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Abstract

In recent years, the demand for reliable transmission of high speed data and multime-

dia traffic in wireless communications has been growing tremendously. To alleviate the

problem of scarce radio spectrum and to achieve the ambitious requirements for the ex-

isting and future generation wireless systems, attention has been recently turned into

multiple antenna systems such as Smart Antenna (SA) and Multiple Input Multiple Out-

put (MIMO) systems which may use adaptive beamforming. This dissertation aims at

investigating and designing beamforming algorithms for multiple antenna wireless com-

munication systems.

In the first part of the dissertation, the system level performance of wireless systems

such as the Universal Mobile Telecommunications System (UMTS) with SAs at the Base

Stations (BSs) is evaluated by using a novel and dynamic system level simulator. Com-

pared with other investigations, the present evaluation takes into account the dynamic

and stochastic behaviour of the radio propagation channel along with power control, soft

handover and code management.

The second part of the dissertation is devoted to downlink beamforming based upon

uplink channel parameters for UMTS Frequency Division Duplex (FDD) systems. A

robust transformation of uplink to downlink spatial covariance matrices is proposed in

order to overcome the adverse effect of uplink channel estimation errors into downlink

beamforming. This method performs better than the previous approaches and can be

efficiently implemented for realistic wireless networks.

Robust uplink and downlink beamforming algorithms based upon an outage proba-

bility criterion have been proposed in the third part of the dissertation. These algorithms

reduce the degradation in system level performance caused by the uncertainty of the up-

link and downlink spatial covariance matrices. Compared with the earlier robust methods

based on worst-case performance optimization, the proposed algorithms do not need the

knowledge of the upper bound of the uncertainty.

In the last part of this dissertation, a new stochastic approach is proposed for the

design of a single user robust MIMO transmitter which has only partial Channel State

Information (CSI). The proposed transmitter enhances the robustness of the MIMO sys-

tem against erroneous CSI. A power control optimization problem for a multiuser MIMO

system is also solved in order to minimize the BS transmit power while maintaining a

minimum level of Quality of Service (QoS) for all Mobile Stations (MSs).
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Ĥ Channel estimate available at the MIMO transmitter

P Diagonal matrix with power factor
√

pn for each eigenmode

X′ Orthogonal Space-Time Block Code

AM Modulation matrix

A′
q,B

′
q General complex matrices used to design OSTBC

BM Receiver or matched filter matrix response

Cn Matrix of orthonormal temporal signatures
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Chapter 1

Introduction

The field of wireless mobile communications is growing at an unprecedented rate, cover-

ing many technical areas. The proliferation of cellular phones, cordless phones, pagers

and many other wireless communication devices indicate that the demand for wireless

communications is anticipated to grow steadily and quickly. As an example, from 1990

to 1999, the number of mobile telephone users in the US has increased from 5.1 million

to 65 million subscribers. Today, the penetration of cellular phones to US population is

close to 50%. In Europe, South Korea and Singapore about 60-70% of the population has

access to mobile phones. In Taiwan, the number of cellular phones exceeds the number

of people. It is estimated, that the number of cellular phone users worldwide will reach

about 2 billion by 2006 from approx. 1.6 billion existing subscribers. The worldwide

research and experimental activities show the importance of this ever-growing industry.

However, the problem of limited channel bandwidth is a major obstacle for satisfying the

ever growing number of mobile users in a wireless mobile communication system. The

radio spectrum is scarce and expensive.

The first generation wireless systems were introduced in the early 1980s in order to pro-

vide voice traffic services to mobile subscribers over a wide area. They mainly employed

Frequency Modulation (FM) as a modulation scheme and Frequency Division Multiple

Access (FDMA) as a multiple access method. Low spectrum efficiency, requirement of

high transmission power, less interference rejection capability and a poor set of service

types have been the limitations of the first generation public cellular wireless communi-

cation networks. These systems employed different frequency reuse ratios and supported

the movement of mobile users from one cell or area to another. The first generation sys-

tems include Advanced Mobile Phone Systems (AMPS) in North America, Nordic Mobile
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Telephone/Total Access Cellular System (NMT/TACS) in Europe and Nippon-Telephone

and Telegraph-800/Japanese Total Access Communication System (NTT-800/JTACS) in

Japan.

The capacity limited first generation wireless systems could not cover up the increas-

ing number of mobile subscribers. They are generally incompatible because of different

frequencies and communication protocols used. The advancements in digital signal pro-

cessing have paved the path for the development of Second Generation (2G) wireless

systems. In order to increase the capacity of the overall system, compression and coding

methods associated with digital technology are employed. Almost all 2G wireless systems

have used digital modulation techniques. The multiple access schemes like Time/Code

Division Multiple Access (TDMA/CDMA) along with FDMA have been used in these

systems. The advanced speech coding methods with voice activity detection have reduced

the required transmission data rate and also the battery drain by the mobile transmitter.

The employment of TDMA has enabled the number of users to share the same channel

bandwidth in time. Similarly, because of the inherent interference resistance properties

of CDMA, the systems can operate at much larger interference levels than compared to

first generation counterparts. Since CDMA systems can operate with much smaller SNR,

they can use the same set of frequencies in every cell which provides a large improvement

in capacity [83]. 2G systems that were successfully deployed worldwide are the Global

System for Mobile Communications (GSM) and the Interim Standard (IS) systems based

on TDMA (IS-136) and CDMA (IS-95), respectively.

The Third Generation (3G) systems are required to have voice services of wire line qual-

ity, and provide high bit rate data services of 144 kbits/s to 2 Mbits/s depending on the

radio environment. The capability to provide reliable services irrespective of the type of

radio environment has made 3G systems more attractive. They are going to have better

quality and coverage, be more power and bandwidth efficient, and be deployed in diverse

environments like macro, micro, pico cellular; urban, suburban, and rural; indoor and

outdoor [90].

The world organization International Telecommunications Union (ITU) has incorporated

all 3G systems under a framework called International Mobile Telephony 2000 (IMT-

2000). Within IMT-2000, there are several different air interfaces defined for 3G systems,

based on either CDMA or TDMA. Among them, the Wide Band Code Division Multiple
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Access (WCDMA) air interface is going to be widely used, from Europe to Asia includ-

ing Korea and Japan, using the frequency bands allocated for 3G IMT-2000 system at

around 2 GHz. In addition to WCDMA, other air interfaces that can be used to pro-

vide 3G services are EDGE (Enhanced Data Rates for GSM Evolution) and multicarrier

CDMA (CDMA-2000) [54]. EDGE can provide 3G services with bit rates up to 500

kbits/s within a GSM carrier spacing of 200 KHz [83]. EDGE includes advanced features

that are not part of GSM to improve the spectrum efficiency and to support new ser-

vices. The multicarrier CDMA (CDMA 2000) can be used as an upgrade solution for the

existing IS-95 operators, where for the downlink transmission, instead of a single wide-

band carrier, multiple parallel narrowband CDMA carriers are transmitted from each BS.

In 3GPP standards, Release 5 specifications introduce High Speed Downlink Packet Ac-

cess (HSDPA) to provide data rates up to approximately 14 Mbps to support packet-based

multimedia services. HSDPA is an extension of WCDMA downlink and includes Adaptive

Modulation and Coding (AMC), Hybrid Automatic Request (HARQ), fast cell search,

and advanced receiver design. Recently, the Orthogonal Frequency Division Multiple

Access (OFDMA) has become major topic of interest for researchers because of its ca-

pability to transmit high data rates over frequency selective wireless channels. OFDMA

based WiMAX [2] system is being projected as one of the most attractive candidates for

4G wireless systems.

As the number of subscribers grows, spectral crowding and Co-channel Interference (CCI)

become important issues in all types of the wireless systems overviewed above. CCI arises

from frequency reuse whereby multiple cells operate at the same carrier frequency. The

geographic conditions and the propagation environment induce various effects like noise,

multipath and fading of the wireless channels. Multiple antennas provide a means to

improve the spectral efficiency and quality of communications over wireless channels.

They are capable of simultaneously estimating the channels of several co-channel sources

as well as demodulating the sources themselves. Depending on the multiple number of

antennas used at the transmitter and /or receiver, the multiple antenna system can be

classified as SA and MIMO system. SA and MIMO systems are expected to even increase

the data transmission capacity of the packet data oriented wireless systems like HSDPA

and WiMAX.
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1.1 Smart Antenna Wireless Communication System

Figure 1.1 shows a wireless communication system which employs multiple antennas at

the BS. The idea of SA is to exploit the spatial properties of wave propagation. Because

of a limitation of space, SAs are mainly used only at BSs. SAs consist of an array of

Figure 1.1: Wireless communication system with smart antenna

antenna elements and a smart processing of antenna signals. With the help of signal

processing, the beam pattern of the antenna array is optimally adapted to the mobile

radio channel.

In wireless communication ’uplink’ is described as the transmission from MSs to BSs

whereas ’downlink’ is the transmission from BSs to MSs. The goal is to receive in the

uplink as much power as possible from the desired MS and to attenuate as much as pos-

sible the signals from any undesired MS. In the downlink as much power as possible has

to be transmitted into the direction of the desired MS and as little power as possible to

undesired mobiles. By this method, CCI in a cellular system can be reduced, with the

consequence that the capacity increases. It has to be mentioned that for each desired MS

an individual beam pattern must be optimized. SAs can adaptively cancel interference

produced by the MSs which use the same frequency band, time slots or spreading codes

in nearby cells or as well as within the same cell.

Spatial processing with antenna arrays can facilitate a denser use of the available band-

width and hence increase the system capacity. This gain in system performance which is

obtained from the directional reception and transmission, can provide better coverage by
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the BS. As a consequence, the number of BSs as well as the complexity of Mobile Tele-

phone Switching Office (MTSO) can be reduced. Moreover, signal processing techniques

can be used to concentrate the complexity to a centralised BS so that MS receivers can

be simplified.

1.2 Summary of Related Work

Antenna array processing has found numerous applications in radar, sonar, siesmology

and microphone speech processing [16, 40, 62]. It was originally developed for applica-

tions related with target tracking and anti-jamming military communications [57, 101].

The early technique used directed beams to hide transmissions from an enemy. The im-

plementation required very large antenna structures and time-intensive processing and

calculation. After a decade of extensive research (e.g. [75]) in this area coupled with

rapid advances in microelectronics technology, high resolution antenna array technology

can now achieve superior performance with affordable cost. Recently, Smart Antenna

Systems (SASs) [4, 47, 92, 103] have been proposed to overcome some of the major dif-

ficulties in current wireless communication systems, e.g. multipath fading, Inter Symbol

Interference (ISI) and CCI, coverage and capacity limitations, handoff, and battery life,

by exploiting the spatial dimension. Downlink beamforming for the cellular wireless

networks has been extensively investigated [30, 47, 71, 81, 99] in order to increase the

downlink capacity. It will not be possible to provide a complete and thorough coverage

of the enormous body of work on array applications to wireless systems. In the next

few paragraphs, the major contributions on the subjects related to this dissertation are

highlighted.

It has been shown by many studies that when an array is appropriately used in a mo-

bile communications system, it helps in improving the system performance by increas-

ing channel capacity and spectrum efficiency, extending range coverage, tailoring beam

shape, steering multiple beams to track many mobiles, and compensating aperture dis-

tortion electronically. However, the improvement of the system performance obtained

from antenna array can be evaluated in a proper way only by carrying out system level

analysis in a realistic propagation environment. For this purpose, static system level sim-

ulations for downlink beamforming without power control and soft handover have been

presented in [26] and [27]. Baumgartner investigated [6] downlink beam switching based

upon static system level simulations. In this dissertation, we develop a novel method for
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analyzing the system level performance of a cellular mobile communication system which

uses BSs with SAs.

Downlink beamforming is difficult for practical mobile communication systems especially

in case of FDD channels where the uplink and downlink channels are highly uncorrelated.

In most of the previous researchs related with downlink beamforming, the frequency dif-

ference between uplink and downlink channels have been not considered and hence the

uplink weights are directly used for downlink beamforming. Uplink to downlink covari-

ance matrix transformation techniques like the Minimum Mean Square Error (MMSE)

and the Minimum Variance Distortionless Response (MVDR) filter for downlink beam-

forming have been proposed in [5, 34] and [55], respectively. However, these methods

are not robust against channel uncertainty. We develop a new transformation technique

that provides robustness against such channel uncertainty. Channel uncertainty arises

because of the difference between the true and the estimated spatial signatures.

Recently, many of the robust beamforming algorithms have been proposed to make the

adaptive beamformers robust against perturbation errors. The robust adaptive beam-

former proposed in [86] and [100] is based on explicit modeling of uncertainties in the

desired signal array response and data covariance matrix as well as worst-case perfor-

mance optimization. The optimum transmit beamforming methods that provide robust-

ness against channel uncertainties have been discussed in [8] and [102]. However, all of

these methods are based upon worst-case performance optimization which in communi-

cation systems is a pessimistic approach. The major drawback of these methods is that

the beamformer must have a knowledge of the upper bound of the channel perturba-

tion. Since errors in channel parameters are caused by mismatch in modelling of the

propagation effects like multipaths, delay etc and noise, it is more logical to model the

uncertainty with some statistical distribution and provide average robustness. In this

dissertation, we propose uplink and downlink robust beamforming algorithms based on

stochastic optimization methods.

The idea of SA technology has been recently extended to MIMO systems [35, 36, 95]

which use multiple antennas both at the receiver and transmitter side for providing re-

ceiver as well as transmitter diversity. A very powerful transmission technology known

as Space-Time Coding (STC) is proposed in [3, 93, 94] for MIMO systems. Like in SASs,

linear processing or beamforming is also used in MIMO based wireless communications.
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A Maxmin approach for the design of a robust MIMO transmitter is proposed in [58]

where transmission scheme as a combination of Orthogonal Space-Time Block Code (OS-

TBC) and beamforming is used. The objective was to find optimum power loadings for

the eigenmodes of the channel by maximizing the SNR at the receiver for a worst case

channel estimate. Here, we propose a stochastic approach for the design of robust MIMO

transmitter which combines OSTBC and beamforming.

An outage probability expression for the uplink of a multi-cellular MIMO system is pro-

vided in [96] for an arbitrary number of transmit and receive antennas. However, the

closed form expression of outage probability was obtained for the case of equal power

intracell interferers which is not the case in all types of cellular systems. If a cellular sys-

tem uses CDMA technique, power control is essential in the uplink and the assumption

of equal power intracell interferers is not a critical one. Moreover, any optimum power

control method based upon this complex expression of outage probability needs a very

high computational effort, especially if the wireless systems are big. In this dissertation,

we develop a simple and approximate form of the outage probability expression for the

downlink of a multiuser MIMO system that employs beamforming based upon a Max-

imum Ratio Transmission (MRT) technique. The advantage of this expression is that

it can be used to efficiently solve the optimum power control problem for the downlink

where the criterion is to minimize the total BS transmit power while satisfying the quality

of service (in terms of outage probability) constraints for all MSs.

1.3 Contribution of the Dissertation

In previous research work, the use of beamforming was mainly confined to the link-level

analysis of the wireless communication. The effect of the very random and complex

nature of the wireless environment have not been taken into consideration. One of the

important aspects of this dissertation is that it addresses the difficulties that arise in

the practical implementation of the beamforming methods in a cellular wireless network.

Another important aspect is that, it proposes robust beamforming algorithms that can

be applied in a realistic radio propagation environment. A robust uplink to downlink

spatial covariance transformation method is developed in order to provide robustness

against imperfect estimation of the uplink spatial signature at the BS. We also provide

robust beamforming methods based on an outage probability approach for both uplink

and downlink communications. A new stochastic approach is developed for the design of
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a MIMO transmitter that has only partial CSI. An optimum power control problem is

solved for a multiuser MIMO system that employs beamforming.

Many of the results presented in this dissertation appeared in conference proceedings

and in manuscripts published or submitted to refereed Book Chapter and Journals. The

dynamic system level simulator developed for UMTS-FDD systems with SAs at the BSs

in Chapter 3 is based on results in

• “Smart antenna solutions for UMTS,” Smart Antennas – State-of-the-Art, EURASIP

Hindawi Book Series, Ed. T. Kaiser and A. Boudroux, 2005. (with A. Czylwik and

A. Dekorsy)

• “System level simulation of WCDMA systems with smart antennas,” COST 273,

Barcelona, Spain, 15-17 Jan., 2003. (with L. Häring and A. Czylwik)

• “Dynamic system level simulations of UMTS-FDD with downlink beamforming,”

In Proceedings of IEEE Globecom 2003, SanFrancisco, USA, 1-5 Dec., 2003.(with

L. Häring and A. Czylwik)

The non-robust and robust uplink to downlink spatial covariance matrix transformation

methods for downlink beamforming in Chapter 4 are based on results in

• “System level performance with covariance transformation based DL beamforming,”

In Proceedings of IEEE Globecom 2003, SanFrancisco, USA, 1-5 Dec., 2003. (with

L. Häring and A. Czylwik)

• “Uplink to downlink spatial covariance transformation concepts for downlink beam-

forming,” In Proceedings of IEEE ISSPIT 2003, Darmstadt, Germany, 14-17 Dec.,

2003.(with L. Häring and A. Czylwik)

• “Robust spatial covariance transformation techniques for downlink beamforming,”

In Proceedings of International Zurich Seminar 2004, Zurich, Switzerland, 19-21

Feb., 2003. (with L. Häring and A. Czylwik)

• “Uplink to downlink spatial covariance transformation methods for downlink beam-

forming of UMTS-FDD systems,” In Proceedings of IEEE VTC Spring 2004, Milan,

Italy, 17-21 May, 2004. (with L. Häring and A. Czylwik)

• “Robust uplink to downlink spatial covariance transformation for downlink beam-

forming,” In Proceedings of IEEE ICC 2004, Paris, France, 20-24 June, 2004. (with

L. Häring and A. Czylwik)
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The algorithm and simulations of robust uplink beamforming based upon minimum out-

age probability in Chapter 5 are based on results in

• “Robust uplink beamforming based upon mininum outage probability criterion,”

IEEE Globecom 2004, Dallas, Texas, 29 Nov.-3 Dec., 2004. ( with A. Czylwik)

• “Uplink user capacity of UMTS-FDD with robust beamforming based upon min-

imum outage probability, ”COST 273, TD (04) 179, Duisburg, Germany, 20-22

Sept., 2004. (with A.Czylwik)

The robust downlink beamforming algorithm presented in Chapter 6 is based on results

in

• “Robust downlink beamforming based upon outage probability criterion,” In Pro-

ceedings of IEEE VTC Fall 2004, Los Angeles, USA, 26-29 Sept., 2004. ( with A.

Czylwik)

• “Robust downlink beamforming based on outage probability specifications,” sub-

mitted to IEEE Transactions on Wireless Communications, Jan., 2006. ( with S.

Shahbazpanahi, A. Czylwik and A. Gershman)

Finally, the robust MIMO design and the optimum power control for MIMO systems with

beamforming presented in Chapter 7 are based on results in

• “Robust MIMO design with outage probability specifications,” In Proceedings of

2nd International Workshop on Smart Antennas WSA 2005, Duisburg, Germany,

3-5 Apr., 2005.( with A. Czylwik)

• “Optimum power control for multiuser MIMO systems with beamforming,” In Pro-

ceedings of IEEE PIMRC’05, Berlin, Germany, 11-14 Sept., 2005. ( with A. Czyl-

wik)

• “An outage probability approach for a robust MIMO transmitter design,” submitted

to EURASIP Journal of Applied Signal Processing, Nov. 2005. (with A. Czylwik)

1.4 Organization of the Dissertation

The remaining of the dissertation is organized as follows. Chapter 2 presents a summary

of multiple antenna systems such as SA and MIMO technology. Basics of SA principles
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and algorithms along with spatio-temporal channels of the radio propagation environ-

ment are dealt in this chapter. A brief introduction of convex optimization problems like

Second-Order Cone Programming (SOCP) and Semidefinite Programming (SDP) is also

provided in this chapter. In Chapter 3, the system level performance of a UMTS-FDD

system with SAs is analyzed using the dynamic system level simulator. The details of the

different modules of the simulator are given in this chapter. Chapter 4 deals with the

uplink to downlink spatial covariance matrix transformation techniques along with the

simulation results. We also present a new robust uplink to downlink spatial covariance

matrix transformation technique in this chapter. The performance of this algorithm is

compared with non-robust methods using the system level simulator. Chapter 5 pro-

vides a robust uplink beamforming algorithm based on the minimum outage probability

criterion. The performance of this algorithm is evaluated both in a deterministic as well

as in probabilistic scenario. We propose an optimum robust downlink beamforming al-

gorithm and the simulation results based on the outage probability criterion in Chapter

6. Single as well as multiuser MIMO systems are analyzed in Chapter 7. A modi-

fied algorithm for a robust MIMO transmitter in case of partial CSI is proposed in this

chapter along with an optimum power control scheme for multiuser MIMO systems with

beamforming. Finally, the dissertation concludes with summary and description of future

research in Chapter 8.
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Chapter 2

Principles and Concepts

This chapter deals with the fundamentals of multiple antenna systems (Section 2.1)

namely SA and MIMO systems. As the major focus of this dissertation is the use of

spatial filtering or beamforming for wireless cellular communications, we give a brief

overview of the beamforming or SA algorithms in Section 2.2. Because channel models

play a vital role in wireless communications, the basics of channel models, especially

the vector channel model along with the spatial fading correlation of a Uniform Circular

Antenna Array (UCA) are presented in Section 2.3. Moreover, as we emphasize on non-

robust and robust beamforming for the UMTS-FDD systems, we give a brief introduction

of WCDMA which is an air interface technology for UMTS-FDD systems. Most of the

optimization problems that are proposed in this dissertation are convex and can be solved

efficiently to find the global optimum. Therefore, the theory of convex optimization and

some well known convex problems such as SOCP and SDP problems are presented in

Section 2.5.

2.1 Introduction to Multiple Antenna Systems

A multi-antenna communication system is shown in Fig. 2.1. A binary data stream

from a compressed digital source is fed to a transmitter which in general introduces

error control coding and mapping to complex modulation symbols (QPSK, M-QAM,

etc). Several separate symbol streams produced by the modulator are then mapped

onto the multiple transmit antennas. Linear spatial weighting of the antenna signals or

linear antenna space-time precoding can be used for mapping. After upward frequency

conversion, filtering and amplification, the signals are transmitted through a wireless
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Figure 2.1: Multi-antenna wireless communication system [41]

channel. At the receiver, the signals are received by multiple antennas followed by the

demodulation and demapping operations to recover the message. The selection of coding

and antenna mapping algorithms depends on different factors like the availability of CSI,

complexity and the application type. This determines the class and performance of the

multi-antenna system that is implemented. As subscriber units are gradually evolving to

become sophisticated wireless internet access devices rather than just pocket telephones,

the stringent size and complexity constraints are becoming somewhat more relaxed. This

makes multiple antenna transceivers a possibility at both sides of the link, although from

the engineering point of view it is more logical to push most of the processing and cost

to the network side like the BS or BS controller.

2.1.1 Smart Antenna Systems

If in a multi-antenna system only the transmitter or the receiver is actually equipped

with more than one antenna element, being typically the BS, then such a system along

with the spatial filtering method is known as a SAS. The extra cost and space that are

necessary to accomodate multiple antennas have been considered more easily affordable

at the BSs than on small phone handsets. The intelligence of SASs is located in the

weight selection algorithm.

Signal impairments in wireless communications are mainly due to ISI and CCI. The trans-

mitted signal arrives at the receiver with different time delays through the time-varying

multipath channel. The received signal symbols are smeared and overlapped with one

another. This signal distortion is called ISI [80]. Frequency reuse and multiple access

cause the CCI, which are inherent features of cellular systems. Temporal and/or spatial

signal processing is applied to mitigate signal impairments. Temporal signal processing

reduces the ISI using an equalizer or a rake receiver. The equalizer compensates the

12



channel distortion and the rake receiver distinguishes each delayed signal and combines

them constructively. Spatial signal processing reduces the CCI by properly combining

each antenna signal. Through this operation, it is possible to extract the desired signal

and to suppress interference. When spatial signal processing is combined with temporal

signal processing, the space-time processing can further repair the impairments to result

in higher network capacity, coverage, and quality [44, 45, 66, 76, 103]. Another powerful

x1(t)

2

1

x2(t)

M

∑

xM(t)

y(t)

wM

w2

w1

Figure 2.2: Antenna array system

effect of SA lies in the concept of spatial diversity. Spatial diversity is obtained when the

separation between antenna elements is large and consequently the fading correlations

among antenna elements is low [41]. In the presence of random fading caused by mul-

tipath propagation, the probability of losing the signal decreases exponentially with the

increasing number of decorrelated antenna elements. This gives to a notion of diversity

order which is given by the number of decorrelated spatial branches available at the re-

ceiver or transmitter. Finally, SAs provide array gain (improves SNR), which is obtained

by combination of the signals captured by multiple antennas. When all features (array

gain, spatial diversity, interference rejection) of SA can be combined together, it is shown

that SAs improve the coverage range, and the QoS offered to the MS [77]. The array

gain is defined as the reduction in the required received signal power for a given average

output SNR, while the diversity gain is defined as the reduction in the required average

output SNR for a given bit error rate (BER). Some antennas use horizontal and vertical

polarization to achieve diversity. The angle diversity uses several narrow beam antennas.
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A sector antenna in which four narrow beam antennas (each narrow beam antenna covers

a section of 30◦) cover a sector of 120◦ is an example of angle diversity.

Figure (2.2) shows a block diagram of an antenna array system, in which the signals

xi(t), i = 1, · · · ,M received by each antenna element are weighted by complex wi and

combined to generate an output signal y(t) given as

y(t) = wHx(t), (2.1)

where wH = [w1, w2, · · · , wM ] ∈ CM×1 is the complex vector of beamforming weights,

x(t) = [x1(t), x2(t), · · · , xM(t)]T ∈ CM×1 is the complex vector of array observations, and

(.)T and (.)H stand for the transpose and Hermitian transpose respectively.

wavefront

s(t)

array axis

d

Normal to array axis

i(t)

d sin
θ 1

θ1

θ2

dsensor 1 sensor 2 sensor 3

Figure 2.3: Uniform linear array

A Uniform Linear Antenna (ULA) array with three identical antenna elements is shown

in Fig. 2.3. In order to achieve spatial diversity and corresponding diversity gain, the

antenna elements have to be separated far enough (the separation is a few or tens of

carrier wavelengths). When antennas are placed in proximity, the correlation between

the antenna signals is high. In this case, the adaptive filter theory can be applied to

extract the desired signal while suppressing the interference signal [57]. To extract the

desired signal and to suppress the interference signal, complex antenna weights are used

to change the phases and the magnitudes of the received signal.

In the following, we consider only two antenna elements of the ULA that are joined with

a solid line (see Fig. 2.3). Assume that the two antenna elements (sensor 1 and sensor
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2) are separated by d = λc

2
, where λc is a carrier wavelength, and a desired signal s(t)

generated by a MS located in the far-field of the antenna array is incident on the antenna

array with an angle of arrival θ1 (normal to the array axis). If the direction θ1 is different

from zero, then sensor 2 experiences a time delay with respect to sensor 1 by τ = d sin θ1

vw
,

where vw is the velocity of the plane wave. If s(t) is a narrowband signal with carrier

frequency f , then the time delay τ corresponds to a phase shift of φ = 2πd sin θ1

λc
, where

λc = vw

f
is the wavelength corresponding to the carrier frequency. Now assume that an

interference signal i(t) with the same carrier frequency impinges on the array with an

angle of arrival θ2 = π
6

radian. Let us consider the direction of arrival θ1 of s(t) to be 0

radian. The task of a SAS is to null out the interfering signal i(t) such that the output

becomes s(t). The only difference between the interference signal i(t) received at antenna

1 and the interference signal i(t) received at antenna 2 is the phase difference, which is
π
2

radian for d = λc

2
of this configuration. Similarly, the phase difference between the

desired signal s(t) received at antenna 1 and antenna 2 is 0 radian. With the help of Fig.

2.2, the output of the SA network due to desired signal s(t) can be written as

s(t)w1 + s(t)w2

= s(t) {(w1,1 + w2,1) + j(w1,2 + w2,2)} , (2.2)

where w1 = w1,1 + jw1,2 and w2 = w2,1 + jw2,2 are complex values. Similarly the array

output for undesired signal i(t) can be written as

i(t)w1 + i(t)w2

= i(t) (w1,1 + jw1,2) + i(t)e
−jπ
2 (w2,1 + jw2,2)

= i(t) (w1,1 + w2,2) + j (w1,2 − w2,1) . (2.3)

To extract the desired signal and to suppress the interference signal, the antenna weights

should satisfy the following equations.

w1,1 + w2,1 = 1

w1,2 + w2,2 = 0

w1,1 + w2,2 = 0

w1,2 − w2,1 = 0. (2.4)

The above equations are derived from the following two conditions; the unity gain to

the desired signal and the zero gain to the interference signal. The antenna weights,

w1,1 = 1
2
, w1,2 = 1

2
, w2,1 = 1

2
and w2,2 = −1

2
are found if the angles of arrival are 0 and

π
6
, respectively. The antenna beam pattern for this case is shown in Fig. 2.4, in which
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Figure 2.4: Normalized directional pattern of an adaptive antenna array

the antenna beam pattern provides much larger gain toward the direction (θ = 0) of the

desired signal than compared to the gain toward the direction (θ = π
6
) of the interference

signal. Thus it can be said, that the adaptive antenna array is capable of separating the

desired signal s(t) from the interfering signal i(t).

2.1.2 MIMO Systems

Any arbitrary wireless communication system with a link equipped with multiple anten-

nas both at the transmitter and the receiver is called Multiple Input and Multiple Output

(MIMO) system. The idea behind MIMO is that the signals on the transmit antennas at

one end and the signals on the receive antennas at other end are combined in such a way

that the quality or the data rate of the communication for each MIMO user is improved.

Like SASs, MIMO systems also use the space-time signal processing in which time is com-

plemented with the spatial dimension inherent in the use of multiple spatially distributed

antennas. Thus MIMO systems can be viewed as an extension of SASs. Moreover, the

benefits of SASs are retained since the optimization of multi-antenna signals is carried

out in a larger space, thus providing additional degrees of freedom. MIMO systems can

provide a joint transmit-receive diversity gain, as well as an array gain upon coherent

combining of the antenna element signals.

One of the important features of MIMO systems is the ability to turn multipath propa-

gation, traditionally a pitfall of wireless transmission system into a benefit of the user.

MIMO effectively takes benefits of random fading [35, 36, 95] and when available, multi-

path delay spread [13, 82] for multiplying transfer rates. The average capacity (bit/s/Hz)
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Figure 2.5: Ergodic capacity of a spatially uncorrelated flat fading MIMO system

of a MIMO system with a spatially uncorrelated Rayleigh flat fading channel is shown in

Fig. 2.5, for the different numbers of transmit and receive antennas. Capacity results are

computed using Monte-Carlo simulations using 2000 random channel realizations. For a

given value of SNR, as the number of transmit and receive antenna increases, the capacity

of the MIMO link increases significantly.

As shown in Fig. 2.6, as the correlation between channels increases, the MIMO channel

capacity decreases. The spatial correlation among the transmitter antenna elements and

that among the receiver antenna elements are modeled using Kronecker’s model [23]

H = (R)
1
2
RxHw(R)

1
2
Tx, (2.5)

where Hw ∈ Cnr×nt is the channel matrix with i.i.d. zero mean complex Gaussian random

elements having unit variance, (R)
1
2
Rx ∈ Cnr×nr and (R)

1
2
Tx ∈ Cnt×nt are the receive and

transmit correlation matrices, respectively. Moreover, a simple exponential correlation

model [105] is used to build the transmit and receive correlation matrices. According

to this model, the correlation between ith and jth elements of the transmit or receive

antenna is given by

R(i, j)Tx/Rx = ρ|i−j|. (2.6)

As we go from a perfectly uncorrelated case (ρ = 0) to a highly correlated case (ρ = 0.95),

the MIMO channel capacity decreases significantly.
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Figure 2.6: Ergodic capacity of a MIMO system for uncorrelated and correlated spatial

fading

2.2 Smart Antenna Algorithms

The SA technology consists of mainly two schemes, computation of antenna weights

known as diversity combining and combination of antenna signals known as adaptive

combining. In diversity combining, antenna signals are combined to maximize the out-

put SNR. In adaptive combining, also known as beamforming, the antenna weights are

dynamically adjusted to enhance the desired signal while suppressing interference signals

to maximize the Signal-to-Interference-plus-Noise Ratio (SINR). The performance of the

adaptive combining is sometimes limited under certain circumstances, such as when the

angular separation between desired signal and interference is small or if some of the ex-

ploited assumptions on the environment, sources or antenna array become imprecise [39].

There are three basic schemes in the diversity combining technique: Selection Diversity

(SD), Equal Gain Combining (EGC), and Maximum Ratio Combining (MRC) [70]. SD

is the simplest method of all, in which a diversity branch having the highest SNR is se-

lected and directed to the output. It is also called Selection Combining (SC). The MRC

scheme weights each antenna signal by its SNR before combining. The MRC provides

the maximum output SNR. The MRC achieves high performance, but it is difficult to

accurately compute the SNR of each antenna signal. The EGC scheme simply adds each

antenna signal with an equal weight. For example, each antenna signal is weighted by 1
M

for an M element antenna array.
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An adaptive antenna array continuously adjusts its antenna weights by means of a feed-

back control. Sometimes, it is called a SA in a narrow sense. Several criteria can be used

to compute antenna weights for the adaptive combining. The criteria include maximum

SINR, MMSE, minimum variance, and Least Squares (LS) [57]. All criteria intend to

maximize the output SINR under various assumptions. When only noise is considered,

the adaptive antenna performs the same task as the diversity antenna with the MRC.

In the presence of strong interference, the adaptive antenna shows a better performance

compared with the diversity antenna with the MRC even if the number of interferences is

greater than the number of antennas [104]. There are two kinds of beamforming systems:

multibeam antenna and adaptive combining (in a narrow sense). The multibeam antenna

system selects one fixed beam among the multiple pre-defined beams, which offers the

maximum output SINR. Even though multibeam antenna system adaptively selects the

beam pattern, it provides non-uniform gain and limited interference suppression [103]

since the beam pattern is pre-defined and the number of beam patterns is limited. On

the other hand, the adaptive combining system adaptively and freely changes its antenna

beam pattern by tracking the antenna weights. The adaptive combining system with M

antennas can form up to M − 1 independent nulls to cancel up to M − 1 interference

signals [87]. The antenna weights must adapt fast enough to track the fading of the de-

sired and interfering signals. However, the antenna weights must also change much more

slowly than the data rate.

The output of the narrowband beamformer is given by equation (2.1). The observation

vector x(t) can be defined as

x(t) = s(t) + i(t) + n(t)

= s(t)a + i(t) + n(t), (2.7)

where s(t), i(t) and n(t) are the desired signal, interference and noise components re-

spectively. Here, s(t) is the signal waveform, and a is the signal steering vector. The

optimum weight vector can be computed from the maximum of the SINR [72]

SINR =
σ2

s |wHa|2
wHRd

i+nw
, (2.8)

where

Rd
i+n = E

{
(i(t) + n(t))(i(t) + n(t))H

}
(2.9)

is the M × M interference-plus noise covariance matrix, σ2
s is the signal power and a

is the M × 1 steering vector. It is easy to find the solution to the weight vector by

19



maintaining a distortionless response toward the desired signal and minimizing output

interference-plus-noise power [72]. Thus, the maximization of (2.8) is equivalent to [72]

min
w

wHRd
i+nw subject to wHa = 1. (2.10)

From (2.10), the following well-known solution can be found for the optimal vector [72]

wopt = α(Rd
i+n)−1a, (2.11)

where α = (aH(Rd
i+n)−1a) is the normalization constant and does not affect the output

SINR (2.8). The solution (2.11) is commonly known as MVDR beamformer [72, 109].

In practical applications, the exact interference plus noise covariance matrix Rd
i+n is not

available. In such a case a sample covariance matrix R̂ [100] is used instead of Rd
i+n. The

solution to this problem is commonly referred to as the Sample Matrix Inversion (SMI)

algorithm, whose weight vector is given by

wSMI = R̂−1a. (2.12)

A robust modification of the SMI algorithm is well-known as loaded SMI (LSMI) algo-

rithm, which is based on the diagonal loading of the sample covariance matrix [100]. The

essence of this approach is to replace the sample covariance matrix R̂ by the so-called

diagonally loaded covariance matrix

R̂dl = δI + R̂ (2.13)

in the SMI algorithm (2.12). Using (2.13), the LSMI weight vector can be written as

wLSMI = R̂−1
dl a = (δI + R̂)−1a, (2.14)

where δ is the diagonal loading factor and I is the identity matrix. The main problem of

LSMI method is how to choose the diagonal loading factor δ.

2.3 Channel Models

Channel modeling is an important aspect for proper evaluation of a SAS because it in-

fluences the design of receivers and their performance. In the uplink of 3G systems,

signals from different MSs arrive at the BS through different paths, each associated with

a random time delay and fading gain. Besides multipath fading, there are interference

coming from other users signals either of the same cell (intra-cell interference) or other

cells (inter-cell interference). In the downlink of the 3G systems, the signal transmitted
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from the BS is the superposition of all active users signals and common control signals.

The desired user signal and multiple access interference signals traverse the same paths,

but they are inherently orthogonal with each other. Another source of interference in

the downlink is coming from adjacent cells (inter-cell interference), which can have a

substantial impact on the performance. Note that the latter case becomes manifest when

the soft handover occurs. Since the number of adjacent BSs and hence the number of

interference signals from these BSs is small, a dual antenna system is a good candidate

to combat such interference. As shown in Fig. 2.7, the signal transmitted from a MS

i

1

2

M

s(t)

α
3 (t)

θ2

α1(t)

θ3

α2(
t)

θ1

Figure 2.7: Multipath scenario in a SAS

traverses through different paths and arrives at the antenna elements of the BS. Each

signal of a single path is effectively an interference signal to any other single path signal.

However, a rake receiver manages to utilize multipath signals to improve the quality of

received signal. For a wireless channel model, three components are considered for a

typical variation in the received signal level [83]. The three components are mean path

loss, lognormal fading (or slow fading), and Rayleigh fading (or fast fading), as shown

in Figure 2.8. Both theoretical and measurement based models indicate that an average

received signal level decreases according to a power law with distance [89]. The difference

in path loss at different locations at the same transmitter-receiver distance is modeled

as a lognormal random variable (lognormal fading). Reflections due to many scatterers

in the vicinity of the receiver cause the received signal to be time varying, in which the

envelope of a multipath signal follows a Rayleigh distribution (Rayleigh fading) [83, 89].

A channel model also needs to consider the delay spread due to multipath propagation,

the Doppler spread due to motion of the MS, and the anglular spread due to scattering.

To obtain the channel profile (such as delay, average power, and angle of arrival of each

multipath signal), not only a channel model based on statistical properties of the channel,
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Figure 2.8: Variation of the received signal level

but also a channel model based on measurement data should be considered.

2.3.1 Vector Channel Model

To understand the operation of a SAS, we need to first introduce spatial signatures.

Consider uplink transmission with an M -element antenna array at a BS receiving signals

from different users at different spatial locations. The array output contains both direct

path and delayed path signals. Radio propagation environments exhibit a multipath effect

when the received signal consists of multiple replicas of the transmitted signal, arriving

from various directions. The steering vector to a transmitting signal s(t) from a direction

of arrival θ has the form

a(θ) = [1, a1(θ), · · · , aM(θ)], (2.15)

where ai(θ) is a complex number denoting the amplitude gain and phase shift of the

signal at the ith antenna relative to that of the first antenna. For a uniform linear array

ai(θ) = ej
2πd(i−1) sin θ

λc , i = 1, · · · ,M, (2.16)

where d is the spacing between adjacent antennas and λc is the wavelength of the carrier.

In a typical wireless scenario, an antenna array with omni-directional elements not only

receives signals from a direct path but also from many reflected paths with different Di-

rection of Arrivals (DoA). Therefore, the total signal received by the ith antenna element
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can be written as

xi (t) =

Q∑

l=1

ai (θl) αi,l (t) s (t− τl) , (2.17)

where ai (θl) represents the response of i-th element of the array for an l-th path with DoA

θl, αi,l (t) is the complex envelope of the path fading, τl is the path delay, Q is the number

of multipath signals and s (.) is the transmitted signal that depends upon modulation

method and the information data stream. The signal complex envelope received by each

element of array is identical except of phase differences that depend on the DoA. Usually

the inverse of the signal bandwidth is large in comparison to the travel time across the

array. This leads to: α1,l (t) = α2,l (t) = · · ·αM,l (t) = αl (t), where M is the number

of array elements. The spacing among the array elements is generally <
(

λc

2

)
, in order

to have strong correlation between the antenna elements. Strong correlation between

antenna elements is suitable for beamforming, whereas weak correlation is required for

obtaining diversity. Since there are M array elements, the array response or steering

vector a(θl) for a DoA of l-th multipath is

a (θl) = [a1 (θl) a2 (θl) · · · aM (θl)]
T . (2.18)

Including all the multipaths, the received base band signal for the k th user is

xk (t) =

Q∑

l=1

a (θk,l) αk,l (t) sk (t− τk,l) , (2.19)

where xk (t) =
[
xk

1 (t) xk
2 (t) · · ·xk

M (t)
]H

and τk,l are not absolute values but are defined

with respect to the path with shortest propagation delay. In a multiuser system, if

k = 0, 1 · · ·K − 1 users are transmitting signals, the received baseband signal at the BS

can be expressed as

x (t) =
K−1∑

k=0

Qk∑

l=1

a (θk,l) αk,l (t) sk (t− τk,l)

=

Qd∑

l=1

a (θd,l) αd,l (t) sd (t− τd,l) +
K−1∑

k=0, k 6=d

Qk∑

l=1

a (θk,l) αk,l (t) sk (t− τk,l) .(2.20)

The first term in the right hand side of (2.20) indicates the signal received corresponding

to the desired user. The second term indicates the interference signal from K−1 interfer-

ers. Let us consider the signal received from the desired user for which the beamforming
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vector is wH
d . The output of the beamformer (2.1) is given by

yd (t) =

Qd∑

l=1

wH
d a (θd,l) αd,l (t) sd (t− τd,l)

= wH
d

∫ ∞

τ=−∞
hd(t, τd)sd(t− τd) dτd, (2.21)

where the time-variant vector channel between the BS and the desired MS is given by

the impulse response

hd(t, τd) =

Qd∑

l=1

Ad,l exp(j2πfd,lt + ψd,l)a(θd,l)δ(τ − τd,l) (2.22)

=

Qd∑

l=1

αd,l(t)a(θd,l)δ(τ − τd,l).

In equation (2.22), Qd, Ad,l, fd,l, ψd,l, θd,l and τd,l are the number of propagation paths,

the path transfer factor (amplitude), Doppler frequency, phase offset, DoA and the delay

of lth path, respectively. The gain function αd,l(t) (2.22) is the fading associated with

each path. According to Jake’s model [59], as shown in Fig. 2.9 a circular group of

∆

θd,l

θd

1 M

Figure 2.9: Jake’s model with angular spread

scatterers is considered, where each scatterer generates different Doppler shifts, phase

offsets and the azimuth directions or DoAs. The sum of all the rays arriving from each

scatterer generates the lth path in equation (2.22). In this model, the angular spreading

is represented by a notion of a cone that contains all the incoming rays from this group

of scatterers. Assuming that the azimuth angle of the lth path is θd,l, when the speed of

the desired mobile is used as a reference, the Doppler frequency fd,l is given by

fd,l =
fup cos(θd,l)v

c
, (2.23)
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where fup, v and c are the uplink carrier frequency, the mobile speed and the speed of

light, respectively. The Doppler frequency fd,l and the phase offset ψd,l remain unchanged

practically during a time slot. Similarly, the number of paths Qd, the path transfer factors

αd,l, DoA θd,l and the delays τd,l can be assumed to be fixed for a number of time slots.

The average power of the desired signal after beamforming at the BS is
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Figure 2.10: Impulse response of a spatio-temporal channel

Pd = E {yd(t)y
∗
d(t)} . (2.24)

Substituting equation (2.21) into (2.24), we get the average power of the desired signal

as

Pd = wH
d

(
Qd∑

l=1

|Ad,l|2a(θd,l)a(θd,l)
H

)
wd, (2.25)

where |Ad,l|2 is the average power of fading αd,l(t) and the following normalization was

considered

E {s(t)s∗(t)} = 1. (2.26)

The spatial covariance matrix (see eqn. 2.25) of the desired signal received at the BS is

thus given by

Rd =

Qd∑

l=1

|Ad,l|2a(θd,l)a
H(θd,l). (2.27)
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Figure 2.11: Output of a spatio-temporal channel

Similar derivations can be carried out to find the spatial covariance matrix for the inter-

ferers. The cumulative spatial covariance matrix of the interferers can be written as

RI =
K−1∑

k=1,k 6=d

Qk∑

l=1

|Ak,l|2a(θk,l)a
H(θk,l), (2.28)

where K − 1 indicates the number of interferers. The impulse response for an arbitrary

realization of a time-variant vector channel is depicted in Fig. 2.10 where a truncated

exponential power delay profile with a maximum delay of 40µs and a delay spread of

10µs is considered. The fading associated with each path αd,l(t) (2.22) is modeled as a

Rayleigh fading with time correlation described by a Jake’s spectrum [59]. The speed of

the MS is assumed to be 400 km/hr, the carrier frequency is 2 GHz, and the direction

of arrival is Laplacian distributed with a variance of 20◦. A ULA with a spacing of λc

2

and size M = 4 is used at the BS. The response of an arbitrary realization of such a

spatio-temporal channel to an input bit sequence of [1, 0] is shown in Fig. 2.11 for an

observation interval of 100µs. The output of the antennas are different because of the

different multipath fading processes at each antenna element.

2.3.2 Spatial Fading Correlation of UCA

In wireless communications, the wave propagation effects result in delay spread, angle

spread and Doppler spread. The antenna arrays are used to mitigate these channel

26



impairments thereby helping to improve signal quality. Among antenna array systems,

the ULA is probably the most common form employed in cellular systems. Ideally, the

antenna elements in a space diversity scheme should be spaced far enough apart so that

the randomly fading signal at each diversity branch is independent and uncorrelated.

However, this may be difficult to achieve in practice due to space limitations. Recently,

an analysis of fading correlation as a function of antenna spacing and DoA distribution

(uniform and cosine shaped) was carried out for UCA in [97]. We provide a closed

form solution of the signal fading correlation for a UCA system with the assumption of

Laplacian distributed DoA [28]. The Laplacian distribution of DoA is described as

fΘ(θ) =
1√
2σθ

e

(
−
√

2|θ−µ|
σθ

)
, (2.29)

where µ is the average DoA and σ2
θ is the variance of DoA. The steering vector for an M

element UCA is

a (θ, λc) =
[
e−j2π r

λc
cos θ, e−j2π r

λc
cos(θ− 1

M
2π), . . . , e−j2π r

λc
cos(θ−M−1

M
2π)

]T

. (2.30)

Dropping the index λc from a (θ, λc) of (2.30), we can write the spatial correlation [97]

between the mth and nth antenna element as (also refer to eqn. 2.7 without noise and

interference)

Rs(m,n) = E {xm(t)x∗n(t)}
= E {am(θ)s(t)a∗n(θ)s∗(t)}
= |s2(t)| ·

∫

θ

am(θ)a∗n(θ)fΘ(θ) dθ

=

∫ π+µ

−π+µ

e−j2π r
λc

cos(θ−φm)ej2π r
λc

cos(θ−φn)fΘ(θ) dθ, (2.31)

where desired signal power |s2(t)| = 1. After defining the following constants

Q1 =
2πr

λc

(cos φm − cos φn)

Q2 =
2πr

λc

(sin φm − sin φn)

sin α =
Q1√

Q2
1 + Q2

2

cos α =
Q2√

Q2
1 + Q2

2

Ac =
√

Q2
1 + Q2

2, (2.32)
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we can express (2.31) as

Rs(m,n)=

∫ π+µ

−π+µ

e−jAc sin(α+θ)fΘ(θ) dθ

=

∫ µ

−π+µ

e−jAc sin(α+θ) 1√
2σθ

e

√
2(θ−µ)

σθ dθ +

∫ π+µ

µ

e−jAc sin(α+θ) 1√
2σθ

e

√
2(−θ+µ)

σθ dθ.

(2.33)

With further derivations (see Appendix 9.1), the spatial correlation between the two

elements of the UCA can be finally expressed as

Rs(m,n) =

(
1− e

−
√

2π
σθ

)
J0(Ac) + 2

(
1 + e

−
√

2π
σθ

) ∞∑

k=1

J2k(Ac)

1 + 2σ2
θk

2
cos (2k(α + µ))−

(
1 + e

−
√

2π
σθ

)
2j

∞∑

k=1

2J(2k−1)(Ac)

2 + σ2
θ(2k − 1)2

sin ((2k − 1)(α + µ)) .

(2.34)

where Jn(x) is the modified Bessel function of the first kind. A 4-element UCA as shown

in Figure (2.12) is used as a test case for the numerical analysis.

The fading correlations |Rs(m,n)| for the 4-element UCA are plotted against radius of

1

2

3

4 r

Trx.

σθ

σθ

θ

scatterers

d

Figure 2.12: Wireless communication system employing UCA with M elements

the circular array normalized by the wavelength for different angular spreads σθ. Note

that, the antenna spacing d is proportional to the radius r and is given by d =
√

2r.

Because of the symmetry of the UCA, the fading correlation |Rs(1, 2)| = |Rs(1, 4)|. Thus
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we only need to evaluate the fading correlation for m = 1 and n = 2 to 3. Figures (2.13,

2.15) show the fading correlations |Rs(1, 2)| and |Rs(1, 3)| with an average DoA=0◦ and

different angle spreads, respectively. The fading correlation decreases as r and angle
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Figure 2.13: Spatial fading correlation between element 1 and 2 with average DoA= 0◦

spread σθ increases. It is shown that |Rs(1, 2)| gives the lowest fading correlation for the

same values of σθ and r
λc

while |Rs(1, 3)| gives the highest correlation. It can be observed

that for all simulation cases, the spatial fading correlation decreases as the radius of the

antenna r in terms of wavelength λc or the angular spread increases. Figures (2.14, 2.16)
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Figure 2.14: Spatial fading correlation between element 1 and 2 with average DOA= 45◦

show the fading correlations |Rs(1, 2)| and |Rs(1, 3)| of the UCA with average DoA=45◦

and various angle spreads, respectively. As in previous case, the fading correlation de-

creases as r and angle spread σθ increases. For the case of average DoA=45◦, |Rs(1, 3)|
gives the lowest fading correlation for the same values of σθ and r

λc
while |Rs(1, 2)| gives
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Figure 2.15: Spatial fading correlation between element 1 and 3 with average DOA= 0◦

the highest correlation. Moreover, it is seen that the spatial fading correlation is a func-

tion of average DoA. For example, with same angle spread and the circle of radius r,
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Figure 2.16: Spatial fading correlation between element 1 and 3 with average DOA= 45◦

|Rs(1, 2)| for average DoA of 0◦ is different from the case of average DoA of 45◦. In

Figure (2.17), we compare the analytical results with simulation results for the spatial

fading correlation between element 1 and 2 of the 4-element UCA with average DoA of 0◦.

It can be observed that the simulation results exactly match with the analytical results.
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Figure 2.17: Spatial fading correlation between element 1 and 2 with average DOA= 0◦

2.4 WCDMA as an Air-interface for UMTS-FDD

In the standardisation forums, WCDMA has emerged as the most widely adopted 3G air

interface. The joint standardisation project of the standardisation bodies from Europe,

Japan, Korea, USA and China, known as 3GPP (the 3rd Generation Partnership Project)

has developed the specifications for WCDMA. Within 3GPP, WCDMA is called UTRA

(Universal Terrestrial Radio Access) FDD and TDD (Time Division Duplex). Hence

WCDMA covers both FDD and TDD operations. Some of the important features of

WCDMA [54] are listed below:

• WCDMA-FDD mode uses direct sequence code division multiple access DS-CDMA,

where the user information bits are spread over a wide bandwidth by multiplying

the user data with pseudo random sequences derived from CDMA spreading codes.

The use of a variable spreading factor and multicode connections is supported, so

that the system can support very high bit rates up to 2 Mbit/s.

• In contrast to a carrier bandwidth of 1 MHz in narrowband CDMA systems like

IS-95, WCDMA is a wideband CDMA system where the used chip rate of 3.84

Mcps leads to carrier bandwidth of approximately 5 MHz. This wide bandwidth of

WCDMA is very helpful in supporting high user data rates and increased multipath

diversity.

• WCDMA supports two basic modes of operation: FDD and TDD. The FDD mode

uses separate carrier frequencies with 5 MHz spacing for the uplink (connection

from the mobile to the BS) and downlink (connection from the BS to the mobile),
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Multiple access scheme DS-CDMA

Duplex scheme FDD/TDD

Packet access Dual mode: combined and dedicated channel

Multirate,variable rate scheme Variable spreading factor and multicode

Chip rate 3.84 MHz

Frame length 10 ms

Carrier spacing 4.4−5.2 MHz

Channel coding Convolutional coding(rate 1/2 and 1/3),

Turbo coding

BS synchronization FDD: asynchronous

TDD: synchronous

Service multiplexing Multiple services with different quality of

service requirements

Multiuser detection, smart antennas Supported by the standard, optional

in the implementation

Table 2.1: The key technical parameters of WCDMA [54]

respectively. The TDD mode employs only one 5 MHz channel that is shared in

time between uplink and downlink.

• WCDMA uses coherent detection on uplink and downlink by the use of pilot symbols

or common pilot symbols, that is expected to result in an overall increase of coverage

and capacity on the uplink.

• WCDMA supports highly variable user data rates. Frames of 10 ms duration during

which the user data rate is kept constant are allocated to each user. The data

capacity among the users can vary from frame to frame. Hence WCDMA supports

the concept of Bandwidth on Demand (BOD).

• The WCDMA air interface has been designed in such a way that it can support

the advanced CDMA receiver concepts, such as multiuser detection, and smart

adaptive antennas. These features, which are not available in 2G systems have

given the network operator an option to increase the capacity or coverage.

• One of the most promising features of WCDMA is that it is designed to be deployed

in conjunction with GSM. Handovers between GSM and WCDMA are supported.
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2.5 Convex Optimization

A convex program is an optimization problem where we seek the minimum of a convex

function over a convex set. Its objective function as well as the constraints are con-

vex. Convex optimization problems often occur in signal processing, communications,

structural analysis and many other fields. Convex problems can be solved numerically

with great efficiency and global optimums can be obtained. Very efficient interior-point

methods are available for the solution of convex optimization problems. However, the dif-

ficulty is often to recognize convexity; convexity is harder to recognize than say, linearity.

One important feature of convexity is that it is possible to address difficult, non-convex

problems (such as combinatorial optimization problems) using convex approximations

that are more efficient than classical linear ones. Convex optimization is especially rel-

evant when the data of the problem at hand is uncertain, and robust solutions are sought.

2.5.1 Convex Set

A set C is convex if the line segment between any two points in C lies in C, i.e., if for

any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C. (2.35)

In other words, in a convex set C every point in the set can be seen by every other point,

along an unobstructed straight path between them, where unobstructed means lying in

the set. Some simple convex and nonconvex sets in R2 is shown in Figure 2.18. The

Figure 2.18: Some simple convex and nonconvex sets

hexagon including its boundary is a convex set whereas the kindney shaped set is not

convex, since the line segment between the two points is partly not contained in the set.
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2.5.2 Cones

A set C is called a Cone, if for every x ∈ C and θ ≥ 0 we have θx ∈ C. The set C is

called a convex cone if it is convex and a cone, which means that for any x1, x2 ∈ C and

θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C. (2.36)

Points of this form can be described geometrically as forming the two-dimensional ’pie-

slice’, with apex 0 and edges passing through x1 and x2 as shown in Figure 2.19. The

0

x1

x2

Figure 2.19: Example of a convex cone [15]

pie-slice shows all the points of the form θ1x1 + θ2x2, where θ1, θ2 ≥ 0. The apex of the

slice that corresponds to θ1 = θ2 = 0 is at 0 and its edges pass through the points x1 and

x2.

2.5.3 Convex Functions

A function f : Rn → R is convex if the domain of f is convex and for all x, y that belong

to the domain of f and for any 0 ≤ θ ≤ 1, we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.37)

The function f is strictly convex if strict inequality holds in (2.37) whenever x 6= y and

0 < θ < 1. It can be said that f is concave, if −f is convex, and strictly concave if −f is

strictly convex . Geometrically, the inequality (2.37) can be interpreted as a line segment

between (x, f(x) and (y, f(y)) that lies above the graph of f as shown in Figure 2.20.

Some of the examples of convex functions are

• Exponential; eax is convex on R, for any a ∈ R.

• Powers of absolute value; |x|p, for p ≥ 1, is convex on R.
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(x, f(x))

(y, f(y))

x y

f

Figure 2.20: Graph of a convex function

• Powers; xa, for a ≥ 1 or a ≤ 0, is convex on R++.

2.5.4 Convex Optimization Problem

An optimization problem in its standard form is

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m (2.38)

hi(x) = 0, i = 1, · · · , p,

where

• x ∈ Rn is the optimization variable.

• f0 : Rn →R is the objective or cost function.

• fi : Rn →R, i = 1, · · · ,m are the inequality constraint functions.

• hi : Rn →R, i = 1, · · · , p are the equality constraint functions.

In its standard form, a convex optimization problem can be expressed as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m (2.39)

aT
i x = bi, i = 1, · · · , p,
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where fo, f1, · · · , fm are convex and the equality constraints are affine (every affine set is

a convex). A feasible set of the convex optimization problem is convex [15]. The problem

is quasiconvex if f0 is quasiconvex and f1, · · · , fm are convex, respectively. The most

commonly used convex optimization problem is the Linear Programming (LP) problem,

an optimization problem with linear objective and linear inequality constraints:

minimize fTx

subject to cT
i x ≤ di, i = 1, · · · , L, (2.40)

where the optimization variable is the vector x, and ci ∈ Rn, di ∈ R, and f ∈ Rn are the

problem parameters.

2.5.5 Second-Order Cone Programming (SOCP)

Suppose || · ||l is any norm on Rn. From the general properties of the norms, it can be

shown that a norm ball of radius r with center xc, given by {x|, ||x− xc||l < r}, is convex.

The cone associated with the norm || · ||l is

C = {(x, t)|, ||x||l < t} . (2.41)

The SOC is the norm cone for the Euclidean norm (l = 2) and is described as

C =
{
(x, t) ∈ Rn+1|, ||x||2 < t

}
, (2.42)

where n + 1 is also known as the dimension of the cone. A convex optimization problem

with SOC constraints is also known as a SOCP problem, which in general has the following

form

minimize fTx

subject to ||Aix + bi||2 ≤ cT
i x + di, i = 1, · · · , L, (2.43)

where ||·||2 denotes the Euclidean norm, i.e., for any z ∈ Rn, ||z||2 =
√

zTz, x ∈ Rn is the

optimization variable, and the problem parameters are f ∈ Rn, Ai ∈ Rmi×n, bi ∈ Rmi ,

ci ∈ Rn and di ∈ R. The constraint

||Aix + bi||2 ≤ cT
i x + di, i = 1, · · · , L (2.44)

is a SOC constraint of dimension mi + 1. The set of points satisfying a SOC constraint

is the inverse image of the unit SOC under an affine mapping [15]:

||Aix + bi||2 ≤ cT
i x + di ⇔

(
Ai

cT
i

)
x +

(
bi

di

)
∈ Cmi+1, (2.45)
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and hence it is convex. Thus, the SOCP (2.43) problem is a convex programming problem

since the objective is a convex function and the constraints define a convex set. SOC

constraints can be used to represent several common convex constraints. For example,

when mi = 0 for i = 1, · · · , L, the SOCP reduces to LP

minimize fTx

subject to cT
i x + di ≥ 0, i = 1, · · · , L, (2.46)

which is also given in (2.40). Another interesting special case arises when ci = 0, so the

i-th SOC constraint reduces to ||Aix+bi||2 ≤ di, which is equivalent (assuming di ≥ 0) to

the (convex) quadratic constraint ||Aix+bi||2 ≤ d2
i . Thus, when all ci vanish, the SOCP

problem reduces to a Quadratically Constrained Linear Program (QCLP). The (convex)

Quadratic Programs (QPs), Quadratically Constrained Quadratic Programs (QCQPs),

and many other nonlinear convex optimization problems can be reformulated as SOCP

problems as well. Thus SOCP problems include LP problems and QPs as special cases,

but can also be used to solve a variety of nonlinear, nondifferentiable problems.

2.5.6 Semidefinite Programming (SDP)

Let us consider a set of Hermitian n× n matrices represented by Sn as

Sn =
{
X ∈ Cn×n|X = XH

}
, (2.47)

which is a vector space with dimension n(n + 1). Using the notation Sn
+, the set of

Hermitian positive semidefinite matrices can be represented as

Sn
+ = {X ∈ Sn|X º 0} , (2.48)

where the notation X º 0 represents that the matrix X is positive semidefinite. The set

Sn
+ is a convex cone; if θ1A + θ2B ∈ Sn

+ for A,B ∈ Sn
+ and θ1, θ2 ≥ 0. This can be easily

seen from the positive semidefiniteness; i. e., for any x ∈ Cn, we have

xH(θ1A + θ2B)x = θ1x
HAx + θ2x

HBx ≥ 0, (2.49)

if A º 0, B º 0, and θ1, θ2 ≥ 0. An example of a positive semidefinite cone in S2
+ is

given by

X =

(
x y

y z

)
∈ S2

+

⇐⇒ x ≥ 0, z ≥ 0, xz ≥ y2. (2.50)
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An SDP is a problem of minimizing a linear function over the intersection of an affine

set and the cone of positive semidefinite matrices. Such a constraint is nonlinear and

nonsmooth, but convex, so SDP problems are convex optimization problems. SDP uni-

fies several standard problems (e.g., linear and quadratic programming) and finds many

applications in engineering and combinatorial optimization. Although SDP problems are

much more general than LP problems, they are not much harder to solve. Most interior-

point methods for LP have been generalized to SDP problems. As in LP, these methods

have polynomial worst-case complexity, and perform very well in practice.

In a SDP a matrix affine in the program variable x is constrained to be positive semidef-

inite and can be expressed as

minimize cTx

subject to A0 + A1x1 + · · ·+ Anxn º 0, (2.51)

where Ai ∈ Rn×n, and A º 0 denotes matrix inequality, i.e., zTAz ≥ 0; ∀ z ∈ Rn.

SDP can also be regarded as an extension of LP where the componentwise inequalities

between vectors are replaced by matrix inequalities, or, equivalently, the first orthant is

replaced by the cone of positive semidefinite matrices. In general, a SDP problem can be

also expressed as

min
Xk

K∑

k=1

tr(CkXk)

subject to
K∑

k=1

tr(Ak,lXk) = bl, l = 1, · · · , L

Xk = XH
k º 0, k = 1, · · · , K, (2.52)

where Ck, Ak,l and Xk are all n×n symmetric matrices, bl is a scalar and the constraint

XH
k º 0 denotes that the matrix Xk is a Hermitian positive semidefinite. Even this is a

highly nonlinear constraint, it is still convex because a set of positive semidefinite matrices

form a convex cone. In practice, several program packages are available to efficiently find

the solution of (2.52), for example the SeDuMi toolbox [91] (see Appendix 9.2). We say

that an optimization problem is feasible when there is at least one point that satisfies all

constraints.

Many convex optimization problems, e.g., LP and (convex) QCQPs, can be cast as SDP

problems, so that SDP offers a unified way to study the properties and derive algorithms

for a wide variety of convex optimization problems. SDP problems include LP and

SOCP problems as special cases, but can also be used to solve many other nonlinear,

nondifferentiable problems.

38



Chapter 3

Dynamic System Level Simulator for

UMTS-FDD with Smart Antennas

A SAS employs a spatio-temporal processing technique such as beamforming to reduce the

inter-cell as well as intra-cell interference in cellular wireless systems thereby increasing

the system capacity significantly. As a result, SAS can be used in interference limited

systems like UMTS for capacity improvement. However, much focus has been on the link

level benefit of the SAS. The system implications have received less attention and are not

immediately obvious due to the complex nature of the adaptive antenna array processing

technique and its interaction with the system features such as multiple access technology,

power control, receiver architecture. The only realistic approach for evaluating the system

performance of SA techniques for UMTS is through means of simulation. There are a

number of commercial UMTS system simulators available, but most of them do not model

the spatial channel response required to evaluate SA techniques.

3.1 Introduction

In this chapter we develop a dynamic system level simulator for investigating the capacity

improvement in a UMTS-FDD system employing SAs at BSs. The simulator can be used

for the performance evaluation of beamforming algorithms for both uplink and downlink

communications of a UMTS-FDD based wireless network. The uplink performance is

measured by finding the average number of MSs that can be supported in uplink with

a certain QoS. Similarly, the downlink performance is evaluated by finding the average

number of MSs for which a specified QoS requirement is fulfilled in downlink. In 3G

mobile communication systems like UMTS, the downlink traffic load is supposed to be
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higher than the uplink traffic load. Because of this traffic asymmetry, the overall system

capacity is limited by the downlink capacity. The use of SA technology is therefore

more relevant for the downlink communications than compared to the uplink. As a

result, we focus mainly on downlink capacity improvement that can be obtained from

the use of SA technology. We present, analyses of the downlink capacity for different

numbers of array elements, both with and without power control. Moreover, this chapter

compares downlink beamforming with different diagonal loadings and shows the effect

of spatial fading correlations on downlink capacity. When using SAs, the real amount

of performance improvement can only be estimated by system level simulations. Hence,

dynamic system level simulations for UMTS-FDD are carried out which take into account

the statistical nature of almost all parameters, e.g. wave propagation, user motion and

traffic scenarios.

The three major system aspects of SA technology in wireless communications, i.e., SA

receiver, wireless network control, and planning are surveyed in [14]. A UMTS-FDD sys-

tem level simulator is proposed in [79] for comparing the relative performance of different

SA technologies like switched beams, phased arrays and adaptive arrays. The main task

of this simulator [79], given the network layout with mobiles, BSs and channel propa-

gation conditions, are to iteratively find the maximum number of users which can be

supported with a given service within the system limitations. In our method we consider

both Broadcast Channels (BCH) like the Common Pilot Channel (CPICH) and dedi-

cated channels (DCH) like the Dedicated Physical Data Channel (DPDCH). Downlink

beamforming is carried out for dedicated channels while the omnidirectionally transmit-

ted CPICH channel is used for MS to BS assignment and soft handover. We use the

closed-loop fast power control method as proposed in 3GPP release 4. We assume that in

the downlink the users are separated by spreading codes under a single scrambling code.

Thus, our method is well compatible with 3GPP specifications. We carry out dynamic

system level simulations using simple mobility and traffic update models in order to de-

termine the gain in overall system capacity.

The rest of the chapter is organized as follows: In section 3.2, the simulation concept is

presented with the description of each module of the simulator. The simulation results

are presented in section 3.3. The chapter concludes with a summary in section 3.4.
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3.2 Simulation Concept

3.2.1 Simulation Flow

Figure 3.1 shows the simulation flow. The simulation is based upon snapshots. In each

Power ControlPower Control

outer loop

SINR Calculation SINR Calculation

inner loopinner loop

Cov. Matrix
Calculation

Beamforming Beamforming

k=k+1

k=0

Calculation

Uplink Downlink

Assignment Update

Preassignment

Transformation

Channel Calculation

Mobility Update

Initialization

Traffic Update

Cov. Matrix

Figure 3.1: Block diagram of simulation flow

snapshot, the MSs move, the traffic situation changes and hence the uplink and downlink

channels for all possible combinations of the MSs and BSs are either newly calculated or

updated. MSs are assigned to BSs based upon the received pilot channel power. After

a preliminary assignment of the MSs, uplink and downlink spatial covariance matrices

can be either calculated or estimated. In general, the downlink spatial covariance matrix

is estimated from the uplink one by frequency transformation. Uplink and downlink
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beamforming are carried out for the DPDCH channels in the uplink and the downlink,

respectively. For the uplink, SINR values for the DPDCH channel are calculated at each

BS. For the downlink, SINR values for the DPDCH and CPICH channels are calculated at

each MS. An iterative fast closed-loop power control method with a frequency of fpc = 1.5

kHz is used to adjust the powers of uplink and downlink DPDCH channels so that the

MSs achieve the SINR target value for the DPDCH channel.

The MSs that cannot be provided with the target SINR for DPDCH at the end of power

control loop are considered to be in outage. The assignment of MSs to BSs is updated

after dropping the MSs that are out of coverage range or could not be provided with

required quality of service. The outer loop starts the next iteration with a new snapshot.

The inner loop or power control loop is assumed to be converged within the time difference

T between two consecutive snapshots. The time duration of the outer loop T represents

the sampling time used for simulation. In the following, we describe the modules of the

simulation flow for the downlink communication.

3.2.2 Initialization

In the first part of the initialization procedure all the parameters that remain constant

during the whole simulation are set. The parameters related with the cellular scenario

like the total number of areas, total number of BSs per area, radius of the cells etc. can be

changed by a user before starting a simulation run. The MS and BS related parameters

are chosen according to 3GPP specifications [1]. A cellular configuration consisting of a

main area and six surrounding areas is created as shown in Fig. 3.2.

The areas other than the main area represent the periodic continuation of the main area

in all possible directions. They are used to simulate a wrap-around technique [43]. Each

area consists of a central hexagonal cell surrounded by six other hexagonal cells. Each

cell has a single BS at its centre.

This type of cellular structure is useful for simulating the effects of intra- and intercell

interference in the cells that are located at the center as well as at the boundary of

the main area. The wrap-around technique enhances the computational speed of the

simulator. The MSs are distributed uniformly in the main area. Although the SINR

evaluation is done only for MSs in the main area, because of the wrap-around technique

the effect of equivalent mobile and BSs of all other areas has to be considered. Thus, it is

clear that a BS of the main area and its equivalent BSs in all other areas have the same

downlink beam patterns and same transmission powers.
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Figure 3.2: Locations of BSs and MSs

3.2.3 Mobility Model

The performance of a radio network is highly influenced by the mobility of the users in the

cell [14]. The beamforming algorithm should be optimized according to the propagation

scenario in which MSs move with different behaviours. In the mobility update procedure

(see Fig. 3.3), the locations r(t) and directions of movement ϕ(t) of the MSs are updated

according to [43] as

r(kT + T ) = r(kT ) + v(kT ) · T (3.1)

ϕ(kT + T ) = ϕ(kT ) + A ·∆ϕ(kT ) , where (3.2)

v(kT ) = v(kT )ev(kT ), and (3.3)

eT
v (kT ) = (cos (ϕ(kT )), sin (ϕ(kT ))) . (3.4)

The MS speed v(kT ) at each snapshot is generated from a Gaussian distribution fv(v)

with average speed v and standard deviation σv

fv(v) =
1√

2πσv

e
− 1

2

(
v−v

σ2
v

)2

. (3.5)

The direction of movement ϕ(t) of each MS at the k + 1-th snapshot is obtained by

updating its direction at the k-th snapshot. This is done by multiplying a uniformly

distributed random variable ∆ϕ with another random variable A taking the values 0 and

1 according to the discrete probability density function fA(a)

fA(a) = pdcδ(a− 1) + (1− pdc) δ(a). (3.6)

43



-2 -1 0 1 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

  1

  1

  2

  2

  2

  2

  3

  3

  3

  4

  4

  5

  5

  6

  6

  7

  7

  7

  7

x in km

y 
in

 k
m

Figure 3.3: Random walk of a MS

The maximum change in direction, also called maximum swinging angle is limited to

∆ϕmax. The probability density function of the swinging angle ∆ϕ is given by

f∆ϕ(∆ϕ) =
1

∆ϕmax

rect

(
ϕ

ϕmax

)
. (3.7)

The maximum change in direction, also called maximum swinging angle is limited to

∆ϕmax. The probability of direction change pdc is used to make a decision whether or not

a particular MS changes its direction. If the MS does not change its direction (A = 0),

the direction calculated at the previous snapshot remains unchanged. A random walk

model of a user in the cell is depicted in Fig. 3.3. The MS that is initially assigned to

BS 1 of the main area (white background), gradually starts moving with a random speed

and at some time moves away from the main area (like cell no. 2 of main area) to another

area (cell no. 4 of the area at the bottom-left). At the same time another MS with the

same specification enters the main area from the opposite direction (like from cell no. 2

of the area at the top-right to cell no. 4 of the main area). This ensures that the density

of MSs in main area remains fixed.
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3.2.4 Traffic Model

In this module, the traffic situation is updated according to a Poisson process. The

probability of n new call arrivals within the sampling period T is given by

pn(T ) =
(λrT )n

n!
e−λT , (3.8)

where λr denotes the average arrival rate. For each new call, an exponentially distributed

random variable describing the holding time tH is generated from a pdf:

ftH (tH) = µ̃e−µ̃tH , for tH ≥ 0

= 0 else, (3.9)

where µ̃ is called the mean call duration or mean holding time.

(2)

(4)

(6)

inactive call
demand active

(3)

(1) (5)

Figure 3.4: Traffic state diagram

During a simulation run, MSs can be inactive, active or in call demand. The corresponding

state diagram is illustrated in Fig. 3.4. Inactive MSs may remain inactive (transition

1) or they can generate new calls according to (3.8) and enter into call demand state

(transition 2). If a MS in the call demand state gets the reliable link, it enters into the

active state (transition 4). Otherwise, it is blocked and set to inactive state (transition

3). An active MS may remain active (transition 5) or finish its call according to (3.9)

and becomes inactive (transition 6). However, if the link quality gets degraded during

the call, active MSs are dropped and set to the inactive state (transition 6).

3.2.5 Propagation Model

A completely probabilistic propagation model between each base and MS is used [26] [27].

Because of the high transmission bandwidth and significant multipath time dispersion,

a frequency-selective fading channel has to be considered for UMTS-FDD. In this simu-

lation, the number of paths between a MS and a BS is random and exhibits a binomial

distribution. The path loss Ll(k0) (in dB) for path l at time instant k0T is modeled as

[26]

Ll(k0) = Ld(k0) + cττl(k0) + Lsf(k0) + (cr + Lpf,l(k0)) , (3.10)
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where Ld(k0) denotes the distance attenuation according to the COST-Hata model and

cτ · τl(k0) is an additional attenuation component which is proportional to the excess

delay attenuation and is described by the average power decaying factor cτ [dB/µs].

Lsf(k0) is the log-normal fading of the received power at the MS and Lpf,l(k0) is the

log-normal fading of reflected paths with respect to the direct path. cr denotes the

average attenuation of reflected paths. Both Lsf(k0) and Lpf,l(k0) exhibit a Gaussian

distribution with zero mean and standard deviation σsf and σpf , respectively. The excess

delays τl(k0) of reflected paths are exponentially distributed, so that the channel exhibits

an exponential power delay profile. Finally, the DoAs are assumed to be Laplacian

distributed. As the MSs move, the path loss does not remain constant over time. The time

correlation of log-normal fading is not known in general. However, measured data [49]

reveal that it can be modeled as a simple exponentially decreasing correlation function.

This can be realized by filtering white Gaussian noise by a simple first order infinite

impulse response (IIR) filter with a pole at

a = ε
v(kT )T

D ⇒ H(z) =
z

z − a
, (3.11)

where ε is the spatial correlation between two points separated by a distance D, T denotes

the sampling period, and v(kT ) is the velocity of the MS. The autocorrelation function

is then given by

Rf(k) = E {Lsf(t)Lsf(t + kT )} = σ2
sfa

|k| , (3.12)

where σ2
sf is the variance of the log-normal fading. With the assumption that the number

of scatterers around a MS does not change with time, the number of paths between a MS

and a BS can be kept constant. The excess delays and all DoAs are updated according

to the variations of the delay and DoA of direct path, respectively.

3.2.6 Handover - Preselection

We consider a soft handover process [54] where the radio links are added and abandoned

in such a manner that the MS always keeps at least one radio link established. During

the soft handover a MS has more than one active links at the same time. Based upon the

path losses between a MS and all BSs, the active set ASi for MS i is determined according

to the received powers of the omnidirectionally transmitted CPICH channel. The active

set ASi is the set of all BSs from which the mobile user i receives the strongest CPICH

channel within a margin known as hand-over margin (HO). Mathematically, the BSs of

every active set should satisfy both the conditions: Pr > Pth and Pr > (Pr,max −∆PHO),

where Pr is the CPICH power received by MS, Pth is its threshold value, Pr,max is its
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maximum received power and ∆PHO is the handover margin. The maximum active set

size in our simulation is set to 2.

In the downlink of the WCDMA system, users assigned to the same BS can only be

separated by the spreading codes. The Orthogonal Variable Spreading Factor (OVSF)

codes with spreading factors between 4 and 512 are available in WCDMA, depending on

the data rate a MS requests for. Therefore, a simplified code administration method is

incorporated which takes into account a limited number of different spreading codes in

the downlink. According to this, MSs can only be assigned to BSs if a code is available.

We assume that a BS uses a single scrambling code. In our dynamic simulator, the code

administration method can be activated or deactivated according to parameters chosen

by the user.

3.2.7 Downlink Beamforming

Because of limited terminal size, we consider the application of antenna arrays only at

BSs. Investigations carried out in [26] for different array topologies show that a UCA

is the best choice. Hence, in our simulation, we use UCAs. A spatial covariance matrix

based beamforming method [27] is performed for the dedicated channels in UMTS.

Covariance Matrix Calculation

In a multipath-rich environment like the UMTS radio channel, the number of incoming

wavefronts can be excessively high. However, in our method we use a simplified discrete

DoA model which takes only the strongest Qij paths into account. Assuming all paths

l = 1 . . . Qij are uncorrelated, the spatial covariance matrix (averaged over fast fading)

[31, 98] between mobile i and BS j can be approximated by (2.27)

Rij =

Qij∑

l=1

α2
ijla (θijl) a

H (θijl) , (3.13)

where α2
ijl = 10−

Ll
10 can be interpreted as an estimate of the medium-term expectation

of the transmission factor α2
ijl(t) corresponding to the wave of path l. a (θijl) denotes

the array response vector of a wave incident at the BS with the angle θijl. The steering

vector a (θijl) for a UCA consisting of M elements is given by (2.30). For the simulation

results presented in this chapter, we assume perfect knowledge of all DoAs and average

path attenuations in the downlink. In practice, these parameters can be estimated by

transmitting WCDMA downlink CPICH channel with antenna specific sequences that

are mutually orthogonal to each other. In this case a BS has to rely upon feedback
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information from a MS. Another way is to estimate the average spatial covariance matrix

in the uplink and transform it to the downlink frequency which is described in Chapter

4. Training or (semi-)blind methods [67, 81] can be used for uplink covariance matrix

estimation. However, estimation and transformation errors will reduce the performance

of beamforming.

Beamforming Algorithm

The used algorithm maximizes the average signal power PS received by the desired MS

i assigned to BS c(i) while keeping the sum of the total interference power PI at all

undesired MSs constant. This problem can be formulated as

max
wi

PS = max
wi

Piw
H
i Ri,c(i)wi subject to

PI = Piw
H
i

∑

m6=i

Rm,c(i)wi = const , (3.14)

where Pi, wi and Ri,c(i) denote the BS transmit power for MS i, the weight vector for

MS i and the covariance matrix between the desired MS i and its corresponding BS c(i),

respectively. Rm,c(i) represents the covariance matrix between an undesired MS m and

the same BS c(i). The solution of (3.14) is the eigenvector associated with the largest

eigenvalue (generalized eigenvalue problem) of the characteristic equation [72]

Ri,c(i)wi = λ

(∑

m6=i

Rm,c(i)

)
wi. (3.15)

Examples for downlink beam patterns of an adaptive beamformer which uses a UCA

with 4 and 8 antenna elements are shown in Fig. 3.5. The green line represents the

average channel fading gain for the user of interest where as the red lines represent the

average channel fading gains for interfering users. The longer the red lines, the stronger

are the undesired MSs interfered. The blue curves represent the radiation patterns of

the antenna arrays. We can observe that the number of interferers is much higher than

the number of nulls the adaptive arrays of size M can produce. As a consequence, the

beamformer attempts to provide nulls towards the strongest interferers, thereby reducing

the interference level. As the number of antenna elements increases, the beamformer’s

capability to suppress the interference also increases.

We also carry out simulations using the same beamforming algorithm (3.15) incorporating

different interference covariance matrices. Considering additional spatially white noise

power PN , the ideal interference covariance matrix RI,i of user i from (3.14) can be
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Figure 3.5: Examples of beam patterns for different numbers of array elements

extended to [88] as

RI,i =
∑

m6=i

Rm,c(i) + PNIM . (3.16)

Simulations have been carried out taking into account

• a) no noise power, i.e. PN = 0

• b) only receiver thermal noise power, described by the white Gaussian noise of

variance σ2
N i. e. PN = σ2

N

• c) both thermal noise and received CPICH channel power (PCPICH at the MSs i.e.

PN = σ2
N +PCPICH ·

∑

m6=i

(
Rm,c(i)

)
1,1

, where
(
Rm,c(i)

)
1,1

represents the element of the

first row and first column of the matrix Rm,c(i).

3.2.8 SINR Calculation

The SINR at MS i assigned to BS c(i) is calculated by dividing the received desired signal

power PS by the interference and noise power, and multiplying by the processing gain Gp.

Signal powers transmitted from the same BS c(i) but dedicated to other users are also

received by the desired MS i. This is seen as intracell interference power Iintra to the MS i.

Intercell interference Iinter is interference power from other cells. Considering non-perfect

orthogonality of the signals from the same BS due to multipaths and estimation errors,
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intracell interference cannot be neglected and is taken into account by weighting with the

Orthogonality Factor (OF) α. The effect of the downlink OF on WCDMA performance

is investigated in [78]. It is found that the OF decreases as the MS moves closer to the

BS and the OF is positively correlated with the shadow fading (also called lognormal

fading) component of the radio channel. This shows that OF varies within the cells but

for simplicity the downlink OF is assumed to be constant within a cell. Hence, the SINR

at MS i can be calculated by [1]

SINRi =
Gp,i · PS,i

σ2
N + PIntra,i + PInter,i

, (3.17)

where σ2
N is thermal noise power, the desired signal power PS,i is given by

PS,i = Piw
H
i Ri,c(i)wi, (3.18)

the intracell interference power PIntra,i equals

PIntra,i = α
∑

m6=i

PmwH
mRi,c(i)wm + αPCPICH

(
Ri,c(i)

)
1,1

, (3.19)

and, finally, the intercell interference power PInter,i can be expressed as

PInter,i =
∑

n6=i

Pnw
H
n Ri,c(n)wn + PCPICH

∑

c(n)6=c(i)

(
Ri,c(i)

)
1,1

. (3.20)

Pn and wn denote the transmission power and weight vector for user n assigned to BS c(n),

respectively. PCPICH is the constant transmission power of the omnidirectional broadcast

channel,
(
Ri,c(i)

)
1,1

denotes the element of the first row and column of covariance matrix

Ri,c(i). For PN = 0 (negligible thermal noise power) and neglected interference from

CPICH, the SINR for the ith mobile user can be written in a simplified form as

SINRi =
Gp,i · PS,i

σ2
N + α

∑

m6=i

PmwH
mRi,c(i)wm

︸ ︷︷ ︸
Iintra

+
∑

n 6=i

Pnw
H
n Ri,c(n)wn

︸ ︷︷ ︸
Iinter

. (3.21)

For large delay differences (≥ chip period), paths of the desired signal can be resolved

and path diversity gain can be obtained at the MSs. RAKE receivers with MRC can

be used for exploiting this multipath diversity. In the present simulation, it is assumed

that all paths Qij can be resolved. An exact expression of SINR after the rake receiver

is given in [51]. If the number of rake fingers is equal to the number of resolvable paths,
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the SINR at the output of rake receiver is given by

SINRi =

Qij∑

l=1

SINRil

=

Qij∑

l=1

Gp,i · Piw
H
i (α2

ijla(θijl)
Ha(θijl))wi

σ2
N + α

∑
l′ 6=l

∑
m6=i PmwH

m(α2
ic(i)l′a(θic(i)l′)Ha(θic(i)l′))wm + PInter,i

,

(3.22)

where PInter,i =
∑

n 6=i

Pnw
H
n Ri,c(n)wn represents the inter-cell interference. Here, we assume

that the MS receives a large number of statistically independent interfering signals, and

hence the interference powers are identical for all the desired paths. In other words, this

assumption results in the same denominator of (3.22) for all the paths (l = 1, · · · , Qij).

Therefore, it can be easily observed that the SINR given by (3.22) can be approximated

by (3.21) and can be regarded as the SINR after RAKE reception with MRC.

3.2.9 Power Control

Power control is applied to ensure the QoS constraints per user at the MSs. But power

control in conjunction with the use of optimum downlink beamforming [12, 30, 46] leads to

a coupled optimization problem, where the optimization has to be performed jointly with

respect to powers and beamforming weights. Because all the beamformers of MSs assigned

to a BS of interest are involved in the joint power control and beamforming solution, there

is a clear indication that the optimum joint solution must be calculated centrally for the

BS. Moreover, the mobile radio channel between every combination of BSs and the MSs

has to be known. Therefore, in this section we restrict to suboptimum downlink power

control methods which can be easily accomodated in system level simulators. In this

regard, power control methods that can be implemented in a decentralised or distributed

fashion i. e. per MS, have been found to be computationally efficient. As proposed

by Foschini et. al. in [37], these algorithms control each power adjustment separately

without requiring knowledge of power settings of all other users. This iterative approach

of power control is the basis for UMTS-FDD fast power control. The power update

procedure can be expressed mathematically in the form

P̂S,i(kT ) =
γthP̂S,i((k − 1)T )

SINRi

, (3.23)

where P̂S,i is the power transmitted to the ith MS, k denotes the iteration index, T

is the sampling period, SINRi is the instantaneous SINR measured after the RAKE
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receiver and γth is the threshold value of SINRi. A simple fast inner loop power control

algorithm (3.23) according to 3GPP [1] is used for the DPDCH channel. Power control

is not used for a common channel like the CPICH. Based upon the measured SINRi of

the dedicated channels, a predefined threshold value γth and maximum value γmax, the

algorithm procedure is as follows:

1. SINRi < γth: MS issues power up command → Pnew,dB = Pold,dB + step size

2. SINRi > γmax: MS issues power down command → Pnew,dB = Pold,dB - step size

3. γmax > SINRi > γth: SINR is within predefined range → Pnew,dB = Pold,dB

As suggested in [1], the power control step size is 1 dB. We assume that the power control

commands are perfectly received by the BS without any delay in order to simplify our

method. Furthermore, the transmission power of each BS is bounded by its minimum

and maximum values. Mobiles which are not able to fulfill the required threshold SINR

value for the DPDCH channel after completion of the power control loop are considered

to be in outage.

3.2.10 Assignment Update

If the SINR value measured at the MS for CPICH or DPDCH channel is below the

threshold value, the mobile is dropped. When the SINR value for CPICH is below the

threshold value, the MS is out of the coverage range of the corresponding BS. Similarly,

when the SINR value for DPDCH is below the threshold value, the MS cannot be provided

with acceptable link quality. However, a time window is considered during which a BS

tries to hold the connection although the link quality is not sufficient. Therefore, a drop

counter decides whether the MSs in outage are really dropped.

3.3 Simulation Results

The simulation results are the average of ten simulation runs. Each simulation run is

carried out for a time interval of 2000T with the parameters listed in Table 3.1.

The number of MSs (in the main area) that can be supported in the downlink with a

data rate of 384 kbit/s for different numbers of antenna elements with and without power

control versus simulation time are shown in Fig. 3.6 and Fig. 3.7, respectively. After a

transient, the number of MSs that can be supported in the downlink remains more or less

constant. This indicates that even if new MSs are generating calls in each snapshot, the
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Number of BSs 49 Cell radius 1 km

Average number of paths 3 Max. number of paths 6

STD of slow fading 10 dB STD of path fading 6 dB

Correlation distance for slow fading 100 m Spatial correlation 0.82

STD angular spread 20◦ STD mobile speed 5 m/s

Mean mobile speed 0 m/s Call arrival rate 5 s−1

Mean call duration 1.5 min Sampling period (T ) 200 ms

Number of snapshots 2000 Max. TX power 43 dBm

Max. DPDCH power 30 dBm CPICH power 30 dBm

Handover Margin 3 dB Orthogonality factor 0.4

DPDCH threshold SINRth 4.5 dB DPDCH max. SINRmax 6.5 dB

Power control frequency 1.5 kHz Power control range 25 dB

Power control step size 1 dB Data rate 384 kbit/s

Spreading factor for CPICH 256 Spreading factor for DPDCH 8

Table 3.1: Simulation parameters

number of MSs that can be served is limited. Thus, the downlink capacity of the system

reaches saturation. The fluctuations in the curves are because of the limited number of

simulation runs that are averaged.

It can be easily seen that as the number of array elements increases, the downlink ca-

pacity also increases. Although the omnidirectionally transmitted CPICH channel causes

severe interference to the directionally transmitted DPDCH channel, the improvement in

capacity due to a higher number of antenna elements is significant. This improvement is

even higher in case of a system with power control than compared to that without power

control.

It can also be observed that power control plays a considerable role especially in case of

antenna arrays with a higher number of elements. The downlink capacity for a single

element antenna without power control is almost similar to that with power control.

However, it is not true for antenna arrays with more elements. For example, a four

element antenna array can support about 40 MSs without power control in contrast to

about 60 with power control. Hence, it can be stated that the antenna arrays with a higher

number of elements provide a greater degree of freedom to suppress the interference and
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Figure 3.6: Number of active users in the main area versus time without power control

adjust the transmission powers of DPDCH channel such that more MSs can be supported

with the required QoS. This fact is further illustrated with the histograms of the downlink

DPDCH channel power for one and four element antenna arrays using power control as

shown in Fig 3.8. In order to fulfill the SINR criterion for the DPDCH channel, the BSs

with single omnidirectional antenna, require to provide most of the transmission links

with powers close to the maximum power (see figure 3.8(a)). This is similar to the case

without power control, where all BSs transmit with the highest possible power. Since

beamforming allows to reduce DPDCH channel powers even more (see figure 3.8(b)), the

effect of power control is vital. Figure 3.9 shows the number of active users that can be

supported in downlink with the following beamforming methods;

• a) optimized beamforming after (3.15) where no thermal noise power is included in

RI,i,

• b) optimized beamforming after (3.15) where only thermal noise power is taken into

account in RI,i and

• c) optimized beamforming after (3.15) where both thermal noise and received
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Figure 3.7: Number of active users in the main area versus time with power control

CPICH channel power at the MSs is included in RI,i.

It can be observed from Fig. 3.9 that for the considered numbers of array elements M and

the chosen simulation parameters ( see Table 3.1), the number of satisfied users increases

almost linearly with respect to M . In this figure, we keep receiver thermal noise power to

−99 dBm. Although the CPICH channel is transmitted with the highest allowed channel

transmit power (30 dBm) and produces therefore considerable background interference

for all users, beamforming has still got a significant impact on the system capacity.

Moreover, beamforming strategy (c) which takes noise and CPICH channel power into

consideration outperforms other methods, independent of M . E.g., for eight array el-

ements, the system can support in average about 13% more users with beamforming

strategy (c) than with (b) and even about 16% more users than with (a). This indicates

that a large fraction of the overall interference is caused by broadcast channels that can-

not be suppressed by beamforming since they have to be transmittted omnidirectionally.

Consequently, as PN increases, the algorithm (3.15) turns to a beamforming approach

based upon maximization of the SNR.

It can be observed from equation (3.13) that the average transmission factor α2
ijl corre-
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Figure 3.8: Histograms of transmit powers for different number of array elements with

power control

sponding to the wave of path l multiples all the elements of the steering vector a(θijl). This

means that the fading among the elements of the antenna array is perfectly correlated.

This case is called perfect correlation. By the introduction of spatial fading correlation

(2.34), the elements of the steering vector a(θijl) are multiplied with the weighted av-

erage transmission factor α2
ijl, where the weights for the transmission factors depend on

the spatial correlation among the antenna elements. We call this case partial correlation.

Note that in a dynamic system level simulator as the channel varies in each snapshot,

the spatial correlation is updated in each snapshot. Fig. 3.10 shows the performance

of the downlink beamforming algorithm (3.15) for perfectly (3.13) and partially (2.34)

correlated spatial fading cases. The simulation is carried out for an OF of α = 0.6 and

M = 4 with the average and maximum number of paths (see Table 3.1) set to 2 and 4,

respectively. It can be observed that as the spatial fading correlation between the antenna

elements decreases, the downlink capacity decreases. The spatial fading correlation has

been modeled and calculated according to (2.34). The capacity also decreases as the OF

increases (compare the results with that of α = 0.4 (Fig. 3.9)).

3.4 Summary

In this chapter, a new dynamic system level simulator for UMTS-FDD systems with SAs

has been presented. Simulation results for different numbers of arrays elements have
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Figure 3.9: Number of active users in the main area versus time with different beam-

forming algorithms

shown a significant downlink capacity increase when beamforming is applied although

omnidirectionally transmitted broadcast channels produce significantly high background

interference. In a realistic radio environment, the use of power control provides significant

improvement in the performance of beamforming. Among the compared beamforming

concepts, the algorithm considering both noise and CPICH power turns out to be the

best method of choice. The effect of spatial fading correlation and that of the OF on

the system level performance of a UMTS-FDD system are also investigated. Simulation

results show that the downlink capacity decreases if the fading correlation between the

antenna elements decreases. Similarly, the higher the OF, the lower is the downlink

capacity.
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Chapter 4

Uplink to Downlink Covariance

Matrix Transformation Methods

Although the downlink capacity of 3G mobile communication systems like UMTS is

limited by co-channel and inter-symbol interference, they are going to provide high data

rate services such as video and internet. By exploiting the spatial domain like using

adaptive antennas at the BSs, the downlink capacity can be increased significantly. The

task of extracting downlink radio channel parameters from the uplink received signal is

difficult in case of FDD systems because of the significant frequency separation between

the uplink and downlink channels. However, measured data reveal that second order

statistics like the Azimuthal Power Spectrum (APS) [55] and average fading gains for

uplink and downlink channels show significant correlations. Therefore, it is possible to

perform downlink beamforming with the transformed uplink spatial covariance matrix.

This chapter deals with both non-robust and robust uplink to downlink spatial covariance

matrix transformation methods. In non-robust methods the transformation is carried out

based on the assumption that the uplink spatial signature is perfectly estimated at the

BS where as robust methods are based on the assumption that only an estimate of the

uplink spatial signature is known at the BS.

4.1 Introduction

In 3G mobile communication systems like UMTS with FDD transmission, the uplink and

downlink channels are separated by a frequency difference of about 190 MHz. The up-

link and downlink channels have different wavelengths, and therefore different responses,

direct downlink adaptation based on channel estimates of the uplink is generally not fea-
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sible. An array configuration that adapts the uplink channel to the downlink channel is

proposed in [53]. This array employs M + 1 antenna elements with log-periodic spacing,

that comprises two overlapping subarrays, each with M elements, that are scaled versions

of each other, with the scaling factor equal to the ratio of the uplink wavelength to down-

link wavelength. The drawback of this approach is the requirement of complicated an-

tenna structure with more elements. Downlink beamforming for WCDMA over Rayleigh

fading channels based on prediction of the downlink channels is proposed in [29]. The BS

predicts the downlink channel using a linear prediction based on an autoregressive model.

Uplink to downlink adaptation methods that require only second-order statistics of the

uplink and downlink channels are proposed by [5, 34, 55]. In this regard, uplink to

downlink covariance matrix transformation techniques like the MMSE and the MVDR

filter for downlink beamforming have been presented in [5, 34] and [55], respectively.

In our method we consider both broadcast channels like the Common Pilot Channel

(CPICH) and dedicated channels like the Dedicated Physical Data Channel (DPDCH)

of the UMTS-FDD system. Downlink beamforming based on transformation methods is

carried out for dedicated channels while the omnidirectionally transmitted CPICH chan-

nel is used for MS to BS assignment and soft handover.

Another approach is to introduce robustness against the small errors in the esimated or

assumed steering vectors. Hence in robust methods, we consider that the exact uplink

steering vectors at the BS are different from the presumed one because of multipath and

angular spreading effects. The exact uplink steering vector is modeled as a presumed

steering vector with bounded uncertainty. A transformation is carried out in a least-

squares sense from uplink to downlink frequency under the condition that the bounded

uncertainty in uplink steering vector is maximized. In literature [15] such a method is also

known as a constrained LS method or Robust Least Squares (RLS) method. Moreover,

we use the closed-loop fast power control method as described in Chapter 3. We assume

that in the downlink the users are separated by spreading codes under a single scram-

bling code. Thus, our method is well compatible with 3GPP specifications. We carry out

dynamic system level simulations (Chapter 3) using simple mobility and traffic models

in order to determine the gain in overall system capacity.

The chapter is organized as follows: In Section 4.2, the propagation model is described

from a system level perspective. The uplink covariance matrix estimation and its trans-
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formation to the downlink covariance matrix are presented in sections 4.3 and 4.4, respec-

tively. Here, we describe the non-robust transformations based on the MVDR and MMSE

methods. Moreover, the proposed robust transformation method is also presented in Sec-

tion 4.4. Section 4.5 deals with downlink beamforming. Modifications of the simulator

with respect to that of Chapter 3 are described briefly in section 4.6 and simulation

results are presented in section 4.7. In Section 4.8, a summary of the chapter is presented.

4.2 Propagation Model

The propagation model between each base and MS is based upon spatial as well as

temporal characteristics of the radio channel as described in Chapter 3. The BS uses

the same UCA for uplink and downlink. The complex uplink and downlink steering

vectors depend upon the carrier wavelength. For M array elements, the uplink and

downlink steering vectors are

a (θ, λup) =
[
e
−j2π r

λup
cos θ

, e
−j2π r

λup
cos(θ− 1

M
2π), . . . , e

−j2π r
λup

cos(θ−M−1
M

2π)
]T

a (θ, λdl) =
[
e
−j2π r

λdl
cos θ

, e
−j2π r

λdl
cos(θ− 1

M
2π), . . . , e

−j2π r
λdl

cos(θ−M−1
M

2π)
]T

, (4.1)

where r, λup and λdl are the geometrical radius of the circular array, the uplink and

downlink carrier wavelengths, respectively. A UCA of size M = 4 as shown in Fig. 4.1

d

DoA

x

y

θ

1

2

3

4 r

Figure 4.1: Uniform circular array for uplink and downlink transmissions

is used for uplink as well as downlink beamforming. A linear wavefront from a distant
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source is incident on the array at an angle of incidence θ with respect to the reference

array element 1. For a distance d = λup

2
between two consecutive array elements, the

ratio of geometrical radius of the UCA to uplink and downlink carrier wavelengths can

be defined as

r

λup

=
1

4 sin
(

π
M

)

r

λdl

=
rfdl

λupfup

, (4.2)

where fup and fdl are the uplink and downlink carrier frequencies, respectively.

4.3 Uplink Covariance Matrix Estimation

Assuming all paths l = 1 . . . Qij are uncorrelated, the estimated spatial covariance matrix

(averaged over fast fading)[31, 98] between mobile i and BS j can be represented as (see

eqn. 3.13)

R′
ij(λup) =

Qij∑

l=1

α2
ijla

′ (θijl, λup) a
′H (θijl, λup) . (4.3)

In (4.3), the estimated uplink steering vector is a′ (θijl, λup) = a (θijl, λup)+eijl, where eijl

is an arbitrary complex vector that describes the effect of the mismatches [100] between

the assumed and the actual steering vectors. It is assumed that a (θijl, λup) is the steering

vector for a wave incident at the BS with an angle θijl . We assume perfect knowledge of

average path attenuations in the uplink.

4.4 Uplink to Downlink Transformation

The exact downlink spatial covariance matrix

Rij(λdl) =

Qij∑

l=1

α2
ijla (θijl, λdl) a

H (θijl, λdl) (4.4)

is not known in practice [5, 34]. In an FDD system, the MS of interest has to send the

estimates of the downlink channel to its home BS, so that it can optimize the transmission

power and the beamforming vector to maintain the required link quality. This indicates

that some feedback information regarding the downlink channel is required before the BS

carries out beamforming. However, because of the fast varying mobile channels, a lot of

information has to be transmitted as a feedback from the MS to the BS very frequently.

This will significantly reduce the capacity of the system. Therefore, methods which do
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not require feedback information are very important from a cellular commmunication’s

perspective.

It can be noted from (4.3) and (4.4) that because of the frequency-dependent array

response, the uplink weight vectors calculated from the uplink covariance matrix cannot

be used directly for downlink beamforming. We need methods to transform the spatial

covariance matrix from uplink to downlink frequency. In that case the resulting downlink

covariance matrix is an estimate of (4.4). Techniques to obtain an estimate R̂ij(λdl) of

the downlink covariance matrix Rij(λdl) have been proposed in [5, 34] and [55] for known

uplink steering vectors i.e., if the error vectors eijl = 0.
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Figure 4.2: Normalized APS for uplink and downlink channels

First, we investigate the performance of the MMSE and MVDR based transformation

methods in a cellular system that incorporates mobility, traffic scenarios, soft handover

and power control methods. Then, we propose a robust technique to obtain R̂ij(λdl) from

(4.3). It is important to note that the validity of transformation method depends on the

correlation between the second-order statistics of the uplink and downlink channels, which

in this case is shown in Fig. 4.2 as an APS. The uplink and downlink fast fadings are

independent and Rayleigh distributed where as the angular spreading follows a Laplacian

distribution with the same average DoA in uplink and downlink.
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4.4.1 Non-robust Methods

In case of non-robust methods it is assumed that the BS has an exact knowledge of the

uplink steering vector and hence the uplink spatial covariance matrix is given by

Rij(λup) =

Qij∑

l=1

α2
ijla (θijl, λup) a

H (θijl, λup) , (4.5)

which is obtained from (4.3) for eijl = 0 i. e. when there is no uncertainty in uplink

steering vector. The average fading in the uplink can be estimated using semi-blind

algorithms or algorithms utilizing training sequences.

Minimum Mean Square Error (MMSE) Method

A suboptimum linear transformation as proposed in [5, 34], can be used to transform the

uplink steering vector onto downlink steering vector. For this purpose, a transformation

matrix T ∈ CM×M is used as

â (θijl, λdl) = Ta (θijl, λup) , (4.6)

where a (θijl, λup) ∈ CM×1 is the uplink steering vector for the DoA θijl corresponding

to lth path. The mean square error between the estimated and true downlink steering

vectors is

e= ||ÂDL −ADL||2F
=tr

(
(TAUP −ADL)H (TAUP −ADL)

)

=tr
(
AH

UPT
HTAUP

)− tr
(
AH

UPT
HADL

)− tr
(
AH

DLTAUP

)
+ tr

(
AH

DLADL

)
, (4.7)

where

AUP =[a (θij1, λup) , a (θij2, λup) , . . . , a (θijP , λup)] ∈ CM×P

ADL =[a (θij1, λdl) , a (θij2, λdl) , . . . , a (θijP , λdl)] ∈ CM×P (4.8)

are the matrices of true steering vectors for uplink and downlink, respectively. In practice,

an uplink and downlink calibration table of the antenna array for a particular set of DoAs

is used to construct the matrices AUP and ADL. These matrices can also be obtained by

sampling the array manifolds at uplink and downlink frequencies [98]. Differentiating e

w.r.t T and setting to zero, we get the transformation matrix

de

dT
= 2TAUPA

H
UP − 2ADLA

H
UP = 0

T = ADLA
H
UP

(
AUPA

H
UP

)−1
. (4.9)
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It is assumed that the uplink and downlink channels have same average fading gains and

same average number of paths. Substituting the estimate of the downlink steering vector

(4.6) in (4.4) and combining with (4.5), the estimated downlink covariance matrix can

be written as

R̂ij(λdl) =

Qij∑

l=1

α2
ijlâ (θijl, λdl) â

H (θijl, λdl)

=

Qij∑

l=1

α2
ijlTa (θijl, λup) a

H (θijl, λup)T
H

= T ·
Qij∑

l=1

α2
ijla (θijl, λup) a

H (θijl, λup) ·TH

= TRij(λup)T
H . (4.10)

Replacing Ri,c(i) and Rm,c(i) by Ri,c(i)(λdl) and Rm,c(i)(λdl), respectively in the downlink

beamforming method (3.14) and using the relation (4.10), the transformation matrix T

can also be used to transform the antenna weights from uplink to downlink as

ŵDL = THwUP. (4.11)

Minimum Variance Distortionless Response (MVDR) Method

The objective of an MVDR beamformer is to maintain a distortionless response to a

desired direction by minimizing the output power contributed by interfering signals from

other directions. The consequence is that it maximizes the SINR [39] at the output of

the beamformer. In our method, we estimate the uplink APS P (θij) corresponding to a

channel between a MS i and a BS j using the MVDR filter. The APS respresents the

distribution of power among each individual path l with certain DoA value. As there are

l = 1 . . . Qij paths between the MS i and the BS j, the optimum uplink weight vector is

calculated by minimizing the power of the MVDR filter output under the condition that

the gain towards a desired direction θijl is constant. The problem can be formulated as

min
wi

(
P = wH

i Rij (λup)wi

)

subject to wH
i a (θijl, λup) = 1. (4.12)

It is important to note that (4.12) considers all possible links between the active (see

Chapter 3) MSs and BSs where each link described by Rij (λup) is taken into account

independently. By the method of Lagrange multipliers, the optimum weight vector that
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minimizes the objective and satisfies the constraint of (4.12) is given by [72]

wi,opt =
R−1

ij (λup) a (θijl, λup)

aH (θijl, λup)R
−1
ij (λup) a (θijl, λup)

. (4.13)

Combining (4.12) and (4.13), the scalar output power for a single steering direction (also

a path) can be obtained as

P (θijl) =
1

aH (θijl, λup)R
−1
ij (λup) a (θijl, λup)

, (4.14)

which as an example is also shown in Fig. 4.2 for uplink and downlink channels separated

by a frequency of 190 MHz. As proposed in [55], the spatial covariance matrix at the

downlink frequency is constructed by replacing the average downlink fading gains α2
ijl

with the average power P (θijl) per path and hence the estimated downlink covariance

matrix is

R̂ij (λdl) =

Qij∑

l=1

P (θijl) a (θijl, λdl) a
H (θijl, λdl) . (4.15)

4.4.2 Robust Methods

Robust transformation methods provide robustness to uplink steering vector estimation

errors in a frequency selective fading environment. In this section, we propose two robust

methods; the matrix RLS and the regularization method known as Tikhonov regulariza-

tion [19, 42]. The matrix RLS problem can be formulated in a convex form as a SOC

program and solved efficiently using the well-established interior point methods. The

regularization method provides diagonal loading for the MMSE solution of (4.9). The

performance of the proposed robust methods are compared with that of MVDR [55] and

MMSE [5, 34] using a dynamic system level simulator (see Chapter 3) developed for

investigating the capacity improvement of the UMTS-FDD system with SAs at the BS.

As before, downlink capacity is used as a measure of system performance by finding the

number of users for which a certain QoS requirement can be fulfilled. System level simula-

tions carried out for 4-element UCA show that our method outperforms both the MVDR

[55] and the MMSE [5, 34] methods without any significant degradation in performance

when compared to the MMSE [34] with known uplink spatial signature.
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Problem Formulation

Using a linear transformation [34], the downlink steering vectors can also be estimated

from the erroneous uplink steering vectors as

â (θijl, λdl) = TRa′ (θijl, λup)

= TR(a (θijl, λup) + eijl), (4.16)

where TR ∈ CM×M is the transformation matrix for the robust method and has a rank

between 1 and M . From (4.8), the matrices of the true steering vectors for uplink and

downlink are AUP ∈ CM×P and ADL ∈ CM×P , respectively. The perturbation matrix

E ∈ CM×P for the uplink steering matrix is defined as

E=[e (θij1) , e (θij2) , . . . , e (θijP )] . (4.17)

Now the objective is to find the optimum TR that minimizes the Frobenius norm of

the difference between the matrices TR(AUP + E) and ADL for the maximum possible

uncertainty E, where the Frobenius norm of E is bounded by some positive constant

δ > 0. Thus our approach is based upon optimization of the worst-case performance

[100]. Mathematically, the problem can be formulated as

min
TR

max
E

||TR(AUP + E)−ADL||
︸ ︷︷ ︸

subject to ||E|| ≤ δ. (4.18)

Lagrange Multiplier Method

In this section, we try to solve the optimization problem (4.18) using Lagrange multiplier

method. The mini-max problem can be separated into constrained maximization and

minimization. We first consider the problem of maximization of braced term of (4.18)

over E. The equivalent problem can be formulated as

max
E

||TR(AUP + E)−ADL||2

subject to ||E||2 ≤ δ2. (4.19)
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The Lagrange multiplier function can be written as

L (E, µ)=tr
(
(TR (AUP + E)−ADL)H (TR (AUP + E)−ADL)

)
+ µ

(
δ2 − ||E||2)

= tr
(
(AUP + E)H TH

RTR (AUP + E)
)
− 2tr

(
(AUP + E)H TH

RADL

)
+

tr
(
AH

DLADL

)
+ µ

(
δ2 − tr

(
EHE

))

= tr
(
AH

UPT
H
RTRAUP

)
+ tr

(
AH

UPT
H
RTRE

)
+ tr

(
EHTH

RTRAUP

)
+

tr
(
EHTH

RTRE
)− 2tr

(
AH

UPT
H
RADL

)− 2tr
(
EHTH

RADL

)
+

tr
(
AH

DLADL

)
+ µ

(
δ2 − tr

(
EHE

))
. (4.20)

Simplifying (4.20), differentiating L (E, µ) with respect to E and equating to zero, we get

E in terms of Lagrange multiplier parameter µ

δ{L(E, µ)}
δE

= 2AH
UPT

H
RTR + 2EHTH

RTR − 2AH
DLTR − 2µEH = 0

E =
(
µI−TH

RTR

)−1
TH

R (TRAUP −ADL) . (4.21)

Similarly differentiation of L (E, µ) with respect to µ gives

δ2 = tr
(
EHE

)
. (4.22)

Generally, it is possible to solve for the unknowns E and µ with the help of (4.21) and

(4.22). However, as the transformation matrix TR is a general M × M matrix, the

matrix inversion operation of (4.21) makes the task difficult. Therefore we solve the

problem using the triangle inequality property of the matrix norms.

Triangle Inequality

A geometric interpretation of the min-max optimization problem (4.18) when the matrices

AUP, E and ADL are represented in the form of vectors is provided in [19, 20]. Similarly,

the connection of such a min-max optimization problem to a Total Least Squares (TLS)

[48] is discussed in [19, 20, 42]. In this section, we also first consider the constrained

maximization problem (braced term of (4.18)). Using triangle inequality property of

matrix norms [19], we can write

||TR (AUP + E)−ADL|| ≤ ||TRAUP −ADL||+ ||TRE||
≤ ||TRAUP −ADL||+ δ||TR||. (4.23)

The right hand side of (4.23) is an upper-bound for its left hand side. Thus the maximum

of left hand side with respect to E becomes upper-bound when the inequality (4.23)
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becomes equality. An equivalent representation of (4.23) can be written as

||vec (TR (AUP + E))− vec (ADL) || ≤ ||vec (TRAUP)− vec (ADL) ||+
δ||vec (TR) ||, (4.24)

where vec(A) represents the long vector formed by stacking the columns of the matrix

A. If the vectors vec (TRE) ∈ CMP×1 and (vec (TRAUP)− vec (ADL)) ∈ CMP×1 point to

the same direction, their sum results in an additive effect. This means that ||TRAUP −
ADL + TRE|| will be greater than both of the individual norms ||TRAUP − ADL|| and

||TRE||. Mathematically, this condition can be expressed as

TRE = ||TRE|| TRAUP −ADL

||TRAUP −ADL|| . (4.25)

In order to have a maximum value of ||TRAUP − ADL + TRE||, (4.25) has also to be

evaluated for the maximum norm of ||TRE|| for the known TR, which is given by

max
E
||TRE|| = δ||TR||. (4.26)

With the help of (4.26), (4.25) can be written as

TRE = δ||TR|| TRAUP −ADL

||TRAUP −ADL|| . (4.27)

If TR is a full rank matrix, the error matrix E can be expressed as

E = δ
T−1

R (TRAUP −ADL)||TR||
||TRAUP −ADL|| . (4.28)

For this choice of E (TR is a full rank matrix ) or TRE (TR is not a full rank matrix)

||TR(AUP + E)−ADL||= ||TRAUP −ADL||+ δ||TR||, (4.29)

which is the desired upper-bound. Hence the constrained mini-max problem can be

reduced to the following minimization problem

min
TR

{||TRAUP −ADL||+ δ||TR||} , (4.30)

which can be rewritten as

minimize z1 + δz2

subject to ||TRAUP −ADL|| ≤ z1

||TR|| ≤ z2. (4.31)

The objective function as well as the constraints of (4.31) are convex [15] and hence it is

a convex optimization problem.
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Second-Order Cone Implementation

In order to make the convex optimization problem (4.31) suitable for SOC implementation

[91], we change the complex matrices TR, AUP and ADL into real matrices and then into

vectors. We introduce a real matrix U = [ui,j] ∈ R2P×2M with 2× 2 sub-matrices

ui,j =

(
Re{AUP(i, j)} −Im{AUP(i, j)}
Im{AUP(i, j)} Re{AUP(i, j)}

)

for i = 1 · · ·P, j = 1 · · ·M, (4.32)

and the real vectors t̂ = [ti] ∈ R2MM×1 and â = [ai] ∈ R2MP×1 with 2× 1 sub-vectors

ti =

(
Re{(vec (TR))i}
Im{(vec (TR))i}

)

for i = 1 · · ·M ×M, (4.33)

and

ai =

(
Re{(vec (ADL))i}
Im{(vec (ADL))i}

)

for i = 1 · · ·M × P (4.34)

respectively, where vec(.) is the column vector formed by stacking the transpose of each

row of the corresponding matrix. Rewriting (4.31) in an equivalent form

minimize z1 + δz2

subject to ||Vt̂− â|| ≤ z1

||t̂|| ≤ z2, (4.35)

where

V =




U1 0 · · · 0

0 U2 · · · 0

· · · ·
· · · ·
0 0 · · · UM




, (4.36)

is a block diagonal matrix of size (2PM)× (2MM), (U1,U2 · · · ,UM,0) ∈ R2P×2M and

t̂ ∈ R2MM×1 is the optimization variable. Using convex optimization toolbox SeDuMi

1.02 (see Appendix 9.2), the optimum t̂ can be computed. Let us define

b = [−1,−δ,0]T ∈ R(2MM+2)×1

c =
[
0,−âT , 0,0

]T ∈ R(2MP+2MM+2)×1

y =
[
z1, z2, t̂

T
]T ∈ R(2MM+2)×1, (4.37)
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where 0 ∈ R1×2MM is a vector of zeros. Define a matrix AT




−1 0 0 ∈ R(1×2MM)

0 ∈ R(2MP×1) 0 ∈ R(2MP×1) −V

0 −1 0 ∈ R(1×2MM)

0 ∈ R(2MM×1) 0 ∈ R(2MM×1) −I ∈ R(2MM×2MM)




.

With these definitions, the SOC optimization problem (4.35) can be transformed into a

standard dual form SeDuMi [91] optimization problem as

max
y

bTy

subject to c−ATy ∈ SOC1
(2MP+1) × SOC2

(2MM+1), (4.38)

where y is the vector of variables, SOC1 and SOC2 are the SOCs of the dimensions

(2MP + 1) and (2MM + 1), repectively which correspond to the inequality constraints

in (4.35). The optimum solution y contains both real and imaginary parts of all the

elements of the transformation matrix TR.

Regularisation Method

It can be observed from (4.30) that the optimium TR is the one which minimizes both

||TRAUP −ADL|| and ||TR||. Hence, (4.30) can also be expressed as

min
TR

{||TRAUP −ADL||, ||TR||} , (4.39)

which is a multi-objective unconstrained optimization problem [15, 85]. By introducing

a regularisation parameter [15] γ > 0, the function that has to be minimised with respect

to TR is given by

e = ||TRAUP −ADL||2 + γ2||TR||2. (4.40)

Differentiating e of (4.40) with respect to TR and equating to zero, we get the optimum

transformation matrix

TR = ADLA
H
UP

(
AUPA

H
UP + γ2I

)−1
, (4.41)

which is the MMSE solution [34] with a positive diagonal loading.

After determining the optimum TR from (4.38) and (4.41), we can estimate the downlink

covariance matrix. Like in the case of non-robust methods, since the uplink and downlink

have same paths with same average fading gains, combining (4.3) and (4.4) with the help

of (4.16), the estimated downlink covariance matrix can be written as

R̂ij(λdl) = TRR′
ij(λup)T

H
R . (4.42)
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4.5 Downlink Beamforming

In cellular wireless communications, downlink beamforming can be carried out once the

downlink spatial covariance matrices that contain all the information about downlink

channels in average are known. With the help of an estimated downlink spatial covari-

ance matrix (4.10) or (4.15)(for non-robust methods) and (4.42) (for robust methods),

we use the max-SINR (maximization of SINR) algorithm for downlink beamforming (see

Chapter 3). The solution of this algorithm is the eigenvector associated with the largest

eigenvalue (generalized eigenvalue problem) of the characteristic equation (3.15). Note

that many optimum transmit beamforming algorithms [8, 30, 99] which optimize BS

transmit power, subject to satisfying QoS requirements at the MSs are also found to

achieve good results. However, the major disadvantage of all these optimum methods is

that the BS has to know downlink channels of the MSs that are power controlled by other

BSs. This means that there should be some exchange of parameters among the BSs, the

consequence is that a centralised unit is necessary for downlink beamforming.

The beam patterns of the 4-element UCA are shown in Fig. 4.3 for downlink beamforming

(3.15) based on the non-robust methods MMSE (4.10) and MVDR (4.15), respectively.

As the estimated downlink covariance matrix from the two methods are not exactly

same, the beam patterns also differ. In case of non-robust methods, simulations have

been carried out for the following cases:

a) uplink covariance matrix is directly used for downlink beamforming,

b) uplink to downlink covariance matrix transformation with the MMSE method,

c) transformation with the MVDR method.

The dynamic system level simulations have been also carried out for the proposed robust

method namely the SOC optimization method (4.38).

4.6 Simulator

We use a dynamic system level simulator ( see Chapter 3) for analyzing the downlink

capacity of the UMTS-FDD cellular system for different numbers of antenna elements

with uplink to downlink covariance transformation methods. The simulator uses mobi-

lity and traffic models based upon a random walk model [43] and Poisson processes [52],
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Figure 4.3: Examples of beam patterns with transformation methods for M = 4 element

arrays

(also described in Chapter 3) respectively. Soft handover, power control and downlink

SINR calculation etc. are implemented as proposed in [1].

4.6.1 Simulation flow

Fig. 4.4 shows the simulation flow for the downlink. The simulation flow was described

in Chapter 3. Moreover, the description of each module of the simulator was also given

in Chapter 3. The uplink spatial covariance matrix is calculated for all the possible

combinations of channels between the BSs and active [52] MSs. The non-robust methods

like MMSE and MVDR, and the proposed robust methods are used to estimate the

downlink covariance matrix.

4.7 Simulation Results

The simulation results are the average of ten simulation runs. Each simulation is carried

out for a time interval of 2000T with the parameters listed in Table 3.1. The number

of active users versus time that can be supported in the downlink with a data rate of

384 kbits/s with and without transformation techniques is shown in Fig. 4.5 for different

numbers of antenna elements. After a transient, the average number of MSs that can

be supported in the downlink remains relatively constant. This indicates that even if

new MSs generate calls in each snapshot, the number of MSs that can be served with
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Figure 4.4: Block diagram of simulation flow

the required link quality is limited. Thus the downlink capacity of the system reaches

saturation. The fluctuations in the curves are because of the limited number of simulation

runs that are averaged. As discussed before, we compare the capacity improvement with

three different approaches

a) no transformation of covariance matrix (using the uplink spatial covariance matrix

directly for the downlink),

b) transformation of covariance matrices based upon the MMSE method,

c) transformation of covariance matrices based upon the MVDR method.

It can be observed that for M = 2 array elements and chosen simulation parameters,

the difference between the average number of satisfied users with transformation (b &

c) and without transformation (a) is within the range of 1 − 2, which is not significant

from a system level perspective. For M = 4 array elements, (b) and (c) outperform (a)

by supporting in average about 32% and about 36% more users than (a), respectively.

Similarly, with M = 8 array elements, the MVDR method (c) supports 21% and 5%

more users in average than method (a) and method (b), respectively. Thus in all the

cases the MVDR method performs better than the MMSE method. For a higher number

of antenna elements (M = 4 & M = 8), downlink beamforming based upon the direct use
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Figure 4.5: Number of active users in the main area versus time for different number of

antenna arrays

of the uplink covariance matrix (a) decreases the number of satisfied users significantly.

This is due to the fact that as the number of antenna elements increases, the effect of the

difference between the uplink and downlink steering vectors becomes more significant.

It is important to again note that the CPICH channel that is transmitted omnidirec-

tionally with the highest allowed power (30 dBm) produces considerable background

interference for all users. Simulation results indicate that even in the presence of the

strong interference caused by the CPICH channel, downlink beamforming based upon

the transformation method improves the system performance significantly (mainly with

higher values of M). The higher the number of antenna arrays (M = 4 & M = 8), the

greater is the neccessity of suitable covariance matrix transformation method.

The number of active users versus time that can be supported in the downlink with a data

rate of 384 kbits/s with the proposed transformation technique (RLS) is compared with

MMSE and MVDR methods as shown in Fig. 4.6 for M = 4. Here, we take the simulation

parameters as listed in Table 3.1, except that the average and maximum number of paths

are set to 2 and 4, respectively. Moreover, we fix δ to 2. Note that for illustrative

convenience, only 10 out of 2000 sampling periods have been shown with the marks

joined by straight lines. We also compare the performance of the RLS method with that

of the MMSE method for the known uplink steering vector case. It can be observed that

75



0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

Time (in s)

N
um

be
r 

of
 a

ct
iv

e 
us

er
s

MMSE for known uplink steering vector
RLS (Proposed method)
MMSE method
MVDR method
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tion methods (M = 4)

for M = 4 antennas the proposed RLS method supports in average about 48% more users

than the MVDR method [55] which is a significant improvement. When compared to the

MMSE method [5, 34], the RLS method still supports in average about 15% more users

than the MMSE method. Therefore, the robust method outperforms both the MVDR and

MMSE methods in terms of downlink capacity improvement when the BS does not know

exactly the uplink steering vector. The performance of the RLS method is very much

similar to that of the MMSE method with exactly known uplink steering vectors. Hence

it can be seen that RLS method outperfoms the other two methods without creating

degradation in performance of the system. The same result can be shown for a higher

number of antennas. The major shortcoming of MVDR and MMSE algorithms is that

they do not provide enough robustness against the mismatches between the presumed

and the actual uplink steering vectors.

4.8 Summary

A dynamic system level simulator for UMTS-FDD systems with SAs has been used to

evaluate the performance of uplink to downlink covariance transformation techniques.

It has been found that for higher number of antenna elements (M = 4 & M = 8) the

downlink capacity decreases significantly if the covariance matrix calculated in the uplink

frequency is directly used for downlink beamforming. The transformation methods are
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necessary to avoid this degradation. Since this degradation is significant, the use of higher

number of antenna arrays (M = 4 & M = 8) without transformation is not sufficient for

downlink capacity enhancement.

A new robust method based upon uplink to downlink covariance matrix transformation

for downlink beamforming has also been proposed. The performance of the proposed

technique is compared with the MVDR and MMSE methods using a dynamic system

level simulator for UMTS-FDD systems with SAs. It has been found that the uncertainty

of uplink steering vectors cause significant degradation in downlink capacity. Using the

proposed transformation technique that is more robust against such mismatches, the

problem can be solved without causing any degradation in system level performance.
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Chapter 5

Robust Uplink Beamforming based

on Minimization of the Outage

Probability

In this chapter, we propose a new uplink beamforming algorithm that provides robustness

against the uncertainty of the spatial covariance matrix estimated at the BS. Sources of

this uncertainty include imprecise knowledge of the DoAs, differences between the pre-

sumed and the actual array response as well as estimation errors of the fading coeffi-

cients. In our method, we exploit the assumed statistical distribution of the uncertainty

to minimize the outage probability of each MS in the uplink. Our approach leads to a

semidefinite relaxation problem that can be solved efficiently using the well-established

interior point methods. Simulation results show that our method slightly outperforms

the robust adaptive beamforming based upon worst-case performance optimization [86].

Moreover, the proposed technique avoids the necessity of the knowledge of norm bounds

of the uncertainty of uplink spatial covariance matrix.

5.1 Introduction

The capacity of a wireless cellular system is limited by the mutual interference among si-

multaneous users. Receive beamforming is an effective way to overcome this problem and

increase the uplink capacity of the system. However, the performance of the beamformer

degrades significantly in case of unknown channel perturbations. Wireless communication

channels may exhibit rich scattering properties with multipath and angular spreading ef-

fects. Therefore, beamforming based upon the spatial covariance matrix of rank higher
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than one is proposed in [31, 98] and [55].

Robust adaptive beamforming methods have been a subject of tremendous interest during

recent years because they provide robustness against channel perturbations. An extension

of the classical minimum variance beamforming [69] that is robust to uncertainties in the

array response, explicitly models the uncertainty via an uncertainty ellipsoid which gives

the possible values of the array response for a given look direction. The robust adaptive

beamformer proposed in [86] and [100] is based on explicit modeling of uncertainties in

the desired signal array response and data covariance matrix as well as worst-case opti-

mization. In most of these robust beamforming methods, the perturbation is arbitrarily

modeled with bounded norm. In wireless systems, it is not practical to find the upper

bound of the norm of this perturbation. As the channel varies randomly, it is logical to

use the statistical distribution of the perturbation. In communication systems errors in

channel parameters are caused by a mismatch in modelling of the random noise, fading

and delay effects. Physical layer processing is a part of a communication system. As

higher layers deal with the worst-case of the physical layer a useful notion of ”worst case”

at the physical layer becomes unclear. Moreover, the design goal of the physical layer

signal processing is to provide good performance in average (like average BER). Thus

average robustness appears as a consistent notion of the robustness.

This chapter is organized as follows. Some necessary background on robust uplink beam-

forming based upon the spatial covariance matrix is presented in Section 5.2. In Section

5.3, we develop our formulation of the robust beamforming based upon minimization

of the outage probability. The semidefinite optimization problem formulated in 5.3 is

changed to a convex quadratic problem in Section 5.4 that results to a solution of ro-

bust eigenvalue beamforming. Section 5.5 presents numerical simulation results where

the performance of the proposed method is compared with robust max-SINR based upon

worst-case optimization as well as with a non-robust max-SINR method. Simulation re-

sults are shown both for probabilistic (randomly varying channels with moving users) and

deterministic models of the propagation environment. The chapter is concluded with a

summary in Section 5.6.

5.2 Background

The average information regarding actual uplink channels like the spatial covariance

matrix may not be exactly known at the BS. Assume that the channel has an actual
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covariance matrix Ra
i = Ri + Ei, where Ri ∈ CM×M is the assumed spatial covariance

matrix for the ith desired MS. Ei ∈ CM×M is the error matrix that corresponds to

the estimation errors of the actual covariance matrix Ra
i . In robust methods, a design

strategy is introduced to provide robustness against small errors in Ri. We consider a

cellular system with a single cell having a BS with M antenna elements. The BS serves

K MSs each having a single antenna element. With the receive beamforming at the BS,

the SINR for the i-th MS (desired MS) can be expressed as [86]

γi =
wH

i (Ri + Ei)wi

K∑

k 6=i,k=1

wH
i (Rk + Ek)wi + σ2

nw
H
i wi

, (5.1)

where Rk ∈ CM×M , k 6= i, k = 1, · · · , K are the assumed spatial covariance matrices

for the kth undesired MSs. Ek, k 6= i, k = 1, · · · , K are error matrices that correspond

to the estimation errors of the actual spatial covariance matrices Ra
k = Rk + Ek. We

note that Ri + Ei and Rk + Ek, k 6= i, k = 1, · · · , K are positive semidefinite matrices.

The beamforming vector for i th desired MS is wi ∈ CM×1 and the BS receiver noise is

represented by σ2
n. The BS is surrounded by a number of scatterers corresponding to an

angular spread of σθ, as seen from the MS. For a linear receiving antenna array with half

wavelength spacing, the spatial covariance matrix is thus approximated as [8]

[R(θ, σθ)]kl = αkle
(jπ(k−l) sin θ)e

(
− (π(k−l)σθ cos θ)2

2

)

, (5.2)

where αkl = 1 is the scaling factor, θ is the DoA of the MS and the indices k and l represent

the elements of the M ×M covariance matrix R(θ, σθ). Note that the spatial covariance

matrix (5.2) is normalized. A robust beamforming method based upon maximization

of the SINR (5.1) under the condition that the Frobenius norms of the error matrices

Ei and Ek are bounded with known constants, has been proposed in [86]. We repeat

the problem formulation of the robust max-SINR method [86] for the case of spatial

covariance matrices as

min
wi

max
||EI ||≤∆1

wH
i (RI + EI)wi

subject to wH
i (Ri + Ei)wi ≥ 1, for all ||Ei|| ≤ ∆2, (5.3)

which can be rewritten in a much simpler equivalent form

min
wi

wH
i (RI + ∆1I)wi

subject to wH
i (Ri −∆2I)wi = 1, (5.4)
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where

RI =
K∑

k 6=i,k=1

Rk

EI =
K∑

k 6=i,k=1

||Ek|| ≤ ∆1

||Ei|| ≤ ∆2. (5.5)

In (5.5), || · || represents the Frobenius norm and the constants ∆1 > 0 and ∆2 > 0 are the

bounds of the uncertainties of the undesired and desired covariance matrices, respectively.

The solution of (5.4) is the eigenvector of (RI + ∆1I)
−1 (Ri −∆2I) corresponding to the

largest eigenvalue. The major disadvantage of this approach is that it is necessary to

know the bounds of the error matrices which are difficult to obtain in a practical scenario.

Moreover, this approach provides robustness based upon a worst-case scenario which is

a pessimistic approach. In the following section, we formulate a technique for robust

beamforming based upon minimization of the outage probability of the considered MS

in the uplink. We exploit the assumed statistical distribution of the error matrices for

analytical simplicity.

5.3 Minimum Outage Probability (MOP)

The outage probability for the ith MS is defined as the probability that the actual SINR

at the BS is less than a threshold SINR (γth) and is expressed as

P i
out(γth)=pr (γi ≤ γth)

=pr

(
wH

i (Ri + Ei)wi∑K
k 6=i,k=1 wH

i (Rk + Ek)wi + σ2
n||wi||2

≤ γth

)
. (5.6)

We introduce the following relations

wH
i Riwi = tr

(
wH

i Riwi

)

= tr
(
Riwiw

H
i

)

= tr (RiWi) , (5.7)

where Wi = wiw
H
i is a rank 1 beamforming matrix and tr (.) is the trace of the matrix.

Using (5.7), we can rewrite (5.6) as

P i
out(γth)=pr

{
tr ((Ri + Ei)Wi) ≤ γth

K∑

k 6=i,k=1

tr ((Rk + Ek)Wi) + σ2
nγthtr(Wi)

}
,(5.8)
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where

||wi||2 = wH
i wi = tr(wiw

H
i ) = tr(Wi). (5.9)

By introducing the following matrices

R̃i =

(
Ri − γth

K∑

k 6=i,k=1

Rk

)

Ẽi =

(
Ei − γth

K∑

k 6=i,k=1

Ek

)
, (5.10)

we can express (5.8) as

P i
out(γth)=pr

{
tr

((
R̃i + Ẽi

)
Wi

)
≤ γthσ

2
ntr(Wi)

}
. (5.11)

Ri and Rk are deterministic positive semidefinite Hermitian matrices and hence Ei and Ek

are also Hermitian. For simplicity of analysis, we assume that the elements of Hermitian

matrices Ei and Ek are independent, Zero Mean Circularly Symmetric Complex Gaussian

(ZMCSCG) distributed with the variances σ2
i and σ2

k, respectively. For a large number of

users in the system (K →∞), the elements of Ẽi approach Gaussain distribution even if

the elements of Ei and Ek (i 6= k, k = 1, · · · , K) are non-Gaussian according to Central

Limit Theorem. Therefore, the assumption of ZMCSCG for the elements of Ei and Ek

is not strict. Let us define a random variable

y = tr
((

R̃i + Ẽi

)
Wi

)
, (5.12)

which is real because R̃i + Ẽi and Wi are both Hermitian matrices. The probability

distribution of y can be found by using the following lemma.

Lemma 1:

If X is a random Hermitian matrix with independent and circularly symmetric

complex Gaussian random elements with zero mean and variance σ2
x, then for

an arbitrary deterministic matrix A, the following relation can be found

tr(AX) ∼ Nc(0, σ
2
xtr(AAH)), (5.13)

where Nc(0, σ
2
xtr(AAH)) represents the ZMCSCG distribution with a vari-

ance of σ2
xtr(AAH). The notation ∼ in (5.13) tells that tr(AX) follows a

distribution described by Nc(0, σ
2
xtr(AAH)).
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Proof:

Consider A ∈ CM×N and X ∈ CN×M general matrices. Then tr(AX) is the

sum of the weighted elements of the random matrix X and is given by

tr(AX) =
(
vec(AH)

)H
vec(X)

=
M∑
i=1

N∑
j=1

aijxji. (5.14)

As the elements of X are independent ZMCSCG, (5.14) is also complex cir-

cular Gaussian distributed with zero mean. Even if the elements of X are

non-Gaussian random variables, their weighted sum will be at least close to

a Gaussian distribution due to the Central Limit Theorem. The variance of

(5.14) is given by

E
(
vec(AH)Hvec(X)vec(X)Hvec(AH)

)

= vec(AH)HE
(
vec(X)vec(X)H

)
vec(AH)

= vec(AH)Hσ2
xIvec(AH)

= σ2
xtr

(
AHA

)
. (5.15)

This completes the proof. ¤

Using the result of Lemma 1, we can write y ∼ N(tr(R̃iWi), σ
2
etr(WiW

H
i )) i. e. y is a

Gaussian distributed random variable with mean tr(R̃iWi) and variance σ2
etr(WiW

H
i ).

σ2
e is the variance of the elements of matrix Ẽi and is given by

σ2
e = σ2

i + γ2
th

K∑

k 6=i,k=1

σ2
k, (5.16)

where K is the total number of MSs in the system. For σ2
1 = σ2

2 = · · · = σ2
K = σ2, eqn.

(5.16) can be written as

σ2
e = σ2(1 + γ2

th(K − 1)). (5.17)

The outage probability P i
out(γth) = Pr (y ≤ γthσ

2
ntr(Wi)) can be expressed as

P i
out(γth) =

∫ γthσ2
ntr(Wi)

−∞

1√
2πσe||Wi||

exp

(
− (y − µ)2

2σ2
e ||Wi||2

)
dy, (5.18)

where µ = tr
(
R̃iWi

)
≥ 0 and tr(WiW

H
i ) = ||Wi||2. With the help of the error function

erf(z) =
2√
π

∫ z

0

exp
(−u2

)
du, (5.19)
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the outage probability for the condition µ ≤ γthσ
2
ntr(Wi) can be expressed as

P i
out(γth) =

1

2
+

1

2
erf

(
γthσ

2
ntr(Wi)− µ√
2σe||Wi||

)
. (5.20)

Note that Wi = wiw
H
i is a rank one matrix and thus ||Wi|| = tr (Wi). Here, we

emphasize that the problem of the minimization of the outage probability remains the

same even if µ ≥ γthσ
2
ntr(Wi), although the expression of the outage probability (5.20)

in this case is given by

P i
out(γth) =

1

2
− 1

2
erf

(
µ− γthσ

2
ntr(Wi)√

2σe||Wi||

)
. (5.21)

The objective is now to find out the matrix Wi that minimizes the outage probability

(5.20) for the ith MS. It can be observed that P i
out(γth) with respect to Wi approaches its

minimum value of zero, when erf( ) of (5.20) takes the value −1. This means the argument

of error function erf( ) must tend to minus infinity which is possible by minimizing its

numerator and keeping its denominator to a constant value. The minimization problem

is then expressed as

min
Wi

(
γthσ

2
ntr(Wi)− tr

(
R̃iWi

))

subject to
√

2σetr (Wi) = 1, (5.22)

which with additional constraints on beamforming matrix Wi is equivalent to

max
Wi

(
tr

((
Ri − γth

K∑

k 6=i,k=1

Rk

)
Wi

)
− γthσ

2
ntr(Wi)

)

subject to tr (Wi) =
1√
2σe

(5.23)

Wi º 0

rank(Wi) = 1,

where Wi º 0 means that Wi is a positive semidefinite matrix. We transform this

problem into a more tractable convex optimization problem, the rank constraint is simply

removed as described in [8]. Moreover, the optimization problem is independent of the

variance σ2
e of the error matrix Ẽi because it is just a scaling factor for the trace of the

beamforming matrix Wi. Note that the objective of (5.23) is non-convex because of

maximization of the objective function with respect to Wi. The maximization problem

can be changed to minimization simply by reversing the sign of the objective function
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and hence the resulting convex optimization problem is written as

min
Wi

(
γthσ

2
ntr(Wi) + tr

((
γth

K∑

k 6=i,k=1

Rk −Ri

)
Wi

))

subject to tr (Wi) = p (5.24)

Wi º 0,

where we keep tr(Wi) to a value of p. The SINR and hence the outage probability

remains independent of this scaling factor. This is a SDP problem which has a linear

objective, linear constraint and semidefinite constraints [15]. Relaxing the restriction of

the rank of Wi gives a semidefinite optimization problem with a solution that is always

a lower bound for the original problem [9].

Lemma 2: There exists a rank 1 solution of Wi for the semidefinite relaxed

problem of (5.24).

Proof: It can be observed from (5.2) that the rank of the spatial covariance

matrix reduces to one when the angular spreading tends to zero. We provide

a similar proof as that of [102]. We assume that the rank of the spatial

covariance matrices is one. The Lagrangian for the primal problem (5.24) is

given by

L(Wi, λi,Vi) = γth

K∑

k 6=i,k=1

tr (RkWi)− tr (RiWi) + γthσ
2
ntr(Wi)

+λi (tr (Wi)− p)− tr (ViWi)︸ ︷︷ ︸ . (5.25)

Note that the underbraced term of (5.25) arises because of the positive semidef-

inite constraint on the beamforming matrix Wi . Assuming that the Slater

condition [15] holds for the convex primal problem (5.24), the Karush-Kuhn-

Tucker (KKT) conditions [15] for optimality are:

• Stationarity condition: the gradient of Lagrangian L(Wi, λi,Vi) with

respect to Wi vanishes

γth

K∑

k 6=i,k=1

Rk −Ri + (λi + γthσ
2
n)I−Vi = 0. (5.26)

• Complementary slackness: the condition that two non-negative vectors

are orthogonal. Here, this condition arises for the matrices.

tr (ViWi) = 0

=⇒ ViWi = 0. (5.27)
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• Condition on Vi

Vi º 0. (5.28)

Note that Ri has one non-zero eigenvalue and M−1 zero eigenvalues. Let the

non-zero eigenvalue be ti and its corresponding eigenvector to be xi. Assume

yi lies in the null space of Ri. Now, multiplying (5.26) with xi we have

γth

K∑

k 6=i,k=1

Rkxi − tixi + (λi + γthσ
2
n)xi −Vixi =0

(
Vi − γth

K∑

k 6=i,k=1

Rk

)
xi =

(
λi + γthσ

2
n − ti

)
xi. (5.29)

Similarly multiplying (5.26) with yi we get

γth

K∑

k 6=i,k=1

Rkyi + (λi + γthσ
2
n)yi −Viyi = 0

(
Vi − γth

K∑

k 6=i,k=1

Rk

)
yi = (λi + γthσ

2
n)yi. (5.30)

Let Ci =

(
Vi − γth

K∑

k 6=i,k=1

Rk

)
. We can select λi > 0 in such a way that the

equations (5.26), (5.29) and (5.30) are all satisfied. If we choose λi = ti−γthσ
2
n,

then from (5.29) and (5.30) we can see that Ci has one zero eigenvalue and

M − 1 eigenvalues equal to ti. Note that the dimension of the null space

of Ri is M − 1. Furthermore, we note that Vi and γth

K∑

k 6=i,k=1

Rk are posi-

tive semidefinite matrices and hence we use the relation; rank(A + B) ≥
max(rank(A), rank(B)) to get the following expression

rank(Vi) ≥ rank(Ci)

rank(Vi) ≥ M − 1. (5.31)

As Wi 6= 0, it has at least one non-zero eigenvalue. Let u be the eigen

vector of Wi corresponding to this non-zero eigenvalue. Then from equation

(5.27), we can write Vi (Wiu) = 0. Since, Wiu 6= 0, Vi is a rank deficient

matrix. Using (5.31), we can write rank(Vi) = M − 1. Finally with the help
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of Sylvester’s identity we have

rank(ViWi) ≥ rank(Vi) + rank(Wi)−M

0 ≥ rank(Wi)− 1

rank(Wi) = 1. (5.32)

Thus for rank 1 spatial covariance matrices, we can prove that the rank 1 solutions of Wi

exist for the primal problem (5.24). For higher values of the angular spreading σθ or the

higher ranks of spatial covariance matrices, we have found numerically that the optimum

matrix Wi remains rank 1. This has been confirmed in all of our simulation scenarios.

5.4 Robust Eigenvalue Beamforming

We can also present the optimization problem (5.24) based upon minimization of the

outage probability as a robust generalized eigenvalue beamforming. This can be done by

re-writing (5.24) as

min
wi

{
γthσ

2
nw

H
i wi + γthw

H
i

K∑

k=1,k 6=i

Rkwi −wH
i Riwi

}

subject to wH
i wi = p. (5.33)

Using the Lagrange multiplier method, the objective function as well as the constraint of

the optimization problem (5.33) can be written as

L(wi, λ) = γthσ
2
nw

H
i wi + γthw

H
i

K∑

k=1,k 6=i

Rkwi −wH
i Riwi + λ

(
wH

i wi − p
)
. (5.34)

Differentiating L(wi, λ) with respect to wi and equating it to zero, we get the following

relation (
γthσ

2
nI + γth

K∑

k=1,k 6=i

Rk −Ri

)
wi = −λwi, (5.35)

where I is the identity matrix of size M×M . Thus the optimum beamforming vector is the

eigenvector corresponding to maximum eigenvalue of the matrix

(
Ri − γth

K∑

k=1,k 6=i

Rk − γthσ
2
nI

)
.
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5.5 Simulation Results

The performance of the proposed robust uplink beamforming algorithm is evaluated first

in a simulation environment where the number of MSs in the cellular system remains

constant and the effect of inter-cell interference is not taken into consideration. We

call this as a deterministic scenario. In a second step we use the dynamic system level

simulator described in Chapter 3 to observe the performance of the proposed algorithm

where a more realistic cellular propagation environment is considered with mobility and

traffic models.

5.5.1 Deterministic Scenario

We illustrate the performance of the proposed uplink beamforming algorithm in a simu-

lated scenario as given in [8]. We consider that three MSs are served by a single BS. One

MS is located at θ1 = 10◦ relative to the array broadside and the two others at directions

θ2,3 = 10◦ ± δ where δ is varied from 1◦ to 50◦. Thus the DoA of two MSs is varied

keeping that of the first MS fixed for all the simulations. We consider a uniform linear

array with M = 8 elements spaced at a distance of half a wavelength. For each DoA of

the MSs, the outage probability is calculated using the results of 10,000 simulation runs.

The threshold SINR for all MSs is taken as 5 dB, which is also a usual value for UMTS.

The BS receiver noise power σ2
n is 1. The diagonal elements of the spatial covariance

matrix (5.2) are equal to 1 whereas the absolute values of the non-diagonal elements are

less than 1. We use the standard primal form of SeDuMi 1.02 [91] (see Appendix 9.2)

to solve the optimization problem of (5.24). The vectors b, c and the matrix AT of the

primal form for this case are

b = 1

c =


 γthσ

2
nvec(I)

vec
(
−Ri + γth

∑K
k=1,k 6=i Rk

)



AT = (vec(I))T , (5.36)

where I is the identity matrix of size M ×M and vec(.) is the vectorised form of a matrix

obtained by stacking its columns. Note that for this special case the vector b takes a

scalar value and the matrix AT becomes a row vector.

Figure 5.1 shows the simulated outage probability curves of the second MS versus the

angular separation δ for different values of the variance of the elements of the uncertainty

matrices Ei and Ek . We consider that the variances of the elements of the error matrices
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Figure 5.1: Outage probability for the MOP based beamforming method for different

error variances σ2

Ei and Ek are equal: σ2
1 = σ2

2 = σ2
3 = σ2 and take an angular spreading of 2◦. The outage

probability drops to 0.1 for an angular separation of 7.8◦ when the variance is 0.001. In

order to achieve the same outage probability for variance of 0.01, the second MS has to

be separated by more than 8.2◦ from first MS. It is important to note that the simulated

outage probability for the second MS takes into account the third MS in the system.

Similarly, as the error variance increases to 0.05, the outage probability decreases to 0.1

with an angular separation of 10◦.

The performance of the beamforming based upon proposed MOP is compared with that

of the robust Max-SINR beamforming method. The simulated outage probability of the

second MS for both of the methods is shown in Fig. 5.2 versus the increasing angular sepa-

ration. In order to make a fair comparison between the two methods, we choose the values

of ∆1 and ∆2 in such a way that these values reflect the maximum Frobenius norms of the

uncertainty matrices with σ2 = 0.001. Therefore for the case of MOP, we use σ2 = 0.001

for all values of angular spreadings. For the robust Max-SINR method, ∆1 = 0.7 and

∆2 = 1.4 are taken numerically as the norm bounds of the uncertainties of the desired

and undesired spatial covariance matrices. For all the angular spreadings, the proposed

MOP performs better than the robust Max-SINR method although the improvement is

very small. However, the advantage of our method is that it does not need to know the

norm bounds of the uncertainty matrices. The threshold SINR value (γth) is a system

parameter and can be chosen depending upon the QoS needed for the MSs in the system.
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Figure 5.2: Comparison of MOP and robust max-SINR beamforming methods for differ-

ent angular spreadings σθ

The outage probability curves using the max-SINR (non-robust) method are shown in

Fig. 5.3 for different angular spreadings. In order to achieve an outage probability of

0.1, the proposed robust beamforming method based upon the MOP criterion needs an

angular separation of about 7.8◦ whereas the non robust max-SINR method needs 36◦

of separation for the same angular spreading of 2◦. Similar results can be observed for

other values of angular spreading. This confirms that our approach provides robustness

against the uncertainty of spatial covariance matrices. However, the MOP method needs

the knowledge of the statistical distribution of the elements of the error matrices. In case

of cellular systems with a large number of inter- and intra-cell users, the assumption of

Gaussian distribution for the elements of uncertainty matrices is reasonable.

5.5.2 Probabilistic Scenario

We perform dynamic system level simulations (Chapter 3) in order to evaluate the

uplink capacity of the UMTS-FDD system based upon the proposed robust beamforming

algorithm (MOP method). The maximum number of MSs that can be supported in

the uplink with the target SINR value provides the measure of the uplink capacity.

Simulations have been carried out for the following beamforming methods with M = 4

antenna elements.

• a) Non-robust method based upon maximum SINR
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Figure 5.3: Outage probability for the maximum SINR based beamforming method for

different angular spreadings σθ

• b) Robust method based upon MOP.
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Figure 5.4: Number of average MSs supported in uplink versus time

As seen from Fig. 5.4, the proposed robust uplink beamforming method outperforms the

non-robust method based upon max-SINR by supporting in average 25% more MSs than

in case of max-SINR. Most of the chosen simulation parameters are the same as in Chap-

ter 3, except that we introduce a uncertainty matrix Ei with i.i.d. complex Gaussian

elements of variance σ2
i and the OF of 1. Moreover, we set the threshold and maximum

values of the SINR of the uplink DPDCH channels to 6 dB and 8 dB, respectively. The

average and maximum number of paths are set to 2 and 4, respectively. Here, the spatial

covariance matrices are not normalized and modeled according to (3.13). Note that the
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OF (see 3.2.8) of 0 represents the case when the codes exhibit the perfect orthogonality

where as the OF of 1 represents that the codes are no more orthogonal to each other.

In case of the downlink, a BS can synchronize its transmission to different users and

therefore, the orthogonality is only affected by the multipath propagation. However, in

the uplink of the UMTS-FDD system, users are transmitting to the BS independently

and hence the codes used for the data transmission do not maintain the orthogonality

property at all. This is the motivation behind the selection of an OF of 1 for the simu-

lation results shown in Fig. 5.4. The receiver at the BS uses a rake receiver. Multiuser

detection algorithms are not used in order to avoid huge computational tasks necessary

for system level simulations. As in other cases, power control, soft handover along with

mobility and traffic models (Chapter 3) were used while evaluating the performance of

the proposed beamforming algorithm. Similar results can be shown for a higher num-

ber of antenna elements. The max-SINR algorithm does not provide enough robustness

against the mismatches between the presumed and the actual spatial covariance matrices

of the desired and undesired users, respectively.

5.6 Summary

This chapter proposed a new robust beamforming algorithm based upon minimization

of the outage probability of a MS in the uplink. Our approach leads to a relaxation of

a semidefinite optimization problem that can be solved efficiently using an optimization

toolbox like SeDuMi 1.02. Simulation results show that our method is robust against un-

certainties of the spatial covariance matrices and performs slightly better than the robust

max-SINR method based upon worst-case performance optimization. The computational

complexity of our approach is similar to that of the robust max-SINR method.
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Chapter 6

Robust Downlink Beamforming

based upon an Outage Probability

Criterion

In this chapter, we propose a new downlink beamforming method that provides robustness

against the uncertainty of the downlink spatial covariance matrix estimated at the BS that

uses antenna arrays. This uncertainty arises due to the difference between the presumed

and the actual array response as well as the estimation errors of the fading coefficients. In

our method, we exploit the assumed statistical distribution of the uncertainty to minimize

the total downlink transmit power under the condition that the outage probability of

each MS in the downlink is less than a certain threshold value. Our approach leads to

a convex optimization problem that can be solved efficiently using the well-established

interior point methods. Computer simulations are used to compare the performance

of our method with that of the robust transmit beamforming based upon worst-case

performance optimization [8]. Moreover, the proposed technique avoids the necessity of

the knowledge of the norm bounds of the uncertainty of the downlink spatial covariance

matrices.

6.1 Introduction

In recent years, adaptive beamforming has found numerous applications in wireless com-

munications [44, 83]. Downlink beamforming is an effective way to reduce the interference

and increase the downlink capacity of the system. However, the major obstacle for the

implementation of downlink beamforming is the uncertainty of the downlink channel.
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The estimates of the downlink channel are available at the BS through a feedback chan-

nel from the MS. The drawbacks of this approach are the reduction of system capacity

because of the frequent channel uses required for the transmission of the feedback in-

formation from MS to BS and the inherent time delays associated with the feedback.

Another approach for downlink beamforming is to directly use the average channel in-

formation obtained from uplink for downlink transmission i. e. applying uplink weight

vectors for downlink beamforming. Although this method works well for TDD systems

with slowly varying channels, its performance degrades significantly (see Chapter 4) for

FDD systems like UMTS where the frequency separation between uplink and downlink

is significant. Therefore, uplink to downlink adaptation methods (like spatial covariance

transformation methods) that require only second order statistics of the uplink and down-

link channels were dealt in Chapter 4.

In all of the downlink beamforming methods overviewed above, the performance of the

beamformer degrades if any of the assumptions on the propagation environment, sources,

or sensor array becomes violated. For example the performance of MVDR based trans-

formation method for downlink beamforming Chapter 4 degrades significantly if the

assumption of same APS for uplink and downlink does not hold true. Moreover, if the

number of paths, their DoA and the time delays etc. do not hold reciprocity property

[56] for uplink and downlink channels, then performance of other downlink beamforming

methods [5] also fail to produce desired result. Therefore, robust approaches to downlink

beamforming appear to be of primary importance in these cases.

There are several efficient approaches to the design of robust adaptive beamformers like

linearly constrained minimum variance (LCMV) beamformer [72], signal blocking based

algorithms [24, 45] and Bayesian beamformer [7] etc., which are mainly developed for pro-

viding robustness against signal look direction mismatch. The algorithms that use the

diagonal loading of the sample covariance matrix [17, 25], the eigenspace-based beam-

former [21, 33], and the covariance matrix taper (CMT) [50, 84] approach are known to

provide an improved robustness against more general types of mismatches. The major

drawback of diagonal loading technique is that there is no reliable way to choose the

diagonal loading factor. Recently, another promising approach has been proposed in

[100] that explicitly models an arbitrary mismatch bounded in norm in the desired signal

array response and uses worst-case performance optimization to improve the robustness

of the MVDR beamformer. However, a major shortcoming of these robust approaches is
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that they have been originally developed for the point sources and most of them cannot

be extended in a direct way to the case of spatially distributed (incoherently scattered)

sources. The scenarios with randomly distorted wavefronts are very much typical in case

of wireless communications where the radio channels exhibit rich scattering properties

with multipath and angular spreading effects. For example, in rural and suburban en-

vironments with a high BS, one of the major problems is the fast fading due to local

scattering in the vicinity of the MS [10, 78, 106].

A robust approach to adaptive beamforming for the case of general rank signal mod-

els (result of distributed signal sources like multipath phenomena) is proposed in [86]

where the desired signal array response is characterised by the signal covariance matrix

rather than the signal steering vector, and therefore, the robustness of adaptive beam-

formers against mismatches between the presumed and actual signal covariance matrices

is considered. This method was developed for uplink beamforming and the importance of

robust methods for uplink is not vital when compared to the downlink because in uplink

there are several methods [32, 67] which can effectively estimate the spatial signatures

and consequently the signal covariance matrices. The optimum downlink beamforming

methods that provide robustness against channel uncertainties have been discussed in

[8] and [102], where the mismatches between the presumed and actual spatial covari-

ance matrices are taken into account. Robust downlink beamforming based on uplink to

downlink spatial covariance transformation is proposed in Chapter 4. A downlink power

adjustment method proposed in [11] provides a substantially improved robustness against

imperfect knowledge of the wireless channel by means of maintaining the required qual-

ity of service for the worst-case channel uncertainty. In all of these robust beamforming

methods, the perturbation is arbitrarily modeled whose norm is bounded. In real time

wireless systems, it is difficult to find the upper bound of the norm of this perturbation.

As the channel varies randomly, it is logical to use the stochastic approach for describing

the perturbation.

In this chapter, we propose a new approach to robust downlink beamforming where the

transmit power of the BS is optimized with outage probability constraints. The outage

probability is one of the important parameters used to characterise the performance of

the system and is defined as the probability that the SINR measured at the MS is higher

than the specified threshold value of SINR. The mismatches between the presumed and

actual downlink spatial covariance matrices are modeled with a matrix whose elements
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are i.i.d Gaussian. The transmit power optimization problem formulated with outage

probability constraints is changed into a convex optimization problem with second order

cone and semidefinite constraints. We provide both robust optimum as well as compu-

tationally efficient robust suboptimum solutions of the resulting optimization problem.

Unlike other robust designs, we use a probabilistic approach, where the mismatches are

modeled as i.i.d Gaussian and hence measure of quality of service in terms of SINR be-

comes random.

This chapter is organized as follows. Some necessary background on robust downlink

beamforming based upon the spatial covariance matrix is presented in Section 6.2. In

Section 6.3, we develop our formulation of robust downlink beamforming based upon

minimization of BS transmit power with constraints for the outage probability of a MS

in the downlink. Here, both the optimum as well as suboptimum solutions of the con-

strained convex optimization problems are presented. Section 6.4 presents the numerical

simulation results where the performance of the proposed method is compared with the

robust method based upon worst-case optimization [8] as well as with the non-robust

max-SINR method. The summary of the chapter is given in Section 6.5.

6.2 Background

We consider a cellular system with a single cell having a BS with M antenna elements.

The BS serves K MSs each having a single antenna element. With the transmit beam-

forming at the BS, the SINR for the ith MS (desired MS) can be expressed as [11]

γi =
wH

i (Ri + Ei)wi

K∑

k 6=i,k=1

wH
k (Ri + Ei)wk + σ2

i

, (6.1)

where Ri ∈ CM×M is the assumed spatial covariance matrix for the ith desired MS.

Ei ∈ CM×M is the error matrix that corresponds to the estimation errors of the actual

spatial covariance matrix Ra
i = Ri + Ei. We note that Ri + Ei is a positive semidefinite

matrix. wi ∈ CM×1 and wk ∈ CM×1 are the beamforming vectors for ith desired MS

and kth undesired MS, respectively. The receiver noise is represented by σ2
i . Each MS is

surrounded by a large number of local scatterers corresponding to an angular spreading

of σθ, as seen from the BS. For a linear transmitting antenna array with a half wavelength

spacing, the spatial covariance matrix is thus approximated as [8] and is given by eqn.

(5.2). Note that for σθ 6= 0, the rank of the spatial covariance matrix (5.2) is greater
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than 1 which is also the case for the approximation (3.13). The outage probability based

optimum robust downlink beamforming algorithm to be proposed in this chapter is in-

dependent of the modeling of the spatial covariance matrix (see eqns. 5.2, 3.13).

Robust optimum transmit beamforming proposed in [8] is based upon the condition that

the spectral norm of the error matrix Ei is upper bounded with a known constant. We

repeat the problem formulation of [8] for the case of a cellular system with a single cell

and a BS (Ri,c(n) = Ri, where index c(n) represents the nth MS assigned to the c(n)th

BS and n 6= i) as

min
Wi

K∑
i=1

tr(Wi)

subject to tr ((Ri − εiI)Wi)− γth

K∑

k 6=i,k=1

tr ((Ri + εiI)Wk)≥γthσ
2
i (6.2)

Wi º 0

Wi = WH
i , for i = 1, 2, · · · , K,

where

Wi = wiw
H
i

εi ≥ ||Ei||, εi ≥ 0. (6.3)

In (6.3), || · || represents the Frobenius norm and the constant εi > 0 is the upper bound

of the uncertainty of the spatial covariance matrix Ri for the desired MS. Since (6.2)

is a semidefinite optimization problem, the solution for the global optimum exists. The

major disadvantage of this approach is that it is necessary to know the upper bound of

the Frobenius norm of the error matrix Ei which is difficult to determine in a practical

scenario. Moreover, this approach provides robustness based upon a worst-case scenario

which is a pessimistic approach. In the following section, we formulate a technique for

robust downlink beamforming based upon minimization of the total BS transmit power

by maintaining the non-outage probability of all MSs in the downlink above a certain

threshold value. We exploit the assumed statistical distribution of the error matrix.

For the cases without spatial covariance matrix uncertainty, the optimum transmit beam-
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forming algorithm can be expressed by substituting εi = 0 in (6.2) as

min
Wi

K∑
i=1

tr(Wi)

subject to tr (RiWi)− γth

K∑

k 6=i,k=1

tr (RiWk)≥γthσ
2
i (6.4)

Wi º 0,

Wi = WH
i , for i = 1, 2, · · · , K.

For multiple BSs, the disadvantage of the optimum robust as well as non-robust transmit

beamforming is that the BSs need to exchange information about the channels of the MSs

that are in the neigbouring cells. This leads to a necessity of centralized signal processing

whose complexity is very high for large cellular networks. To remedy this problem, a

decentralised downlink beamforming algorithm is presented in [8]. The approach is to

determine each beamformer separately, keeping the received SNR at the MS of interest

above the threshold µi and the total transmitted power to the interfered users below the

threshold ξi, which according to [8] results in the following optimization problem

min
Wi

K∑
i=1

tr(Wi)

subject to tr (RiWi) ≥ µiσ
2
i

K∑

k 6=i,k=1

tr (RiWk) ≤ ξi (6.5)

Wi º 0

Wi = WH
i , for i = 1, 2, · · · , K,

which is again a semidefinite problem with rank one relaxation and provides a subopti-

mum solution. Figure 6.1 shows the transmit power of the BS using the optimum transmit

beamforming algorithm (6.4) and the decentralised beamforming method (6.5). As can

be observed, in terms of transmit power the optimum transmit beamforming outperforms

the decentralised beamforming method.
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Figure 6.1: Comparison of the normalized BS transmit power with two non-robust beam-

forming methods

6.3 Robust Downlink Beamforming

In this section, we present the proposed robust downlink beamforming based on the

outage probability criterion. The problem can be mathematically formulated as

min
wi

K∑
i=1

||wi||2

subject to P̃ i
out(γth) ≥ pi, for i = 1, 2, · · · , K. (6.6)

where P̃ i
out(γth) defines the probability that a user is not in outage. The non-outage

probability for the ith MS is defined as the probability that the SINR provided by the

BS is greater than a threshold SINR (γth) and is expressed as

P̃ i
out(γth) = pr (γi ≥ γth)

=pr

(
wH

i (Ri + Ei)wi∑K
k 6=i,k=1 wH

k (Ri + Ei)wk + σ2
i

≥ γth

)
. (6.7)

As seen from (5.7), we introduce the following relation

wH
i Riwi = tr (RiWi) , (6.8)

where Wi = wiw
H
i is a rank 1 beamforming matrix and tr( ) is the trace of the matrix.

Using (6.8), we can rewrite (6.7) as

P̃ i
out(γth)=pr

{
tr ((Ri + Ei)Wi) ≥ γth

K∑

k 6=i,k=1

tr ((Ri + Ei)Wk) + γthσ
2
i

}
. (6.9)
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By introducing the following deterministic matrix

Zi = Wi − γth

K∑

k 6=i,k=1

Wk, (6.10)

we can express (6.9) as

P̃ i
out(γth) = pr

{
tr ((Ri + Ei)Zi) ≥ γthσ

2
i

}
. (6.11)

Note that the matrix Ei is Hermitian, because it is the difference between the actual

and estimated spatial covariance matrices which are both Hermitian. For simplicity

of analysis, we assume that the elements of the Hermitian matrix Ei are independent,

ZMCSCG with a variance σ2
e . In Lemma 1 (Chapter 5), we emphasize that this

assumption is not strict. Let us define a random variable

y = tr ((Ri + Ei)Zi) , (6.12)

which is real because Ri +Ei and Zi are both Hermitian matrices. The probability distri-

bution of y can be found by using the Lemma 1 of Chapter 5. Therefore, we can write

y ∼ N(tr(RiZi), σ
2
etr(ZiZ

H
i )) i. e. y is a Gaussian distributed random variable with mean

RiZi and variance σ2
etr(ZiZ

H
i ). The non-outage probability P̃ i

out(γth) = Pr (y ≥ γthσ
2
i )

can be expressed as

P̃ i
out(γth) =

∫ ∞

γthσ2
i

1√
2πσe||Zi||

exp

(
− (y − µ)2

2σ2
e ||Zi||2

)
dy, (6.13)

where µ = tr (RiZi) ≥ 0. With the help of error function

erf(z) =
2√
π

∫ z

0

exp
(−u2

)
du, (6.14)

the non-outage probability can be expressed as

P̃ i
out(γth) =





1
2

+ 1
2
erf

(
µ−γthσ2

i√
2σe||Zi||

)
, for γthσ

2
i ≤ µ,

1
2
− 1

2
erf

(
γthσ2

i−µ√
2σe||Zi||

)
, for γthσ

2
i ≥ µ.

(6.15)

Note that for a reliable wireless communication link, the non-outage probability P̃ i
out(γth)

must be close to 1 (with the ideal case P̃ i
out(γth) = 1). As the argument of the er-

ror function is positive for both equations in (6.15), the upper equation corresponds

to P̃ i
out(γth) ≥ 1

2
whereas the lower equation corresponds to P̃ i

out(γth) ≤ 1
2
. Therefore,

the upper equation of (6.15) has to be considered. Using this equation, the non-outage
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probability constraint in (6.6) can be expressed as

P̃ i
out(γth) ≥ pi

erf

(
µ− γthσ

2
i√

2σe||Zi||

)
≥ 2pi − 1

(
µ− γthσ

2
i√

2σe||Zi||

)
≥ erf−1(2pi − 1)

tr (RiZi)− γthσ
2
i ≥ ci||Zi||, (6.16)

where ci =
√

2σeerf
−1(2pi − 1). Note that for pi < 1

2
, ci is negative and the constraint

of (6.16) becomes non-convex. In order to maintain convexity of (6.16), it is required

to have pi ≥ 1
2
, which is obviously a proper choice for the threshold value of the non-

outage probability P̃ i
out(γth) which corresponds to the upper equation of (6.15). Thus,

the optimization problem (6.6) can be written as

min
Wi

K∑
i=1

tr(Wi)

subject to ||Zi|| ≤ 1

ci

(
tr (RiZi)− γthσ

2
i

)
(6.17)

Wi = WH
i

rank(Wi) = 1, for i = 1, 2, · · · , K,

where Zi is not a rank one matrix and given by (6.10). Now we provide robust optimum as

well as suboptimum solutions for (6.17). The optimum solution gives better performance

in terms of BS transmit power than that of suboptimum solution with a cost of increased

computational complexity.

6.3.1 Robust Optimum Solution

The constraint on the rank of Wi makes the optimization problem (6.17) non-convex. We

transform this problem into a more tractable convex optimization problem by replacing

the rank-one constraint by the SDP constraint. Then the relaxed optimization problem

(6.17) can be written as

min
Wi

K∑
i=1

tr(Wi)

subject to ||Zi|| ≤ ti

ti =
1

ci

(
tr (RiZi)− γthσ

2
i

)
(6.18)

Wi º 0

Wi = WH
i , for i = 1, 2, · · · , K,

101



which has a linear convex objective function and linear, SOC as well as semidefinite

constraints. Since all the constraints are convex, the optimization problem is a convex

one and can be solved using the standard primal form of SeDuMi 1.02 [91] (see Appendix

9.2). It is important to note that there is a set of such linear, SOC and SDP constraints

which increases with increasing K. Although the global optimum can be found for this

problem, its computational complexity is very high. Therefore with some conservative

approach, the convex optimization problem (6.18) can be reduced to a computationally

efficient form i. e. the optimization problem which includes only linear and semidefinite

constraints. In the following section, such a suboptimum method will be discussed.

6.3.2 Robust Suboptimum Solution

Since ||Zi||2 = tr(ZiZ
H
i ), the constraint in Zi or Wi of problem (6.17) is nonlinear,

although the objective is linear and the problem consists of semidefinite constraints.

Substituting Zi from (6.10) into the quadratic constraint of (6.17), we have

ci||Wi − γth

K∑

k 6=i,k=1

Wk|| ≤ tr

(
Ri

(
Wi − γth

K∑

k 6=i,k=1

Wk

))
− γthσ

2
i . (6.19)

Let us now approximate the left-hand side of (6.19) using the inequality ||A − αB|| ≤
||A|| + |α| · ||B||, where α is any real number. Although tightness of this inequality

cannot be guaranteed for arbitrary A, B and α, it will be shown via simulations that the

proposed approximation is proper in terms of closeness of the original problem (6.18) and

its simplified version. With this approximation, the constraint in (6.19) can be changed

into the following two possible constraints

ci||Wi||+ ciγth

K∑

k 6=i,k=1

||Wk||≤tr (RiWi)− γthσ
2
i − γth

K∑

k 6=i,k=1

tr (RiWk) (6.20)

ci||Wi||+ ciγth

K∑

k 6=i,k=1

||Wk||≥tr (RiWi)− γthσ
2
i − γth

K∑

k 6=i,k=1

tr (RiWk) . (6.21)

In Appendix 9.3, we show that the constraint (6.21) contradicts to the objective of (6.6)

and, therefore, (6.20) has to be used. Hence, in the following we replace the constraint

(6.19) by (6.20). Since Wi are rank-one matrices, ||Wi|| = tr (Wi).

Thus, the constraint (6.20) can be further expressed as

tr ((Ri − ciI)Wi)− γth

K∑

k 6=i,k=1

tr ((Ri + ciI)Wk)≥γthσ
2
i . (6.22)

102



Using (6.22), and replacing rank-one constraint by an SDP constraint, we obtain the

following optimization problem which is an approximation of (6.17):

min
Wi

K∑
i=1

tr(Wi)

subject to tr ((Ri − ciI)Wi)− γth

K∑

k 6=i,k=1

tr ((Ri + ciI)Wk) ≥ γthσ
2
i (6.23)

Wi º 0

Wi = WH
i , for i = 1, 2, · · · , K.

Note that the optimization problem (6.23) is similar to the robust problem (6.2) except

that the negative and positive diagonal loading factor ci for Ri is determined from the

statistical distribution of the elements of Ei. When compared to the non-robust problem

(6.4), (6.23) is different because of the positive and negative diagonal loadings of Ri. This

is an SDP problem which has linear objective, and linear and semidefinite constraints.
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Figure 6.2: BS transmit power with the proposed suboptimum (6.23) and optimum (6.18)

robust methods

As shown in Fig. 6.2, the proposed robust optimum method (6.18) performs better than

the proposed suboptimum method (6.23) in terms of total BS transmission power. Fig.

6.3 displays the achieved non-outage probability versus the angular separation for the

proposed optimum and suboptimum robust methods. Although both of the proposed

methods achieve the target value of non-outage probability (which is set to 0.8) at the

price of increase in the BS transmit power (see also Fig. 6.2), the suboptimum method

achieves the non-outage probability that is higher than its target value. The computa-

tional cost of optimum method is much higher than that of the suboptimum method.
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Figure 6.3: Achieved non-outage probability with the proposed suboptimum (6.23) and

optimum (6.18) robust methods

While running MATLAB 6.01 in Pentium IV 1.8 GHz computer, the simulation time

required for optimum method is almost three times that of the suboptimum method.

Lemma 2: There exists a rank 1 solution of Wi for the semidefinite relaxed problem of

(6.23).

Proof: The proof of this lemma is given in Lemma 2 of Chapter 5 for the special case

of rank 1 spatial covariance matrices. Another type of proof for the case of general rank

spatial covariance matrices can be found in [8] and [9]. We have found numerically that

the optimum matrix Wi remains rank 1. This has been confirmed in all of our simulation

scenarios.

6.4 Simulation Results

We illustrate the performance of the proposed downlink beamforming algorithm in a

simulated scenario [8] as described in deterministic propagation of Chapter 5. We

consider that three MSs are served by a single BS. One MS is located at θ1 = 10◦ relative

array broadside and the two others at directions θ2,3 = 10◦ ± δ where δ is varied from

1◦ to 50◦. Thus the DoAs of two MSs is varied keeping that of the first MS fixed for all

the simulations. We consider a ULA with M = 8 elements spaced at a distance of half

a wavelength. For each DoA of the MSs, the non-outage probability is calculated using

the results of 10,000 simulation runs. The threshold SINR for all MSs in the downlink is

taken as 5 dB. The receiver noise power is σ2
i = 1 for all MSs. We use SeDuMi 1.02 [91] to

solve the robust optimization problem of (6.18). Note that the spatial covariance matrix
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Ri ( see eqn. 5.2) is normalized. The target non-outage probability pi, (i = 1, · · · , K)

for all MSs is same, i.e. p1 = p2 = · · · , = pK = p.
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Figure 6.4: Total BS transmit power for the proposed robust optimum beamforming

method (6.18)

Figure 6.4 shows the total BS transmit power versus angular separation δ for different

values of the variance σ2
e of the elements of the uncertainty matrix Ei. We take an angular

spreading of 2◦ and keep the target non-outage probability to 0.8. For σ2
e = 0.001, the

optimal solution (6.18) exists with δ ≥ 5◦. It can be observed that as the variance σ2
e

increases, the optimal solution exists only for increased values of δ. For example, for

σ2
e = 0.005 and σ2

e = 0.01, the optimal solutions exist only for δ ≥ 5.5◦ and δ ≥ 6◦,

respectively. For smaller values of δ, we can find that the BS transmit power increases

with increasing σ2
e . As an example, for σ2

e = 0.001, the BS needs about 8.6 dB of transmit

power at an angular separation of δ = 7◦ in order to achieve target non-outage probability

p of 0.8. With same δ = 7◦, for the case of σ2
e = 0.05, the BS needs transmit power of

about 16.2 dB in order to keep the non-outage probability at 0.8. As δ increases, the

transmit power curves for different values of σ2
e meet one another.

The total BS transmit power versus the angular separation δ for different target values

of the non-outage probability p is shown in Fig. 6.5. We take σ2
e = 0.001. For a target

non-outage probability p = 0.51, we can see that the optimum solution exists for δ ≥ 3.5◦

with a BS transmit power of about 30 dB. As p increases, the angular separation δ needs

to be increased in order to get the optimum solution. For p = 0.9, the optimum solution

exists for δ ≥ 5◦ with BS transmit power of about 25 dB. Again we can see that for a

particular δ (especially smaller ones), as the target non-outage probability increases, the

BS has to spend more transmit power.
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Figure 6.5: Total BS transmit power for the proposed beamforming method (6.18) with

different p
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Figure 6.6: Comparison of BS transmit power with different beamforming methods

The BS transmit power versus the angular separation δ using different beamforming

methods is shown in Fig. 6.6. The non-robust method (6.4) uses less transmit power

than the other two methods and provides an optimal solution for δ ≥ 2◦. The proposed

optimum robust method (6.18) with p = 0.9 and σ2
e = 0.001 spends more transmit power

than the non-robust method and the optimal solution exists only for δ ≥ 5◦. The norm

bound method (6.2) for which the maximum Frobenius norm of Ei with σ2
e = 0.001 is

experimentally chosen as 0.5 needs more transmit power than the other two methods. As

an example for δ = 10◦, the non-robust and the proposed method need less than 4 dB of

transmit power whereas the norm bound method uses about 12 dB. The optimal solution

for the norm bound method exists only for δ ≥ 9.4◦.
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Figure 6.7: Non-outage probability (second MS) with different beamforming methods

As shown in Fig. 6.7, although the non-robust method (6.4) shows the best performance

in terms of transmit power, it never achieves the target p = 0.9. It can be seen that with

the non-robust method the SINR value of the MS remains above the target threshold

value γth with a probability of less than 0.5. This means that the achieved non-outage

probability is much less than the target non-outage probability p = 0.9. However, the

proposed optimum robust method (6.18) always achieves the target p = 0.9 by using

some more BS transmit power than the non-robust method. The norm bound method

(6.2) always maintains the target p to a value of 1, but it uses BS transmit power which

is many times higher than that of the non-robust and the proposed methods. Thus the

proposed method performs better in terms of achieved non-outage probability while an

acceptable compromise with the total BS transmit power is made.

6.5 Summary

We propose a new robust downlink beamforming method based upon minimization of the

total BS transmit power while keeping the non-outage probability of all the MSs in the

downlink above a threshold value. Our approach leads to a relaxation of a Semidefinite

optimization problem that can be solved efficiently using the available optimization tool-

boxes like SeDuMi 1.02. Simulation results show that our method is robust against the

uncertainties of the spatial covariance matrix, although this robustness is achieved with

a slight increase in the BS transmit power when compared to the non-robust method.

Although non-robust method requires least transmit power, its performance in terms

of achieved non-outage probability is worse than that of the proposed robust optimum
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method. On the other hand, the norm bound method (based upon worst-case perfor-

mance optimization) achieves best non-outage probability but needs very high transmis-

sion power. Moreover, the computational complexity of our approach is similar to that

of the norm bound method. As a part of the future work we are trying to evaluate the

performance of downlink beamforming based upon non-outage probability criterion for

the UMTS-FDD scenario using a dynamic system level simulator of [18].
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Chapter 7

Robust MIMO Design and Optimum

Power Control for MIMO

Beamforming

In this chapter we first analyze a single user MIMO link where the transmitter has only

partial information about the channel. A transmitter which is robust against the errors

in the available channel estimate is designed for such a MIMO space diversity system.

The design is based on the minimization of the outage probability while keeping the total

transmit power constant. This leads to an exploitation of all eigenmodes of the estimated

MIMO channel by the transmitter whereas in classical beamforming only the strongest

eigenmode of the MIMO channel is used for transmission. We compare the performance

of our method with that of the robust MIMO design based upon worst-case performance

optimization [58]. Simulation results confirm that the proposed method outperforms the

worst-case performance optimization method. Moreover, the proposed technique avoids

the necessity to know the norm bound of the error in channel estimate that is required

for worst-case performance optimization.

The second part of this chapter is extended to a multiuser MIMO system with beam-

forming. The analysis is carried out for a MRT system in a Rayleigh fading environment.

A simple closed and compact form expression for the outage probability of the downlink

of such a system is obtained by considering the scenario where a MS of interest receives

the signals transmitted from the BS to other MSs of the same cell. This is known as in-

tracell interference. An interesting observation of the analysis is that an optimum power

control problem can be formulated based upon the outage probability of each user in the
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downlink because the outage probability computation can easily be simplified for a sin-

gle cell environment. The optimization problem is non-convex and non-linear. We show

how the Evolutionary Strategy (EV)[85](see Appendix 9.5) can be used to solve such a

non-convex problem.

7.1 Introduction

Although initial interest in SAs has mainly focused on receiver diversity, nowadays MIMO

systems with both transmit and receive diversity are receiving a lot of attention. Recently,

the proposal of several transmission schemes [35, 95] based on multiple antennas at both

the transmitter and the receiver has been introduced in order to improve the system per-

formance of wireless communication systems significantly. Wireless MIMO systems are

able to provide a high spectral efficiency in a rich and quasi-static scattering environment.

They combine the signals received from multiple independent channels to mitigate fading

and suppress interference.

Space-time block codes [93] and linear processing or beamforming are some of the trans-

mission techniques used for MIMO systems. The former is used if no CSI is available at

the transmitter and the latter is used when the transmitter knows the channel. Zhou et.

al [108] proposed the combination of eigen-beamforming and space-time block coding for

the design of an optimal transmitter. In a realistic environment, the transmitter has only

an estimate of the channel [107] and hence if this estimate deviates far from the actual

channel, the performance in terms of BER or capacity degrades significantly. Therefore

so-called robust techniques are necessary in order to take into account the errors in the

channel estimate. A robust MIMO design which combines OSTBC and beamforming

with minimum transmission power requirements is proposed in [58]. This approach is

based on maximization of the SNR for the worst channel estimate and needs to clearly

define the upper bound of the channel estimate error. In this robust transmitter design, a

random error with bounded norm is added to the available channel estimate. In wireless

systems, it is not practical to find the upper bound of the norm of this channel estimation

error. As the channel varies randomly, it is logical to use the statistical distribution of the

estimation error. Robust uplink and downlink beamforming methods based on outage

probability were proposed in Chapters 5, 6. In this chapter, we use a similar approach

for the MIMO transmission.
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Power control for interference limited wireless systems with single transmit and single

receive antennas has been proposed in [63] where the total transmit power is minimized

subject to outage probability constraints. A scheme which couples power control with a

minimum outage probability receiver is proposed in [74]. It extends the results of [63] by

finding tight bounds for the outage probability that also includes receiver noise. However,

both of the previous works [63, 74] are limited to multiuser wireless systems with single

antennas at the receivers and transmitters, respectively. A simple and popular scheme

called MRT [68] maximizes the system output SNR in MIMO systems. An outage prob-

ability expression for MRT based multi-cellular MIMO systems was derived in [96]. The

outage probability expression was derived by considering equal power intracell interferers

and intercell interferers with distinct powers for the uplink which is not the case in a re-

alistic system. In a realistic scenario, the MSs that are power controlled by the same BS

transmit with different powers because of the different channel gains. Moreover, an opti-

mum power control scheme based on this outage probability becomes highly complicated.

In this work, we consider a downlink of MRT based multiuser MIMO system. First, we

derive a simple expression for outage probability of a MS in the downlink and then for-

mulate an optimum power control problem based on outage probability constraints. The

objective is to minimize the total BS transmit power by keeping the outage probability

of all MSs in the system below a certain threshold value. Although, this optimization

problem is nonlinear and non-convex, stochastic ranking based on EV [85] can be used

to solve it efficiently.

The chapter is organized as follows. A robust MIMO transmitter for a single user system

is presented in Section 7.2. Here, we describe the system and signal models for the single

user transmission, the Maxmin robust design proposed in [58] and finally our formula-

tion of the robust MIMO design based upon minimization of the outage probability. In

Section 7.3, a multiuser MIMO system with beamforming is presented. We first provide

preliminaries for MIMO system with beamforming, then the outage probability of a MS

in the downlink is investigated, and finally a power control scheme is formulated based

on this outage probability. Section 7.4 presents simulation results for a single user MIMO

system, where the performance of the proposed method is compared with the robust

Maxmin approach based upon worst-case performance optimization. In Section 7.5, sim-

ulation results for multiuser MIMO beamforming are presented in order to compare with

analytical results. The results for the optimum power for the constrained optimization
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problem are also discussed. Finally, the chapter is summarised in Section 7.6.

7.2 Robust MIMO Transmitter

7.2.1 System and Signal Models

We consider a single user flat fading spatially uncorrelated Rayleigh MIMO channel with

nt transmit and nr receive antennas. The channel response matrix H ∈ Cnr×nt consists

of independent, complex and circularly symmetric Gaussian random variables with zero

mean and unknown variance σ̃2
h. The gain factor between the jth transmit and ith

receive antenna is represented by the (i, j)th component of the random matrix H. It is

assumed that the transmitter knows the channel matrix H with a certain uncertainty

according to the following model: H = Ĥ + E ∈ Cnr×nt , where the channel estimate

Ĥ (elements are complex i.i.d. Gaussian with known variance σ2
h) is availabe at the

transmitter and E represents the error in the channel estimate. The elements of E are

also i.i.d. complex, circularly symmetric Gaussian random variables with variance σ2
e and

independent from H. In the absence of CSI at the transmitter, it is possible to achieve

d(k)

n1(k)

n2(k)

H

s(k)

nnt(k)

ReceiverChannelTransmitter

Y(k)

AM

X(k) = AMs(k)

BM = HAM

(BM)H

Figure 7.1: Matrix modulation and matched filter

transmit diversity by transmitting the same symbol s(k) during nt channel periods using

different transmission weight vectors {an}nt

n=1. The matrix AM = [a1, · · · , ant ] in this

case is known as a modulation matrix, upon which the transmission is based as shown in

Fig. 7.1. This transmission technique is perhaps one of the simplest examples [65] of a

linear Space-Time Block Codes (STBC). A linear STBC code matrix takes the following
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form:

X′ =
Ns∑
q=1

(s̄qA
′
q + js̃qB

′
q), (7.1)

where {s1, · · · , sNs} is a set of complex symbols to be transmitted, Ns is the total number

of symbols, and
{
A′

q,B
′
q

}
are in general fixed complex-valued code matrices of dimension

nt ×NT where NT is the number of time intervals. Note that s̄q and s̃q are the real and

imaginary parts of the symbol sq. It can be easily seen that for the transmission structure

of Fig. 7.1, we have Ns = 1, A′
1 = AM and B′

1 = AM .

In order to transmit a symbol s(k), the following signal is transmitted; X(k) = AMs(k),

where the matrix AM ∈ Cnt×nt contains the factors that multiply the symbol s(k) before

the signal is transmitted through nt transmit antennas during nt channel uses. The

received samples at all the receive antennas during nt periods of time corresponding to

transmission of the symbol s(k) is expressed as

Y(k) =
{
HAMs(k) + N(k)

} ∈ Cnr×nt , (7.2)

where N(k) has i.i.d. complex Gaussian random variables with zero mean and variance σ2
n

and represents an additive white Gaussian noise channel. It is assumed that the receiver

knows perfectly the channel matrix H and the transmitter type i. e. matrix AM . In

this context, the optimum receiver is the matched filter which carries out the detection

based on the following statistic; d(k) = tr((BM)HY), where BM = HAM , which can be

expressed as

d(k) = tr((AM)HHHHAM)s(k) + tr((AM)HHHN(k)). (7.3)

This receiver maximizes the received SNR which is given by [58]

SNR =
σ2

s

σ2
n

tr((AM)HHHHAM), (7.4)

where σ2
s = E(s(k)s∗(k)) and σ2

nI = E(N(k)N(k)H) represent the symbol and correlation

matrix of the noise, respectively. The power constraint in terms of the modulation matrix

AM ∈ Cnt×nt is ||AM ||2 = tr((AM)HAM) = Pt. We use the same transmitter structure

as of [58] and thus AM is forced to have the following structure

AM =
√

Pt

nt∑
n=1

√
pnûnc

H
n

=
√

PtÛPCH , (7.5)
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where

ĤHĤ = ÛDÛH , ÛHÛ = I, Û = [û1, · · · , ûnt ]

D = diag(λ1, · · · , λnt), λ1 ≥ · · · ≥ λnt ≥ 0

P = diag(
√

p1, · · · ,
√

pnt), CHC = I. (7.6)

It can be observed from (7.5) and (7.6) that different eigenmodes of the estimated channel

are used for signal transmission. Û represents the matrix of eigenvector obtained from

the eigenvalue decomposition of ĤHĤ and D is the diagonal matrix (note the notation

’diag’) with corresponding eigenvalues. A set of nt orthonormal temporal signatures

cn ∈ Cnt×1, n = 1, · · · , nt decouple the transmission and form the unitary matrix

C = [c1, · · · , cnt ]. The powers (pn ≥ 0, n = 1, · · · , nt) are used to weight different

eigenmodes. With this transmission scheme, the SNR from (7.4) can be expressed as

SNR = Pt
σ2

s

σ2
n

tr(ÛHHHHÛP2), (7.7)

with the power constraint
nt∑

n=1

pn = 1. As can be seen from this signal model, nt chan-

nel uses or periods are needed to transmit a single symbol. This means that there is a

reduction of the useful signal rate by a factor of nt. If a full rate transmission system

is required, then nt different symbols {sn(k)}nt

n=1 have to be transmitted simultaneously,

according to the following scheme

X(k) =
nt∑

n=1

AM
n sn(k) =

√
Pt

nt∑
n=1

ÛPCH
n sn(k)

=
√

PtÛP
nt∑

n=1

CH
n sn(k)

︸ ︷︷ ︸
, (7.8)

where the same importance is given to the estimated eigenmodes for all the symbols,

but different temporal signatures are applied. It is clear that the problem consists in

decoupling the detection of the symbols at the receiver without decreasing the SNR.

In case of real constellations, this can be done by using unitary matrices deduced for

OSTBC [38, 93]. Note that, an OSTBC is a linear STBC (see eq: 7.1) that has the

following unitary property

X′X′H =
Ns∑
q=1

|sq|2 · I, (7.9)
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where the identity matrix on the right hand side of (7.9) can be scaled by an arbitrary

constant factor. However, only a 1/2 rate transmission can be achieved for any number

of transmit antennas for the case of complex symbols. The underbraced term on the right

hand side of (7.8) can be obtained by using the code matrix X′ that can be expressed

as (7.1) and fulfills the property (7.9). Therefore, the transmitter architecture presented

in this section is based on concatenation of an OSTBC and a set of nt beamformers

[60, 107], each one corresponding to an eigenmode of the estimated channel and applied

to an output of the OSTBC as shown in Fig. 7.2.

If the channel estimate is perfect i.e. the uncertainty E is negligible to have H = Ĥ,

a non-robust classical design is obtained. The SNR (7.7) in this case can be simply

expressed as

SNR = Pt
σ2

s

σ2
n

tr(ÛHĤHĤÛP2)

= Pt
σ2

s

σ2
n

nt∑
n=1

λnpn. (7.10)

Here, the power distribution among the eigenmodes is optimized in order to maximize

the SNR. Therefore, the non-robust optimization problem can be formulated as

max
p

λTp

subject to
nt∑

n=1

pn = 1, pn ≥ 0 (7.11)

where λT = (λ1, · · · , λnt), and p = (p1, · · · , pnt)
T . The solution of this constrained

optimization problem is p1 = 1 and pn = 0, ∀n > 1, corresponds to classical beamforming

in which no space-time coding is applied. When compared to combined OSTBC and

beamforming transmission [108], this is a transmission scheme in which only the first

output of the OSTBC is transmitted via the strongest eigenmode of the MIMO channel

estimate.

7.2.2 Maxmin Robust Approach

This section briefly deals with the robust method [58] for the design of the power param-

eters pn, n = 1...nt under a maximin perspective. The objective is to first find the worst

channel that minimizes the SNR for a fixed power distribution and then to maximize

the SNR for this worst channel by designing the power parameters adequately. Thus
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OSTBC

unt

u1

nt

√
pnt

√
p1

{sn(k)}nt

n=1

Figure 7.2: Transmission scheme with OSTBC and beamforming [58]

the performance i.e. SNR is maximized according to worst-case scenario. The problem

formulation is repeated here as

max
P

min
||E||≤√ε

tr(ÛHHHHÛP2), (7.12)

where ||E||2 ≤ ε represents that Frobenius norm of the error matrix is upper-bounded

with a positive constant ε. According to the result of [58], the Maxmin problem of (7.12)

is changed to the following convex optimization

max
p

{
λTp− 2

√
ε||Qp||}

subject to
nt∑

n=1

pn = 1, pn ≥ 0, (7.13)

where matrix QH is constructed by choosing only the rows 1+n(1+nt), n = 0, · · · , nt−1

of ÛT ⊗
(
ÛHĤH

)
. Here ⊗ represents the ’Kronecker’ product.

7.2.3 Minimum Outage Probability Approach

In this section we propose a design of a robust MIMO transmitter based on the out-

age probability which is defined as the probability that the received SNR falls below

the threshold value γ0. The objective is to minimize the outage probability under the

condition that the power constraint is satisfied at the transmitter. Mathematically, the

problem can be formulated as

min
pn

(Pout(γ0) = pr(SNR ≤ γ0))

subject to
nt∑

n=1

pn = 1. (7.14)
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Omitting the constant term Pt
σ2

s

σ2
n
, the expression for the SNR (7.7) can be further ex-

pressed as

SNR = tr(ÛHĤHĤÛP2) + tr(ÛHĤHEÛP2) +

tr(ÛHEHĤÛP2) + tr(ÛHEHEÛP2), (7.15)

where the quadratic term of the error E in the channel estimate is negligible for the

usual values of σ2
h and σ2

e . Noting that Re
(
tr(ÛHĤHEÛP2)

)
= Re

(
tr(ÛHEHĤÛP2)

)

and Im
(
tr(ÛHĤHEÛP2)

)
= −Im

(
tr(ÛHEHĤÛP2)

)
, and considering that the other

terms of (7.15) are real, the expression (7.14) for outage probability can be written as

Pout(γ0) = pr
(
btr(ÛHĤHĤÛP2) + 2btr(ÛHĤHEÛP2) ≤ γ0

)

= pr

(
tr(ÛHĤHEÛP2) ≤ γ0 − btr(DP2)

2b

)
, (7.16)

where D = ÛHĤHĤÛ, b = Pt
σ2

s

σ2
n

and tr(ÛHĤHEÛP2) = Re
(
tr(ÛHĤHEÛP2)

)
. Let

us define a random variable

y = tr(ÛHĤHEÛP2)

= tr(ÛP2ÛHĤHE), (7.17)

where E is the random matrix and all other matrices are deterministic because the chan-

nel estimate Ĥ is available at the transmitter.

Using the result of Lemma 1 (Chapter 5), we can write y ∼ N(0, σ2
e ||ÛP2ÛHĤH ||2) i.

e. y is a Gaussian distributed random variable with zero mean and variance σ2
e ||ÛP2ÛHĤH ||2.

The outage probability can thus be written as

Pout(γ0) = pr

(
y ≤ γ0 − btr(DP2)

2b

)

=

∫ γ0−btr(DP2)
2b

−∞

1√
2πσy

exp

(
− y2

2σ2
y

)
dy, (7.18)

where σy = σe||ÛP2ÛHĤH ||. With the help of error function

erf(z) =
2√
π

∫ z

0

exp
(−u2

)
du, (7.19)

the outage probability can be expressed as

Pout(γ0) =





1
2

+ 1
2
erf

(
γ0−btr(DP2)

2
√

2σe||ÛP2ÛHĤ||b

)
, for γ0 ≥ btr(DP2),

1
2
− 1

2
erf

(
btr(DP2)−γ0

2
√

2σe||ÛP2ÛHĤ||b

)
, for γ0 ≤ btr(DP2)

(7.20)
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Using the following property of the error function; erf(−z) = −erf(z), the upper equation

of (7.20) can be changed into lower equation and vice-versa. Note that for a reliable link

in a wireless communication system, the outage probability Pout(γ0) must be close to

zero. The objective is now to find out the diagonal matrix P that minimizes the outage

probability (lower equation of (7.20)) with the power constraint. It can be observed that

Pout(γ0) with respect to P approaches its minimum value of zero, when erf( ) of (lower

equation of (7.20)) takes the value of 1. This means the argument of the error function

erf( ) must tend to infinity which is made possible by maximizing its numerator and

keeping its denominator to a constant value. The minimization problem after substituting

P′ = P2 into the lower equation of (7.20) is expressed as

min
P′

(γ0

b
− tr(DP′)

)

subject to ||ÛP′ÛHĤ|| = 1

2
√

2σe

(7.21)

tr(P′) = 1,

where P′ = diag(p1, · · · , pnt). Since P′ and D are both diagonal matrices, the optimiza-

tion problem can be rewritten as

min
p

λ̃Tp

subject to ||ÛHĤHÛP′|| = 1

2
√

2σe

(7.22)

nt∑
n=1

pn = 1,

where λ̃ =
(

γ0

b
− λ1, · · · , γ0

b
− λnt

)
. This is a convex optimization problem with a linear

objective, and equality constraints that are non-linear and linear in optimization variable

p, respectively. It can be solved using iterative and powerful algorithms such as the

interior point methods [15].

7.3 Multiuser MIMO

7.3.1 Background

We consider a cellular system with a single cell having a BS with nt antenna elements. The

BS serves K MSs each having nr antenna elements. A flat fading spatially uncorrelated

Rayleigh MIMO channel is considered for the downlink communication between the BS

and MSs. The channel response matrix H ∈ Cnr×nt consists of the components that
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are i.i.d. complex and circularly symmetric Gaussian random variables with zero mean

and variance σ2
h. The gain factor between the jth transmit and ith receive antenna is

represented by the (i, j)th component of the random matrix H. As shown in the block

n(t)

yi(t)

(wm
i )H

BS

For desired user

Desired User
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wb
1

wb
K

wb
i

ri(t)

√
Pisi(t)

√
P1s1(t)

For interferers

√
PKsK(t)

Figure 7.3: Downlink beamforming for a MIMO system

diagram (Fig. 7.3) of downlink beamforming for a MIMO system, the received signal at

the ith desired MS is given by

yi(t) =
√

PiHiw
b
i si(t) +

K∑

k=1, k 6=i

√
PkHiw

b
ksk(t) + n(t), (7.23)

where Hi ∈ Cnr×nt is the channel matrix between the BS and ith MS, wb
i ∈ Cnt×1 is the

beamforming vector used by the BS for ith MS, Pi is the total power transmission to i

th MS and si(t) is the information signal intended for ith MS, where i = 1, · · · , K. It is

assumed that the channel matrices Hi, i = 1, · · · , K, are independent from each other.

The ith MS weights the signal received at each of its antennas with elements of the vector

wm
i ∈ C1×nr and combines the resulting output (see Fig. 7.4) to give the following signal

ri(t) = (wm
i )Hyi(t), (7.24)

where wm
i ∈ Cnr×1 indicates beamforming vector used by MS. Using (7.23) and (7.24),

the received signal after beamforming at ith MS is

ri(t) =
√

Pi(w
m
i )HHiw

b
i si(t) +

K∑

k=1, k 6=i

√
Pk(w

m
i )HHiw

b
ksk(t) + (wm

i )Hn(t), (7.25)

where first term of the right-hand side represents the desired signal and the other two

terms contribute to interference and noise, respectively. We assume that the BS transmits
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Figure 7.4: Beamforming for a desired user

statistically independent information bearing signals si(t) with average power given by

E(si(t)si(t)
∗) = 1. Thus signal power S and interference power I are written as

S = Pi|(wm
i )HHiw

b
i |2 (7.26)

I =
K∑

k=1, k 6=i

Pk|(wm
i )HHiw

b
k|2. (7.27)

The singular value decomposition of Hi allows us to write the channel matrix as Hi =
R∑

r=1

σr
i u

r
i (v

r
i )

H , where R is the rank of the matrix Hi, σr
i are singular values, ur

i and v2
i are

left and right singular vectors, respectively. In a MRT system, the beamforming vectors

at the BS and MSs are selected in order to maximize the SINR. In this case the optimum

beamforming vectors are the largest left and right singular vectors of the channel matrix

Hi, i. e. wm
i = u1

i and wb
i = v1

i . The resulting signal and interference powers can be

written as

S = Pi|(u1
i )

Hσ1
i u

1
i (v

1
i )

Hv1
i |2

= Pi|σ1
i |2 (7.28)

I =
K∑

k=1, k 6=i

√
Pk|(u1

i )
Hσ1

i u
1
i (v

1
i )

Hv1
k|2

= |σ1
i |2

K∑

k=1, k 6=i

Pk|(v1
i )

Hv1
k|2, (7.29)

where |σ1
i | is also called largest eigenvalue of the complex matrix HH

i Hi, whose elements

are Wishart distributed [73]. If the noise power at the ith MS is negligible compared to
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the interference, the SIR is given by

SIRi =
Pi

K∑

k=1, k 6=i

Pk|(v1
i )

Hv1
k|2

. (7.30)

7.3.2 Outage Probability

The outage probability is defined as the probability that the SIR of ith MS in the downlink

remains smaller than a threshold value of the SIR.

P i
out(γth) = pr {SIRi ≤ γth}

= pr

{
K∑

k=1, k 6=i

Pk|(v1
i )

Hv1
k|2 ≥

Pi

γth

}
. (7.31)

It is important to note that since Hi, (i = 1, · · · , K) are independent with elements that

are zero mean i.i.d. complex Gaussian random, the singular vectors (v1
i )

H and (v1
k)

H are

also zero mean complex Gaussian. The term ρk = |(v1
i )

Hv1
k|2 represents the correlation

coefficient which for nt > 2 follows the beta distribution [61] with following probability

density function

fρk
(x) = (nt − 1)(1− x)nt−2, (0 ≤ x ≤ 1)

= 0, elsewhere. (7.32)

Fig. 7.5 compares the probability distribution function (pdf) fρk
(x) of the random vari-

able ρk with the simulation results for different numbers of transmit antennas nt. As

the number of transmit antennas increases, the pdf of ρk approaches to an exponential

distribution. Let us define a random variable,

z =
K∑

k=1, k 6=i

Pk|(v1
i )

Hv1
k|2

=
K∑

k=1, k 6=i

Pkρk, (7.33)

which is the weighted sum of the beta distributed random variables ρk. The closed form

expression for pdf of the random variable z is not known. However, as seen from Fig. 7.5,

the pdf of ρk can be approximated for the higher values of nt (generally nt > 4), with an

exponential distribution fρk
(x) ≈ ntexp−ntx, for 0 ≤ x ≥ 1. With this assumption, the

closed form expression for the pdf of random variable z can be derived (see Appendix
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9.4) as

fZ(K, Pk, z) = nt

K∑

k=1,k 6=i

ak

Pk

e
−ntz

Pk , (7.34)

where Pj 6= Pk’s and

ak =
K∏

j=1,j 6=k,i

Pk

Pk − Pj

. (7.35)

With the knowledge of probability density function (7.34 and 7.35) of the random variable

z, the outage probability (7.31) can be computed as

P i
out(γth) = pr

{
z ≥ Pi

γth

}

= nt

∫ ∞

Pi
γth

K∑

k=1,k 6=i

ak

Pk

e
−ntz

Pk dz

=
K∑

k=1,k 6=i

ake
− ntPi

γthPk . (7.36)
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It can be observed from (7.36) that for given Pi and Pk’s, the outage probability decreases

with increasing nt and increases with increasing threshold value γth of SIR. The outage

probability is independent of nr because of the fact that the MSs choose their receive

beamforming weights according to the channel between them and their power controlling

BS, which is the same for all MSs in case of a single cell scenario.

7.3.3 Power Control

The objective of power control in downlink beamforming is to minimize the total BS

transmit power by fulfilling the QoS requirements of all MSs. The outage probability is

one of the parameters that can be used as a measure of QoS. In this section we formulate

the optimum power control method based upon the outage probability criterion. In this

method, the objective is to minimize the total BS transmit power by keeping the outage

probability below a certain value. Mathematically, the optimization problem can be

expressed as,

min
Pk

K∑

k=1

Pk

subject to P i
out(γth) ≤ qi, i = 1, · · · , K. (7.37)

Substituting P i
out(γth) of (7.36) in (7.37), the constrained optimization problem can be

written as,

min
Pk

K∑

k=1

Pk

subject to
K∑

k=1,k 6=i

ake
− ntPi

γthPk ≤ qi, i = 1, · · · , K

Pj 6= Pk,∀k. (7.38)

The optimization problem consists of a linear objective function but its constraints are

non-linear and non-convex. Penalty functions are often used to solve this type of con-

strained optimization, although it is very difficult to find the correct balance between the

objective and penalty functions. Without introducing complicated and specialized vari-

ation operators, stochastic ranking method as proposed in [85] provides improved search

performance. The algorithm for stochastic ranking using a bubble-sort like procedure is

also given in [85] (see Appendix 9.5), which is used for the solution of the optimization

problem (7.38).
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7.4 Simulation Results: Single User MIMO

We illustrate the performance of the proposed robust design (7.22) for a single user 4× 4

MIMO link in a simulated scenario by comparing with the robust method based on the

worst-case channel estimate [58]. The performance evaluation is done for a Rayleigh flat

fading environment. For any channel realization, the minimum transmit power required

to guarantee a minimum QoS in terms of threshold SNR is computed. We use SeDuMi

1.02 [91] (see Appendix 9.2) to solve the convex optimization problem of (7.22). In all

simulations, it is assumed that signal and noise power are σ2
s = σ2

n = 1 and σ2
h = 1.

The comparison between the analytical expression for outage probability (7.20) and
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Figure 7.6: Analytical and simulated outage probabilities for the proposed method

simulation is shown in Fig. 7.6 for σ2
e = 0.01. The target SNR is fixed to 10 dB. It can

be observed that the outage probability curve from simulation matches with that from

analytical expression. The outage probabilty decreases as the transmit power increases.

The comparison of the proposed method (7.22) with the Maxmin approach [58] is shown

in Fig. 7.7 by evaluating the outage probability for different transmit powers and chang-

ing the target SNR values. We consider 4 × 4 MIMO system with variance σ2
e = 0.05

of error in the channel estimate. An adhoc approach [58] is used to determine the norm

bound of the error matrix E for the robust Maxmin method. It can be observed that the

proposed robust method outperforms Maxmin method for all target values of SNR. For

example, to guarantee an SNR of 10 dB with an outage probability of 0.3, the proposed

method needs 0.6 dB less transmit power than the Maxmin method. As expected, when

the target SNR increases, more transmit power is required to maintain the same outage

probability.
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Fig. 7.8 compares the two robust methods by finding the minimum transmit power
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Figure 7.8: Outage probability with the proposed and Maxmin approaches as a function

of the total transmit power

required to maintain the SNR of 10 dB for different values of σ2
e . For σ2

e = 0.01, there is

no difference between the outage probability computed by the two robust methods. As σ2
e

increases this difference increases significantly. As an example when σ2
e = 0.1, the robust

method based on outage probability minimization requires almost 1 dB less transmission

power than the Maxmin method to keep the outage probability less than 0.3. When

σ2
e = 0.05, the proposed robust design needs about 4 dB transmission power whereas the

Maxmin robust method requires about 4.6 dB to maintain the outage probability of 0.3.

This clearly indicates the importance of the proposed method when channel estimate
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errors are significant.

7.5 Simulation Results: Multiuser MIMO

First we check the approximate expression of the outage probability we have derived

(7.36) using Monte Carlo simulations. An analysis of the effects of an increasing number

of antennas on the system performance is carried out. As expected, Fig 7.9 shows that

as the threshold value of the SIR increases, the outage probability of the desired MS also

increases. Here, we have considered 10 intracell interferers with arbitrarily taken fixed

power levels {3.3, 2.8, 2.4, 2.1, 1.8, 1.6, 1.5, 0.8, 0.5, 0.2}. The power P1 for the desired user

is assumed to be 1. Note that these power levels have no relation to the optimum

power levels that can be obtained from the solution of (7.38). We have assumed that

σ2
h = σ2

s = 1. The MIMO channels between these intracell interferers and the BS are flat

fading spatially uncorrelated Rayleigh as described in section 7.3.1. As the number of

transmit antennas increases, the agreement between the analytical (7.36) and simulation

results improves. As an example for nt = 4, the difference between the analytical and

simulation results is higher than compared with the case of nt = 12. This is because of

the approximation of (7.32) with an exponential distribution which is a good one only

for higher values of nt. For a given value of the SIR threshold, as the number of transmit

antenna increases, the outage probability decreases.
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Figure 7.10 shows the total transmit power required by the BS for different SIR threshold

values where the probability qi, i 6= k, i = 1, · · · , K that the SIR at all MSs considered

in the system remains below the threshold SIR is fixed to 0.2. For this purpose, we find

the optimum transmit power levels Pk, k = 2, · · · , K (P1 is fixed to 0.5) by solving the

constrained optimization problem (7.38) using a stochastic ranking method [85]. Here,

the total BS transmit power is normalized with reference power P0 = 1. Simulation

results are presented for the system with 4 MSs. As expected, as the threshold SIR

for MSs increases, the required BS transmit power also increases. It is important to

note that the optimum set of transmit powers is not always feasible. As an example

when nt = 4 and threshold SIR is greater than −1 dB, an optimum solution does not

exist. The required BS transmit power for different SIR threshold values is shown in Fig.
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Figure 7.10: Total BS transmit power for qi = 0.2

7.11, where qi is now fixed to 0.4 ∀i. Again the total BS transmit power is normalized

with reference power P0 = 1. As before, we find the optimum transmit power levels

Pk, k = 2, · · · , K (P1 is fixed to 0.5) by solving the constrained optimization problem

(7.38) using stochastic ranking method [85]. Simulation results are again presented for

the system with only 4 MSs. As the threshold SIR for the MSs increases, the required BS

transmit power also increases. The required BS transmit power for a given SIR threshold

value and number of transmit antennas, decreases with increasing value of target outage

probability qi. This can be observed by comparing the simulation results with qi = 0.2

to that with qi = 0.4. Increasing the value of qi indicates that the probability that a MS

falls in outage increases.
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Figure 7.11: Total BS transmit power for qi = 0.4

7.6 Summary

A robust MIMO transmitter based on minimization of the outage probability with a

transmit power constraint is proposed in this chapter. Our approach leads to a convex

optimization problem that can be solved efficiently using an optimization toolbox like

SeDuMi 1.02. Simulation results confirm that our proposed method is robust against

errors in channel estimate and performs better than the Maxmin method [58] especially

for cases of large uncertainty. The computational complexity of our approach is similar to

that of the robust Maxmin method. The knowledge of the upper bound of the Frobenius

norm of the error in the channel estimate is not required.

We also analyzed a multiuser MIMO system with a MRT based beamforming for downlink

communications. A simple approximate expression for the outage probability is derived

for a single cell case. Based on this outage probability, a constrained optimization prob-

lem is solved in order to find the optimum set of power levels for downlink transmission.

For downlink transmission in a single cell scenario, the use of the multiple antennas at

MSs does not improve the system performance (e.g. the outage probability). Multiple

antennas at MSs are helpful only if interference from other BSs is taken into consider-

ation. However, an optimum power control scheme for such cases becomes practically

infeasible because the BSs need information about the channels of the MSs which are

power controlled by other BSs.
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Chapter 8

Conclusion and Perspectives

This dissertation focusses on the optimization of the system level performance of mul-

tiple antenna cellular wireless communication systems that employ beamforming. QoS

parameters like the SINR and outage probability are used for the analysis of the system

level performance of both SA and MIMO systems. Many optimum as well as subopti-

mum algorithms that provide robustness against various types of channel uncertainty are

proposed. The performance of these algorithms is evaluated using deterministic as well

as probabilistic propagation environment.

In Chapter 3, the performance improvement (in terms of system capacity) that can be

achieved from the use of the SAs is investigated for the 3G systems like UMTS-FDD.

For this purpose, a novel and dynamic system level simulator that takes into account the

realistic propagation environment has been developed.

In Chapter 4, the performance of uplink to downlink spatial covariance transformation

methods has been investigated for the UMTS-FDD system by using the dynamic system

level simulator. A new robust algorithm that gives an optimum linear transformation

matrix for the case of erroneous uplink steering vectors has been proposed. The perfor-

mance of this robust method is compared with non-robust methods.

In Chapter 5, a new robust uplink beamforming algorithm that provides robustness

against errors in the estimate of the uplink spatial covariance matrices has been pro-

posed. This method is based on the minimization of the outage probability of the MS

in the uplink. Simulation results carried out in deterministic as well as in stochastic

propagation environments show that the proposed method is computationally efficient
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and performs better than a robust method based on worst-case performance optimiza-

tion and the non-robust method based on maximization of the received SINR.

A new optimum robust downlink beamforming method based on stochastic programming

is presented in Chapter 6. A computationally efficient suboptimum solution has also

been presented and solved using a convex optimization toolbox. The performance of the

proposed optimum robust method is compared with a robust method based on worst-case

performance optimization as well as a centralized non-robust method [8] based on mini-

mization of the total BS transmit power with the received SINR constraints. Simulation

results show that the proposed robust optimum method performs better in terms of out-

age probability although some more BS transmit power is required than the non-robust

method proposed in [8].

Finally in Chapter 7, a new method for the design of a MIMO transmitter is proposed.

This MIMO transmitter combines beamforming with OSTBC and provides robustness

against errors in the channel estimate available at the transmitter. The design criterion

is to optimally distribute the power of each eigenmode of the channel estimate such that

the outage probability at the receiver is minimized. Simulation results show that the

proposed method performs significantly better than the Maxmin method proposed in

[58]. Moreover, a multiuser MIMO system with beamforming based on MRT scheme is

also analyzed in this chapter. A simple and an approximate expression for the outage

probability of the MS in the downlink is derived. With the help of this outage probability,

a power control optimization problem for the downlink transmission is formulated and

solved using a stochastic ranking method [85].

8.1 Future Work

Several considerations for future work are presented below.

• As seen from Chapter 3, only circular adaptive antenna arrays have been used

to evaluate the system level performance of UMTS-FDD system without taking

into account sectorization of the cells. As a part of future work, it is interesting

to investigate the performance improvement that can be obtained by the use of

sectored antennas as well as simple beamforming methods such as beam switching.
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• In Chapter 4, uncertainty can also be introduced to the downlink steering vectors

and a robust transformation matrix can be derived on the basis of the TLS solution.

• In Chapter 5, the assumption that the elements of the error matrix E are i.i.d.

complex Gaussian can be relaxed to a more general type of distribution.

• The complexity of the robust optimum as well as the suboptimum downlink beam-

forming algorithms presented in Chapter 6 has to be reduced so that they can be

practically implemented and introduced into the dynamic system level simulator

presented in Chapter 3.

• The robust MIMO transmitter based upon minimization of the outage probability

and proposed in Chapter 7, can be improved to support full-rate transmission. The

power control optimization problem proposed in the same chapter can be extended

for a multi-cellular environment, although the complexity of such a problem will be

very high.
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Chapter 9

Appendix

9.1 Spatial Fading Correlation for UCA

When deriving the spatial fading correlation for a UCA, let us start by substituting

b = σθ√
2

in (2.33) as

Rs(m,n) =

∫ µ

−π+µ

e−jAc sin(α+θ) 1

2b
e

θ−µ
b dθ +

∫ π+µ

µ

e−jAc sin(α+θ) 1

2b
e
−θ+µ

b dθ. (9.1)

Let

I1 =
1

2b
e−

µ
b

∫ µ

−π+µ

e−jAc sin(α+θ)e
θ
b dθ. (9.2)

Substituting ξ = α + θ, (9.2) can be rewritten as

I1 =
1

2b
e−

µ+α
b

∫ µ+α

−π+α+µ

e−jAc sin(ξ)e
ξ
b dξ, (9.3)

where the term e−jAc sin(ξ) can be expressed as

e−jAc sin(ξ) = cos (Ac sin ξ)− j sin (Ac sin ξ) . (9.4)

With the help of following well known series of Bessel function coefficients

cos (Ac sin ξ) = J0(Ac) + 2
∞∑

k=1

J2k(Ac) cos (2kξ)

sin (Ac sin ξ) = 2
∞∑

k=1

J(2k−1)(Ac) sin ((2k − 1)ξ) , (9.5)

(9.3) can be expressed as

I1 = BJ0(Ac)

∫ µ+α

−π+α+µ

e
ξ
b dξ + 2B

∞∑

k=1

J2k(Ac)

∫ µ+α

−π+α+µ

cos (2kξ) e
ξ
b dξ −

2jB
∞∑

k=1

J(2k−1)(Ac)

∫ µ+α

−π+α+µ

sin ((2k − 1)ξ) e
ξ
b dξ, (9.6)

132



where B = 1
2b

e−
µ+α

b . The following three terms I11, I12, and I13 in (9.6) have to be

evaluated

I11 = BJ0(Ac)

∫ µ+α

−π+α+µ

e
ξ
b dξ

= BJ0(Ac)be
α+µ

b

(
1− e−

π
b

)

=
1

2
J0(Ac)

(
1− e−

π
b

)
, (9.7)

I12 = 2B

∫ µ+α

−π+α+µ

cos (2kξ) e
ξ
b dξ

= 2B
b

1 + 4b2k2

[
e

ξ
b (cos(2kξ) + 2bk sin(2kξ))

]α+µ

−π+α+µ

=
1

1 + 4b2k2

{
(1 + e−

π
b ) (cos(2k(α + µ)) + 2kb sin(2k(α + µ)))

}
, (9.8)

and

I13 = 2B

∫ µ+α

−π+α+µ

sin ((2k − 1)ξ) e
ξ
b dξ

= 2B
b

1 + b2(2k − 1)2

[
e

ξ
b (sin(2k − 1)ξ)− b(2k − 1) cos((2k − 1)ξ))

]α+µ

−π+α+µ

=
1

1 + b2(2k − 1)2

{
(1 + e−

π
b ) (sin((2k − 1)(α + µ))− (2k − 1)b cos((2k − 1)(α + µ)))

}
.

(9.9)

I12 and I13 are evaluated with the help of following indefinite integrals
∫

eax cos b′x dx =
eax (a cos(b′x) + b′ sin(b′x))

a2 + b′2
(9.10)

and ∫
eax sin b′x dx =

eax (a sin(b′x)− b′ cos(b′x))

a2 + b′2
, (9.11)

respectively. Substituting I11, I12 and I13, we get I1 from (9.6) as

I1 = I11 +
∞∑

k=1

J2k(Ac)I12 − j
∞∑

k=1

J(2k−1)I13. (9.12)

Similarly let us define

I2 =
1

2b
e

µ
b

∫ µ+π

µ

e−jAc sin(α+θ)e−
θ
b dθ. (9.13)

Using similar steps as carried out for computation of I1, we can express I2 as

I2 = I21 +
∞∑

k=1

J2k(Ac)I22 − j
∞∑

k=1

J(2k−1)(Ac)I23, (9.14)
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where

I21 =
1

2
J0(Ac)

[
1− e−

π
b

]
, (9.15)

I22 =
1

1 + 4k2b2

[
(1 + e−

π
b ) (cos(2k(α + µ))− 2kb sin(2k(α + µ)))

]
, (9.16)

and

I23 =
1

1 + b2(2k − 1)2

[
(1 + e−

π
b ) (sin((2k − 1)(α + µ)) + (2k − 1)b cos((2k − 1)(α + µ)))

]
.

(9.17)

Finally, the spatial fading correlation Rs(m,n) between mth and nth elements of the

UCA is given by

Rs(m,n) =
(
1− e−

π
b

)
J0(Ac) + 2

(
1 + e−

π
b

) ∞∑

k=1

1

1 + 4b2k2
J2k(Ac) cos (2k(α + µ))

−2j
(
1 + e−

π
b

) ∞∑

k=1

J(2k−1)(Ac)

1 + b2(2k − 1)2
sin ((2k − 1)(α + µ)) , (9.18)

where b = σθ√
2
.

9.2 Convex Optimization Toolbox

The convex optimization problems that appear in this dissertation have been solved using

SeDuMi 1.02 [91] which is a MATLAB toolbox for optimization over symmetric cones.

SeDuMi allows to solve optimization problems with linear, quadratic and semidefinite

constraints. Even large scale optimization problems can be solved efficiently by exploiting

sparsity. A convex optimization problem with different types of constraints can be solved

using either standard primal or dual form of SeDuMi. The standard primal form for such

optimization problem is written as

minimize cTx

such that Ax = b

x ∈ K, (9.19)

where the optimization variable x belongs to a symmetric-cone K. A symmetric cone

is a Cartesian product of a nonnegative orthant, quadratic cones and cones of positive

semidefinite constraints.

Similarly the standard dual form is

maximize bTy

such that c−ATy ∈ K, (9.20)
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where y is the optimization variable and c−ATy belongs to symmetric-cone K. The dual

equality, linear, quadratic, rotated quadratic and semidefinite constraints are arranged in

as symmetric cone K as

K = RK.f×RK.l
+ × (Qcone×· · ·×Qcone)× (Rcone×· · ·×Rcone)× (Scone×· · ·×Scone),

(9.21)

where RK.l
+ represents a linear constraint for K.l non-negative variables. The quadriatic

cone Qcone by definition is a cone of the form

Qcone = {(x1,x2) ∈ R× CK.q−1|x1 ≥ ||x2||2}, (9.22)

where Cn denotes the space of complex n-tuples and || · ||2 represents the Euclidean norm.

The quadriatic cone is often known as a SOC. SeDuMi supports another form of cone

which is

Rcone = {(x1, x2,x3) ∈ R×R× CK.r−2|x1x2 ≥ 1

2
||x3||22, x1 + x2 ≥ 0}. (9.23)

Geometrically, Rcone is a rotation of a quadratic cone. Scone represents semidefinte con-

straints which is a constraint that a symmetric m×m matrix X is a positive semidefinite.

Scone for primal components is defined as

Scone = {x ∈ CK.s2|mat(x) is a Hermitian positive semidefinite}, (9.24)

where K.s represents a list of orders of positive semidefinite constraints. Similarly, for

dual components z = c−ATy, the definition of Scone is given as

Scone = {z ∈ CK.s2|mat(z) + mat(z)′ is a Hermitian positive semidefinite}. (9.25)

All the convex optimization problems must be first transformed into either standard pri-

mal or dual forms of SeDuMi before calling the optimization routine of SeDuMi. The

calling sequence for solving primal-dual pair of SeDuMi is

[x,y, info] = sedumi(A,b, c,K,pars), (9.26)

where K is a MATLAB structure for defining the symmetric cone K which consists of

following fields:

• K.f: The number of dual equality constraints

• K.l: The number of non-negativity constraints

• K.q: A list of dimensions of quadriatic cone constraints
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• K.r: A list of dimensions of rotated quadriatic cone constraints

• K.s: A list of orders of positive semidefinite constraints

• K.xcomplex: A list of primal variables in the f, l, q and r blocks that are allowed

to have nonzero imaginary parts

• K.scomplex: A list of matrix variables that are restricted to Hermitian positive

semidefinite

• K.ycomplex: This field is not related to K. It lists the components of the y variables

that are complex valued.

9.3 Proof of the Invalidity of the Constraint (6.21)

We start with the constraint (6.21), in which we substitute ||Wi|| = tr(Wi), because Wi

are rank-one matrices. Then the constraint (6.21) can be expressed as

tr ((Ri − ciI)Wi)− γth

K∑

k 6=i,k=1

tr ((Ri + ciI)Wk)≤γthσ
2
i , (9.27)

which is equivalent to

tr ((Ri − ciI)Wi)
K∑

k 6=i,k=1

tr ((Ri + ciI)Wk) + σ2
i

≤γth. (9.28)

Note that the left-hand side of (9.28) represents the actual SINR at the i-th MS. This

means that if the constraint (6.21) is fulfilled, the actual SINR remains below its threshold

value γth. By keeping the SINR below this threshold value, we cannot maintain the non-

ouatge probability P̃ i
out(γth) of (6.7) above a certain threshold pi, where pi ≥ 1/2. Thus,

the constraint (6.21) contradicts to the objective of the optimization problem (6.6).

9.4 Probability Density Function of a Weighted Sum

of Statistically Independent Exponentially Dis-

tributed Random Variables

Probability density function (7.34) of random variable z is derived in this section. We

have z1 = P1ρ1 + P2ρ2 for K = 2 where fρ1(x) ≈ nte
−ntx and fρ2(y) ≈ nte

−nty, for
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0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Then the probability density functions of P1ρ1 and P2ρ2 are
nt

P1
e
− nt

P1
x

and nt

P2
e
− nt

P2
y
, respectively. Since the two random variables are independent, the

probability density function of z1 is given by convolution

fZ1(z) =

∫ z

0

fρ1(z − y)fρ2(y) dy

=

∫ z

0

n2
t

P1P2

e
− nt

P1
(z−y)

e
− nt

P2
y
dy

=

∫ z

0

n2
t

P1P2

e
− nt

P1
z
e
−nty(

P1−P2
P1P2

)
dy

=
nt

P1 − P2

{
e
− nt

P1
z − e

− nt
P2

z
}

. (9.29)

Now consider another random variable P3ρ3 with probability density function nt

P3
e
− nt

P3
y

,

then we can write z2 = z1 + P3ρ3 whose density function is given as

fZ2(z)=

∫ z

0

n2
t

(P1 − P2)P3

e
− nt

P3
y
(
e
− nt

P1
(z−y) − e

− nt
P2

(z−y)
)

dy

=
n2

t

(P1 − P2)P3

{
e
− nt

P1
z

∫ z

0

e
−nty(

P1−P3
P1P3

)
dy − e

− nt
P2

z

∫ z

0

e
−nty(

P2−P3
P2P3

)
dy

}

=
ntP1

(P1 − P2)(P1 − P3)
e
− nt

P1
z
+

ntP2

(P2 − P1)(P2 − P3)
e
− nt

P2
z

+
ntP3

(P3 − P1)(P3 − P2)
e
− nt

P3
z

=
3∑

k=1

aknt

Pk

e
− nt

Pk
z
, (9.30)

where

ak =
3∏

j=1, j 6=k

Pk

Pk − Pj

Pk 6= Pj. (9.31)

Therefore the probability density function of random variable z which is the weighted

sum of the exponentially distributed independent random variables ρks can be expressed

as (7.34).

9.5 Stochastic Ranking for Constrained Optimiza-

tion

A general nonlinear programming problem can be formulated as solving the objective

function

min f(x), x = (x1, · · · , xn) ∈ Rn, (9.32)
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where x ∈ S⋂F , S ⊆ Rn defines the search space which is a n-dimensional space

bounded by parametric constraints

xl
i ≤ xi ≤ xu

i , i ∈ {1, · · · , n} (9.33)

and the feasible region F is defined as

F = {x ∈ Rn|gj(x) ≤ 0 ∀ j ∈ {1, · · · ,m}} , (9.34)

where gj(x), j ∈ {1, · · · ,m} are the constraints. By introducing penalty terms in or-

der to penalize the constraint violations, the constrained optimization problem can be

transformed into an unconstrained one, which is given by

ψ(x) = f(x) + rgφ(gj(x); j = 1, · · · ,m), (9.35)

where φ ≥ 0 is a real valued function which imposes a penalty controlled by a sequence

of penalty coefficients {rg}G
0 , where g is the generation counter. The penalty function

method may work quite well for some problems, however, finding an optimal value of rg

becomes a difficult optimization problem itself. If rg is too small, an infeasible solution

may not be penalized enough. If rg is too large, a feasible solution is very likely to be found

but could be of poor quality. An adaptive approach where rg are adjusted dynamically

and automatically by an evolutionary algorithm itself, appears to be most promising for

tackling different constrained optimization problems. The stochastic ranking method for

evolutionary strategy ranks fit individuals [85] according to their objectives and penalty

values without specifying an rg value.
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