7.5 Heteroschichten aus FePt-Nanopartikeln und lamellaren Phospholipid-Multischichten

Tabelle 7.1: REM-Aufnahmen der Heteroschichten aus FePt-Nanopartikeln und DPPC-Multischichten nach 90 min Temperierung bei 55°C und 100% rel. LF für unterschiedliche Belegungstemperaturen.

Tabelle 7.2: REM-Aufnahmen der Heteroschichten aus FePt-Nanopartikeln und POPC-Multischichten

 nach 90 min Temperierung bei 35°C und 100% rel. LF für unterschiedliche Belegungstemperaturen.

Tabelle 7.3: REM-Aufnahmen der Heteroschichten aus FePt-Nanopartikeln und DOPC-Multischichten nach 90 min Temperierung bei 35°C und 100% rel. LF für unterschiedliche Belegungstemperaturen.

Tabelle 7.4: REM-Aufnahmen der Heteroschichten aus FePt-Nanopartikeln und DOPS-Multischichten nach 90 min Temperierung bei 35°C und 100% rel. LF für unterschiedliche Belegungstemperaturen.

7.5.1 Einfluss der Lipidschichtdicke auf die Anordnung der FePt-Nanopartikel

Abb. 7.36: Heteroschicht aus einer DOPS-Multischicht (hergestellt durch Spin-Coating auf einem (MeOH)-Wafer mit einer Lösung von DOPS in CHCl₃ der Konzentration 0.5 mg mL⁻¹) und FePt-Nanopartikeln (T_{FePt} = -10°C), Nachbehandlung: 90 min bei 35°C und 100% rel. LF. (a) AFM-Auswertung der Schichtdicke an einer mit einem Skalpell zugefügten Schnittkante. (b) REM-Aufnahmen der Heteroschicht.

Abb. 7.37: Heteroschicht aus einer DOPS-Multischicht (hergestellt durch Spin-Coating auf einem (MeOH)-Wafer mit einer Lösung von DOPS in CHCl₃ der Konzentration 1.0 mg mL⁻¹) und FePt-Nanopartikeln (T_{FePt} = -10°C). Nachbehandlung: 90 min bei 35°C und 100% rel. LF. (a) AFM-Auswertung der Schichtdicke an einer mit einem Skalpell zugefügten Schnittkante. (b) REM-Aufnahmen der Heteroschicht.

Abb. 7.38: Heteroschicht aus einer DOPS-Multischicht (hergestellt durch Spin-Coating auf einem (MeOH)-Wafer mit einer Lösung von DOPS in CHCl₃ der Konzentration 2.5 mg mL⁻¹) und FePt-Nanopartikeln (T_{FePt} = -10°C). Nachbehandlung: 90 min bei 35°C und 100% rel. LF. (a) AFM-Auswertung der Schichtdicke an einer mit einem Skalpell zugefügten Schnittkante. (b) REM-Aufnahmen der Heteroschicht.

Abb. 7.39: Heteroschicht aus einer DOPS-Multischicht (hergestellt durch Spin-Coating auf einem (MeOH)-Wafer mit einer Lösung von DOPS in CHCl₃ der Konzentration 5.0 mg mL⁻¹) und FePt-Nanopartikeln (T_{FePt} = -10°C). Nachbehandlung: 90 min bei 35°C und 100% rel. LF. (a) AFM-Auswertung der Schichtdicke an einer Defektstelle. (b) REM-Aufnahmen der Heteroschicht.

Abb. 7.40: Heteroschicht aus einer DOPS-Multischicht (hergestellt durch Spin-Coating auf einem (MeOH)-Wafer mit einer Lösung von DOPS in CHCl₃ der Konzentration 10.0 mg mL⁻¹) und FePt-Nanopartikeln (T_{FePt} = -10°C). Nachbehandlung: 90 min bei 35°C und 100% rel. LF. (a) AFM-Auswertung der Schichtdicke an einer mit einem Skalpell zugefügten Schnittkante. (b) REM-Aufnahmen der Heteroschicht.

Lipid	Durchmesser der Lipid-Doppelschicht	
DLPC	3.7 ± 0.5 nm	
POPC	4.8 ± 0.5 nm	
DPPC	6.0 ± 0.5 nm	
SLPC	5.0 ± 0.5 nm	
DOPC	4.7 ± 0.5 nm	
DOPA	4.1 ± 0.5 nm	
DOPE	4.3 ± 0.5 nm	
DOPG	4.5 ± 0.5 nm	
DOPS	4.5 ± 0.5 nm	

Tabelle 7.5: Durchmesser von Lipid-Doppelschichten, bestimmt unter atmosphärischen Bedingungen mit dem Rasterkraftmikroskop im Tapping-Modus mit einer Scanrate von 0.5 Hz.

	REM-Aufnahmen	Postulierte Lipid-Partikel-Strukturen
DOPA $T_m^{50} = -8^{\circ}C$ $\Delta = 8.0 \pm 1 \text{ nm und } 13.5 \pm 0.5 \text{ nm}$	100 nm	ca. 2 nm
DOPS $T_m^{50} = -11^{\circ}C$ $\Delta = 10.9 \pm 0.5 \text{ nm}$	1 <u>00 nm</u>	ca. 2 nm
DOPE $T_m^{50} = -16^{\circ}C$ $\Delta = 8.0 \pm 1 \text{ nm und } 13.5 \pm 0.5 \text{ nm}$	1 <u>00 nm</u>	ca. 2 nm
DOPG $T_m^{50} = -18^{\circ}C$ $\Delta = 8.5 \pm 1 \text{ nm und } 14.5 \pm 0.5 \text{ nm}$	100 nm	
DOPC $T_m^{50} = -20^{\circ}C$ $\Delta = 10.5 \pm 0.5 \text{ nm}$	1 <u>00 nm</u>	

Tabelle 7.6: Heteroschichten aus FePt-Nanopartikeln ($T_{FePt} = -10^{\circ}C$) und Lipidmultischichten der Lipide DOPA, DOPS, DOPE, DOPG sowie DOPC nach 90 min Temperierung bei 35°C und 100% rel. LF.