maintenance in G0 phase.  

Hematopoietic stem cell proliferation and absolute number were increased under normal 

homeostatic conditions in p21-/- mice bone marrow, suggesting p21cip1/waf1 impede stem 

cell cycling (Cheng et al., 2000a). In the absence of p21cip1/waf1, the inhibition is alleviated, 

leading to an expansion of the primitive cell pool under resting conditions. However, 

under stress conditions, loss of p21cip1/waf1 enhances 5-FU killing of primitive cells, leads 

to a reduced serial transplantation ability due to hematopoietic cell depletion (Cheng et al., 
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2000a). Thus, deficiency of p21cip1/waf1, which is necessary for maintaining stem cells in a 

quiescent state, and leads to stem cell exhaustion accompanied by impaired self-renewal.  

 
In addition to the results from p21-/- mice,  transplantation studies revealed that the ability 

of HSCs for engraftment in foreign hosts correlates with their cell cycle phase position. 

High long-term engraftment capacity is restricted to HSCs in G0/G1 phases, while HSCs 

in S/G2/M show a dramatically decreased long-term engraftment capacity. More recently, 

it has become clear that the transit of HSCs through different phases of the cell cycle is 

accompagnied by a significant shift in gene expression that not only affects homing but 

also other properties of HSCs (Lambert et al., 2003). It is therefore crucial for an 

organism to maintain a pool of HSCs in G0 to assure a potent, self-renewable source of 

cells that can support lifelong multilineage hematopoiesis. 

 
Several studies with cultured cells indicated that constitutive Gfi1 expression can relieve 

peripheral mature T cells from a requirement of IL-2 to overcome a G1 arrest (Grimes et 

al., 1996) or could help to sustain cell proliferation of IL-2-dependent cells in the absence 

of the cytokine (Zörnig et al., 1996), which suggested a role for Gfi1 in IL-2-dependent 

cell cycle progression of T cells. Constitutive expression of Gfi1 accelerates entry of 

resting T cells into S phase and decreases apoptosis (Karsunky et al., 2002a). Induction of 

Gfi1 by IL-4 increases Th2 cell expansion by promoting proliferation and preventing 

apoptosis (Zhu et al., 2002). It has been shown that T cells of mice over expressing Gfi1 

enter S-phase more quickly than WT cells after antigenic stimulation (Karsunky et al., 

2002a). In the Gfi1 deficient mice, T cells are slow in responding to antigenic stimulation 

(Möröy et al., unpublished findings).  

 
Above results are in agreement with a role of Gfi1 as a positive mediator to promote T 

cell proliferation. However, the in vivo BrdU labelling experiments described here 

revealed a significant increase of the percentage of cells entering the cell cycle in the 

Gfi1-/- HSC compartment compared to in WT HSCs. Meanwhile, combination of DNA 

and RNA staining of live LSK cells revealed that the absence of Gfi1 correlated with a 

drastic loss of HSCs in G0 phase and a significantly higher percentage of Gfi1-/- LSK 

cells in G2/S/M phases. Thus, both experiments, demonstrated that lacking Gfi1 

 75



expression has heightened HSC cycling, indicating requirement of Gfi1 to maintain 

hematopoietic stem cell quiescence.  

 
The results from T cells and HSCs showed entirely different roles of Gfi1 in cell cycle 

regulation, suggesting that Gfi1 may function in a tissue- or differentiation-specific 

manner. The different cell cycle distribution in lymphoid cells and HSCs can be 

explained by taking into consideration that Gfi1 very likely regulates different target 

genes in different cell types. The helix loop helix proteins Id1 and Id2 and the LKLF 

transcription regulator were found to be associated with T-cell quiescence. (Yücel et al., 

2003), while C/EBPα, E2F family members were found to be Gfi1 target genes in 

myeloid cells (Duan and Horwitz, 2003). In addition, antigenic stimulation in T-cells 

triggers other pathways than those are active in stem cells or progenitors.  

 
It has been shown that Gfi1 cooperates with the cell-cycle regulators Pim-1 and c-Myc 

(Schmidt et al., 1998a and 1998b). Recently, Gfi1 target gene analysis also pointed out a 

role of Gfi1 in cell cycle regulation. It was reported that the genes encoding the cell cycle 

regulators E2F5, E2F6 and also p21cip1/waf1 which are involved in the regulation of G1 

phase progression and S-phase entry are putative Gfi1 targets or at least can be 

considered as downstream effectors of Gfi1 (Duan and Horwitz, 2003). 

 
Consistent with a negative regulatory role for Gfi1 of HSC cycling, loss of Gfi1 resulted 

in an alteration of expression of Gfi1 downstream cycling regulators (such as  p21cip1/waf1, 

E2F5 and E2F6). Strikingly, p21cip1/waf1 is almost completely lacked in  Gfi1-/- bone 

marrow cells. Since Gfi1b may act either as an activator or repressor (Jegalian and Wu 

2002), it is conceivable that Gfi1 could also function as a transcriptional activator or 

repressor, depending on the promoter, the cofactors recruited and developmental context.  

Recently, there is one indirect report of its potential as an activator (Sharina et al., 2003). 

It is also possible that Gfi1 represses the production of an intermediate factor that itself is 

a repressor leading to the activation of its target genes. An alternative possibility is that 

Gfi1 acts as an activator of STAT3 target genes through a mechanism that has been 

described before (Rödel et al., 2000).   
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It has been documented that a loss of p21cip1/waf1 causes increased cell cycling and 

resulting in stem cell exhaustion (Cheng et al., 2000). However, absence of p21cip1/waf1 

leads to an elevated level of number of HSCs, while a decrease of HSC pool was found in 

Gfi1-/- bone marrow under steady-state conditions. The distinction in stem cell generation 

between these different mutants may have several potential explanations. It is most likely 

that as a transcription factor, Gfi1 affects a series of its targets genes, which not only 

affect cell cycle regulation, but also are required for HSC self-renewal. In turn, alteration 

of signalling pathways and yet unidentified effectors of Gfi1 may account for the more 

severe phenotypes manifested in Gfi1 deficient mice.  

 
In contrast to a decrease of p21cip1/waf1 expression, Gfi1 deficient mice expressed 

significantly higher levels of E2F5 and E2F6 than WT cells. The E2F family of 

transcription factors also plays a critical role in cell-cycle progression through its ability 

to regulate the expression of target genes, including cyclins and cyclin-dependent kinases 

(Dyson, 1998). Whereas the role of E2F5 in cell cycle regulation seems less clear, it is 

known that ectopic expression of E2F6 leads to accumulation of cells in S-phase 

(Trimarchi and Lees, 2002). Moreover, E2F6 is able to form complexes with the onco- 

protein Bmi1, which is a member of the polycomb group (Trimarchi et al., 2001) and an 

essential factor for the self-renewal of HSCs and leukemic stem cells (Park et al., 2003; 

Lessard et al., 2003). These findings suggest that Gfi1 acts upstream of E2F5, E2F6 and 

p21cip1/waf1 and that a loss of Gfi1 causes a shift of HSCs from G0 into the cycle which 

leads to exhaustion of the stem cell pool and also lowers the percentage of cells with high 

self-renewal potential. It is thus likely that Gfi1 controls cardinal features of HSCs such 

as self-renewal by regulating their cycle exit or entry through the maintenance of a 

constant proportion of HSCs in G0
 (Figure 26).  

 
The data presented here support the notion that deficiency of Gfi1 positively affects 

HSCs cycling and proliferation. Furthermore, it appears that Gfi1 is mainly important to 

control the proliferation response and is dispensable for both normal, steady-state 

hematopoiesis and stress-state hematopoiesis. These findings are important for 

understanding the regulatory mechanisms that control fate, particularly self-renewal, of 

HSCs.  
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al., 1998; Solar et al., 1998; Alexander et al., 1996; Miller et al., 1996; Geissler and 

Russell, 1983).  

 
The in vivo roles of c-Kit and its ligand (stem cell factor, SCF) are well understood 

because of the existence of mutant mice. Mutations in the c-Kit receptor and SCF had the 

same complex phenotype that affects pigmentation, germ cells, and hematopoiesis (Witte, 

1990; Fleischman et al., 1993; Broudy, 1997).  Although the primary function of SCF in 

early hematopoiesis might be to induce the growth of quiescent progenitor/stem cells 

through synergistic interactions with other early-acting cytokines, ample evidence 

indicates that SCF, in the absence of other cytokines, selectively promotes viability rather 

than proliferation of primitive murine progenitor cells (Fleming et al, 1993b). Many 

reports have shown that the partial loss of function-W alleles ensues impaired HSC 

competitiveness and CFU-S activity, decreased CFU-C formation and mild anemia, as 

well as mast cell deficiencies, and mild thrombocytopenia  (Lyman and Jacobsen, 1998). 

Null c-Kit mutations lead to embryonic lethality owing to severe anemia caused by 

decreased stem cells and progenitors (Lyman and Jacobsen, 1998).  

  
It has been noted that the SCF/c-Kit signaling pathway specifically induces the expression 

of Slug gene, a zinc finger transcriptional repressor of the highly conserved Slug/Snail 

family of transcription factors with stretche of homology to Gfi1 (Nieto et al., 1994), in 

natural and artificially engineered c-Kit+ cells. Like c-Kit and SCF-defective mice, Slug-/- 

mice have a complex phenotype including pigmentation, gonadal defects, and 

hematopoietic defects (Pérez-Losada et al., 2002), identifying Slug as a molecular target 

that contributes to the biologic specificity of the SCF/c-Kit signaling pathway. However, 

there is no evidence to indicate that Gfi1 regulates c-Kit expression or to suggest that 

Gfi1 is downstream of the SCF/c-Kit signaling pathway. Although Gfi1 deficient mice 

present similar hematopoietic defects to mice deficient in the SCF/c-Kit signaling 

pathway mice, no pigmentation or gonadal defects were found. Moreover, a dramatic 

increase of the GMP population (which are c-Kit+) was found in Gfi1-/- mice. Therefore, 

an impaired c-Kit/SCF signaling pathway could not be an explanation for the defects in 

Gfi1-/- bone marrow.  
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Like c-Kit, fms-like tyrosine kinase-3 (flt3) is selectively expressed and functional in 

early stages of mouse and human hematopoiesis (Lyman and Jacobsen, 1998). Flt3 was 

originally identified as a tyrosine kinase receptor expressed in fetal liver populations 

enriched for HSCs (Matthews, et al., 1991). The flt3 ligand (FL) has emerged as a key 

stimulator of growth of candidate murine and human HSCs through its ability to promote 

ex vivo expansion and onco-retroviral transduction of primitive human hematopoietic 

progenitors (Lyman and Jacobsen, 1998). As a consequence, FL has been frequently used 

to promote HSC ex vivo expansion and retroviral mediated gene transfer. Mice deficient 

in expression of Flt3 or FL have reductions in B and T lymphopoiesis, with a preferential 

reduction in the earliest proB cell progenitors (Mackarehtschian et al., 1995; McKenna et 

al., 2000). Furthermore, bone marrow HSC from mice deficient in Flt3 expression reveal 

reduced reconstitution potential in vivo (Mackarehtschian et al., 1995). Surface marker 

analysis of LSK hematopoietic populations in Gfi1 deficient mice revealed a severe 

reduction in expression of Flt3 in the LSK population. However, recent studies from two 

groups revealed that mouse adult long-term reconstituting HSCs do not express Flt3 

during steady-state hematopoiesis, and the upregulation of flt3 expression within the HSC 

compartment is accompanied by loss of self-renewal capacity (Adolfsson, et al., 2001; 

Christensen and Weissman, 2001). Moreover, mice deficient in the expression of FL 

show deficient lymphopoiesis (Mackarehtschian et al., 1995; McKenna et al., 2000). 

Recently, Sitnicka and colleagues reported that FL-/- mice have normal frequencies of 

phenotypically (Lin−Sca1+c-Kit+CD34−) and functionally defined long-term HSC in adult 

bone marrow. FL-/- HSC have normal functional capacities when transplanted into 

lethally irradiated WT recipients, both with regard to reconstitution and self-renewal 

capacity (as determined through serial transplantation). In contrast, FL deficient mice 

have severely (10-fold) reduced levels of CLPs, accompanied by reductions in the earliest 

identifiable B and T cell progenitors, whereas CMP and other early myeloid progenitors 

are unaffected (Sitnicka et al., 2002). Therefore, loss of Flt-3 expression in Gfi1-/- HSC 

population can explain the decrease of CLP in Gfi1-/- mouse bone marrow, but cannot 

explain strikingly decreased of self-renewal capacity of Gfi1-/- HSCs. 
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A role of Gfi1 in cytokine or growth factor signaling had already been suggested earlier 

because the Gfi1 gene was found to be activated by proviral insertion in NB2 rat 

lymphoma cell clones selected for IL-2-independent growth after infection with Moloney 

murine leukemia virus (Gilks et al., 1993). Cytokines such as IL-2 or IL-6 mediate their 

signals after binding the respective membrane-bound cytokine receptors through the 

activation of several cytoplasmic proteins. In particular, signal transducers and activators 

of transcription (STAT) proteins are critical constituents of cytokine-mediated signal 

transduction (for a review see Ihle, 1996; Heinrich et al., 1998; Shuai, 1999). All seven 

STAT proteins identified so far are located in the cytoplasm as latent transcription factors. 

They are recruited via their SH2 domains to phosphotyrosine motifs of activated receptors 

and subsequently become tyrosine phosphorylated by Janus kinases (JAKs) (Schindler 

and Darnell, 1995; Darnell, 1997; Heinrich et al., 1998; Shuai, 1999). Phosphorylated 

STAT proteins dimerize and translocate to the nucleus where they act as transcriptional 

activators of specific target genes. STAT5 and STAT3 for instance can relay signals from 

the IL-2 receptor and STAT3 from the IL-6 receptor.  

 
The cytokine response and the activation of STATs can also be negatively regulated. 

Among the known antagonists for STAT function are the suppressor of cytokine 

signaling (SOCS) proteins and PIAS (Endo et al., 1997; Naka et al., 1997; Starr et al., 

1997; Chung et al., 1997; Liu et al., 1998). While SOCS proteins interact with JAKs and 

very probably reduce their tyrosine kinase activity, PIAS proteins bind to activated STAT 

dimers and block their DNA binding activity (Chung et al., 1997; Liu et al., 1998).  

 
STAT3 is a key downstream signalling intermediate of gp130, a receptor previously 

shown to activate HSC self-renewal divisions. Retrovirus-mediated over-expression of 

dominant negative form of STAT3 in HSCs markedly and permanently reduced in vivo 

reconstituting ability (Oh and Eaves, 2002). Similar to STAT3, competitive bone marrow 

transplantation studies in vivo revealed a profound impairment of repopulation potential 

of STAT5-/- HSCs (Bradley et al., 2002; Snow et al., 2002). These abnormalities were 

associated with heightened proliferation activity in the HSC fraction (Snow et al., 2002). 
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It has been demonstrated that Gfi1 interacts with PIAS3 and affects its function, as it is 

able to relieve the inhibitory effect of PIAS3 on STAT3 activity (Rödel et al., 2000).  

Cells infected with Gfi-1 retrovirus showed striking enhancement of IL-2-induced Stat5 

phosphorylation (Zhu et al, 2002). Therefore, impaired HSC activity in Gfi1 deficient 

mice might be associated with a decrease of STAT3 and/or STAT5 activity. 

 
 
4.10   Future directions 

 
The inability to expand hematopoietic stem cells (HSCs) ex vivo imposes major 

limitations on the current use of HSC transplantation and gene therapy in patients. This is 

especially true in cases where the number of available stem cells is limiting (e.g. cord 

blood-derived stem cells for transplantation into adults). Current methods for expanding 

the number of stem cells often involve the use of recombinant cytokines. However, these 

molecules have pro-differentiative as well as proliferative effects, and expansion often 

occurs at the expense of stem cell differentiation and loss of pluripotent regenerative 

capacity (Bhatia et al., 1997). While studies have shown that self-renewal is clearly 

possible in vitro (Ema et al., 2000; Glimm and Eaves, 1999), most culture conditions 

nonetheless result in net HSC losses, indicating that differentiation is favoured over 

expansion. Conditions suitable for expanding reconstituting cells that do not induce 

differentiation and loss of stem cell function have yet to be found (Weissman, 2000b). 

Using single or a combination of cytokines does not seem to be sufficient to induce 

clinically significant HSC expansions. It appears they rather serve a role in HSC survival 

and proliferation than directing self-renewal. Hence, efficient means of selective 

expansion of HSCs, either in vitro prior to transplantation or in vivo, is of key importance 

for future progress. 

 
Recent attention has focused on cell intrinsic pathways, whose activation has caused HSC 

expansion ex vivo. A few candidate genes with the ability to expand stem cells have been 

reported. Overexpression of the P glycoprotein pump genes MDR1 or ABCG2 led to the 

expansion of side population cells with retained repopulation ability (Sorrentino et al., 

1992; Bunting et al., 1998 and 2000). Activation of retinoic acid receptor signaling by 
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addition of exogenous all-trans retinoic acid resulted in retention of long-term 

repopulating activity after 14 days in culture (Purton et al., 2000). Constitutive Notch 

activation in lin-c-Kit+Sca-1+ bone marrow cells led to immortalization of blast-like cells 

that retained lympho-myeloid differentiation and long-term repopulating ability 

(Varnum-Finney et al., 2000). Addition of soluble Sonic Hedgehog protein (Shh) to 

liquid cultures of human bone marrow cells led to at least 3-fold expansion of SCID-

repopulating cells via modulation of BMP4 levels (Bhardwaj et al., 2001). Over-

expression of the human HoxB4 gene in mouse bone marrow cells enables over 40-fold 

expansion of HSCs in vitro with enhanced stem cell repopulating capacity in vivo and 

maintenance of pluripotentiality. (Thorsteinsdottir et al., 1999; Antonchuk et al., 2002 

Buske et al., 2002; Amelia et al., 2003; Krosl et al., 2003) 

 
The present findings from loss-of-function models intriguingly point to the possibility 

that Gfi1 plays a positive functional role in HSC self-renewal. It is of interest to use gain-

of-function models to further define the role of Gfi1 in hematopoiesis. Therefore, further 

studies are required to elucidate fully the mechanism of Gfi1 action in HSCs in order to 

determine whether enforced expression of Gfi1 can be used safely to generate or expand 

stem cells ex vivo for cell or gene therapy. 

 
Gfi1 has low oncogenic potential, however, it could act as a dominant oncogene when 

overexpressed in T cells, and cooperates strongly with Pim1 and Myc in accelerating 

progression of T cell lymphomagenesis in MoMuLV-infected mice (Schmidt et al., 1996, 

1998a and 1998b; Zörnig et al., 1996; Scheijen et al., 1997).  Although accumulation of 

blastoid monocytic cells occurs in Gfi1 deficient mice, overt leukemic transformation 

was not seen (Karsunky et al., 2002a; Hock et al., 2003). Furthermore, Bmi1, an onco-

protein which belongs to the same complementation group as Gfi1 during lymphoid 

transformation, has been shown to be essential for maintenance of self-renewal of both 

normal adult HSCs and leukemic HSCs  (Park et al., 2003; Lessard and Sauvageau, 2003). 

Since Gfi1 is required for the self-renewal of normal HSCs, it is of interest to know 

weather Gfi1 is needed for regulating the self-renewal and proliferative activity of 

leukaemic HSCs.  
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Similarly, Bmi1 is required for the self-renewal of stem cells in the peripheral and central 

nervous systems (Molofsky et al., 2003). Given its tissue distribution (Wallis et al., 2003), 

it will be therefore important to know whether Gfi1 serves similar regulatory pathways in 

non-hematopoietic developmental systems, and to determine whether our findings 

reported here might also extend to other types of stem cells. 
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5. Summary 
 
 
 
Multilineage hematopoiesis is maintained by a pool of stem cells, which ensures the 

formation of all blood cells and a functional immune system. To this aim, HSCs must self-

renew and regulate the relative balance between self-renewal and differentiation. Gfi1 is a 

zinc-finger transcription factor and onco-protein, which is differentially expressed in cells 

the hematopoietic and immune compartment and plays important roles in development of 

myeloid cells and lymphoid cells. The expression pattern and the function of Gfi1 in 

development of adult mouse HSCs and progenitors were investigated by using Gfi1 

deficient mice (Gfi1-/-), and Gfi1:GFP knock-in mice in which the Gfi1 coding region is 

replaced by the GFP gene.   

 
Gfi1 expression was followed by measuring green fluorescence, and it was found that Gfi1 

is expressed HSCs, in CLPs and GMPs, but not in CMPs and MEPs. Consistent with the 

Gfi1 expression pattern, Gfi1 deficient mice show reduced frequencies of HSCs, CMPs and 

CLPs and an increase in the GMP population, suggesting that Gfi1 is essential for the 

maintenance of homeostasis of stem cell and early progenitor populations. The alteration of 

the number of progenitors was confirmed by in vivo (CFU-S, radioprotection) and in vitro 

functional assays (CFC). A reduction of the numbers and the size of CFU-S12 and 

moderately compromised short-term radioprotection capacity were found in Gfi1-/- bone 

marrow transplanted hosts. Bone marrow transplantation experiments confirm that the 

hematopoietic defects in Gfi1-/- mice are cell autonomous. 

 
Furthermore, when measured the reconstitution capacity of Gfi1-/- bone marrow cells 

against wild-type bone marrow cells in a competitive transplantation assay, we observed a 

severe impairment in long-term repopulating activities. This defect is not a result of a 

homing defect or a differentiation defect, but is correlated with an unusually high 

proportion of actively cycling HSCs. A large proportion of Gfi1-/- HSCs leave G0 phase to 

enter the cell cycle. We present evidence that a deregulation of the Gfi1 downstream 

effectors and cell cycle regulators p21cip1/waf1, E2F5 and E2F6 is responsible for these 
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defects, and suggest that Gfi1 controls self-renewal and engraftment abilities of HSCs by 

regulating their cell cycle exit or entry and by maintaining a constant proportion of HSCs in 

G0 phase. 
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