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Introduction

In this paper we study a class of filtered flat vector bundles of rank 2 which
we call pseudo-elliptic bundles. Let k be an algebraically closed field of
characteristic p > 0 and By be a smooth curve over k. A filtered flat vector
bundle (£, V) over By is a vector bundle £ on By together with a connection
V:E€—-E® ngi/k with logarithmic poles and a filtration Fil(€) C &
such that the Kodaira-Spencer map V : Fil(£) — &/Fil(€) is nontrivial.
A filtered flat vector bundle (£,V) is pseudo-elliptic if the p-curvature of
(€,V) is nilpotent and nonzero.

Pseudo-elliptic bundles are a generalization of elliptic bundles. These
arise naturally from families of elliptic curves. If f : Ey — By is a non-
isotrivial family of semistable elliptic curves in characteristic p > 0 the de
Rham cohomology H = H}.(Ey/Bog) of Ey together with the GauB-Manin
connection is an elliptic bundle. This is essentially a mod p version of elliptic
crystals as studied by Ogus ([39]). Elliptic bundles differ from pseudo-elliptic
bundles in that they posses a trace form. In the case of families of elliptic
curves the trace form is induced by Serre duality.

The aim of this paper is not to systematically develop the theory of
pseudo-elliptic bundles, but rather to investigate a concrete class of pseudo-
elliptic bundles. Namely, we construct pseudo-elliptic bundles (£, V) start-
ing from a deformation datum defined over the function field x = k(By) of a
curve By. The deformation data over x replace the families of elliptic curves
in the theory of elliptic bundles.

A deformation datum consists of an Hy-Galois cover g : Z — P! of degree
prime to p defined over &, together with a differential form w on Z satisfying
certain conditions (Section 2.1). The deformation datum (g,w) corresponds
to a Go-torsor Y — P! over , where Gy is a finite flat group scheme which
is generically isomorphic to p, %, Hp, for some (nontrivial) character x :
Ho — Fj. If Hy is cyclic of order 2 and g(Z) = 1, the bundle (§, V) is the
elliptic bundle corresponding to the de Rham cohomology of Z. (Since s
is the function field of a curve, we may consider Z as a family of curves.)
Suppose now that the genus of Z is larger than 1, and let H = H}.(Z), be
the y-isotypical subspace of the first de Rham cohomology group H of Z.
The flat bundle (£, V) is a subbundle of H. The filtration on £ is induced
from the Hodge filtration Fil(H) C H and the connection is induced from
the GauB—Manin connection on H. To make this construction work, we
consider deformation data which are special; this amounts to requiring that
graded piece of the Hodge filtration H/ Fil(H) has dimension one (see below
for a more precise definition).



A deformation datum can be given explicitly by a solution u of a Fuch-
sian differential equation L(u) = 0 of order two satisfying certain residue
conditions (Section 2.1). The explicit description of the solution u yields
a concrete description of the corresponding pseudo-elliptic bundle (£, V) in
terms of certain expansion coefficients ®,, ®. If (£, V) is an elliptic bundle
arising from a family of elliptic curves, these expansion coefficients reduce
to the classical Hasse invariant (Section 4.12). By analogy, we call the ex-
pansion coefficient @, (resp. ®) the the (dual) Hasse invariant ®,.

The local exponents of L(u) = 0 correspond to an invariant of the de-
formation datum which is called the signature o. The singularities (7;);en,
of the differential equation form a subset of the critical points of the defor-
mation datum. These are branch points of the Hy-Galois cover g : Z — P!,
The other branch points of g are the zeros of the solution u. The differ-
ential equation has two types of singularities: the primitive and the new
ones. Whereas the primitive singularities (7;)ie,,;, are allowed to move
freely, the new singularities are determined by the residue conditions which
we impose on u. Deformation data were first introduced in the context of
reduction of Galois covers of curves, and the terminology of primitive and
new singularities is motivated by this ([41]). However, deformation data are
also interesting in their own right.

The description of deformation data in terms of an algebraic solution
of a Fuchsian differential equation leads us to study the following problem.
For fixed signature o, we want to determine the moduli space By of dif-
ferential equations for which the corresponding differential equation admits
an algebraic solution u which satisfies the residue condition. The acces-
sary parameter problem asks to determine Bp. Our construction yields a
pseudo-elliptic bundle over By.

Let us compare this to the result of Dwork ([16]). Dwork studies the mod-
uli space of differential operators with fixed local exponents and nilpotent
p-curvature. In the situation we consider, it follows from a result of Honda
([18]) that a differential operator L has nilpotent p-curvature if and only
if L has an algebraic solution u. Therefore the difference between Dwork’s
accessary parameter problem and ours is the residue condition we impose
on the algebraic solution u. Dwork shows that his moduli space is locally a
complete intersection. Moreover, the moduli space admits a finite map to
an open subscheme of the configuration space of singularities (7;);cp,-

In this paper we mainly restrict to the case of 4 primitive singularities,
which we normalize to xg = 00,21 = 0,22 = 1,23 = X\. We show that the
moduli space By of deformation data with fixed signature is either empty
or an (affine) smooth curve. Moreover we show that the natural forgetful



map 7o : By — IP’%\ is finite and separable. We call this cover the accessary
parameter cover. The key technical tool used in the proof is the defor-
mation theory of p,-torsors, following Wewers ([52]). Wewers treats the
case |Bprim| = 3, therefore we need to extend his results to the case that
|Bprim| = 4. For example, Wewers shows in his situation that the deforma-
tion functor of p,-torsors satisfies a local-global principal. In our situation
this no longer holds.

To a pseudo-elliptic bundle (£,V) we may naturally associate a differ-
ential equation Lg(®,) = @) + 07P, + §5P. = 0, by taking the horizontal
sections of £. The Hasse invariant ®, is an algebraic solution of this dif-
ferential equation which one might call the Hurwitz differential equation to
distinguish it from L(u) = 0. This terminology is explained below. Giving
the pseudo-elliptic bundle is equivalent to giving the Hurwitz differential
equation together with the algebraic solution ®,. The construction of the
pseudo-elliptic bundle associated to a deformation datum may be rephrased
as follows. To an algebraic solution w of a Fuchsian differential equation
L(u) = 0 with moving singularities we associate an algebraic solution @,
of another differential equation Lg(®,.) = 0. This last differential equation
lives on the moduli space By.

A key result is Theorem 4.7.5 which gives a criterion for the Kodaira—
Spencer map of a pseudo-elliptic bundle (£,V) to be an isomorphism: we
show that the Kodaira—Spencer map is an isomorphism if the supersingular
points (Section 4.4) are unramified in 7y : By — }P’i. Under this condition,
our bundles are indigenous bundles in the sense of [11]. In the terminology
of Mochizuki [37, Section I.4] these are filtered flat vector bundles whose
associated projective bundle is torally indigenous.

In the second part of the paper (Sections 5 and 6), we apply our results
to the theory of stable reduction of Galois covers of curves. Let GG be a finite
group whose order is strictly divisible by p. Let R be a complete discrete
valuation ring with fraction field K of characteristic zero and residue field an
algebraically closed field k of characteristic p > 0. We start with a G-Galois
cover f:Y — X = }P’}{ branched at four ordered points which we suppose
to be generic. Suppose that f:Y — }P’}( has bad reduction to characteristic
p. Our assumptions imply that the stable reduction f : ¥ — X of f is
well understood, by an extension of results of Raynaud [41] and Wewers
[51]. All information is encoded in a deformation datum. Let (£, V) be the
corresponding pseudo-elliptic bundle.

Let H/Q, be a Hurwitz space parameterizing G-Galois covers of P!
branched at four ordered points. We suppose that H is connected and that
f corresponds to a point of H. We write 7 : H — P}\ for the natural map



which sends a G-Galois cover branched at g = co,z1 = 0,29 = 1,23 = A
to the value \. Write w : H — IP’}\ for the Galois closure of 7; note that this
cover is branched at the three points A = 0,1, 00. In general p? divides the
order of the Galois group of zo. This implies that we cannot use the results
of Raynaud ([41]) and Wewers ([51]) to study the stable reduction of w. To
amend this, we will use Kato’s definition of the differential Swan conductor.
To every virtual character x : I' — Z* of I one may associate a differential
Swan conductor #(x); it is a differential form on a cover of P!,

The idea is that, for I-Galois covers w such that p? divides the order
of the Galois group, differential Swan conductors may be used as replace-
ment for the deformation datum in describing the stable reduction of w.
In Section 5.1 we give basic definitions. We show that if p strictly divides
the order of I" there is essentially only one differential Swan conductor 0(y).
Moreover, the differential form 6(y) defines a deformation datum. One may
expect that there exists a nice theory of stable reduction of three-point cov-
ers generalizing the work of Raynaud and Wewers, at least in the case that
the Sylow p-subgroup of the Galois group I' is elementary abelian. The
present work only gives a glimpse of what such a theory might look like.

Let w : H — IP’}\ be the Galois closure of a Hurwitz-space cover, as
above. The main result of Section 5 is that the pseudo-elliptic bundle (£, V)
we associated to f corresponds to a differential Swan conductor 6(x) of
w. The differential Swan conductor é(x) corresponds to the solution ®,
of the Hurwitz differential equation Lg(®,) = 0 in the same way as the
deformation datum (g,w) corresponds to the solution w of the differential
equation L(u) = 0. When p strictly divides the order of the Galois group of
w there is essentially only one differential Swan conductor, and the stable
reduction is determined by #(x). It would be interesting to see whether
this holds more generally, for example if the Sylow p-subgroup P of T is
elementary abelian and irreducible under the action of Np(P)/P.

We end the paper with applications of our results to Galois theory. We
illustrate how to give a formula for the number of PSLy(p)-covers with good
reduction to characteristic p.

We now give a more precise description of our results.

Deformation data Let R be a complete discrete valuation ring with frac-
tion field K of characteristic zero and residue field an algebraically closed
field k of characteristic p > 0. Let f:Y — X = P}{ be a G-Galois cover
over K branched at four points xzy = co,z1 = 0,29 = 1,3 = A, such that
(PL; x;) is generic. Assume that f has bad reduction to characteristic p. For



simplicity, we assume that the ramification indices of f are prime to p. To
the stable reduction f : Y — X of f we may associate a deformation datum
(g,w). Here g : Z — P! is a Galois cover of P! of order prime to p, and w
is a differential form on Z which is logarithmic, i.e. w = du/u (Proposition
2.3.3). The curve P! is the reduction of X. The points (z;) specialize to
pairwise distinct points (7;) on P!. The cover g is branched at 7g,...,73,
together with additional points (7;)iecp,... . Since (X;x;) is generic, it can be
shown that the deformation datum determines the stable reduction. There
is a character x : Hp := Gal(Z,P!) — F) such that h-w = x(h)w. To
simplify the exposition in this introduction, we suppose that y is injective,
i.e. Hyis a cyclic group of order dividing p — 1. The curve Z is a connected
component of the smooth projective curve defined by the Kummer equation

P = H (x —713)",

T #00

where 0 < a; < p—1. We call & = (0; := a;/(p — 1)) the signature of the
deformation datum. Proposition 2.4.1 states that in a suitable sense every
deformation datum (g,w) arises from the stable reduction of some Galois
cover in characteristic zero. Therefore deformation data may be studied
purely in characteristic p, forgetting the G-Galois cover f in characteristic
Zero.

Let k = K be an extension of k over which the deformation datum (g, w)
may be defined. Denote by H1,(Z/k) the first de Rham cohomology group in
characteristic p. The group Hp acts on it; write HL,(Z/k), for the subspace
on which Hy acts via the character . Consider its Hodge filtration:

0 — Fil' = H%Z,9), — HL(Z/k)y — H(Z,0), — 0.

An easy computation shows that dim H*(Z,0), < 1. (This uses the as-
sumption that f is branched at four points, see Section 2.3.) Generalizing the
terminology of [50], we call a deformation datum special if dim H*(Z, O),, =
1. In terms of the signature, this condition corresponds to ), a; = 2(p —1).

Sections 2 and 3 concern the study of deformation data. We are inter-
ested in the existence of special deformation data with given signature, and
properties of the deformation space of deformation data. We describe the
main results. In Section 3.1 and Section 3.2 we show that there is a bijec-
tion between special deformation data of given signature o and polynomial
solutions u = u(x) of degree d = (p — 1) — (D_, a;)/2 of a certain Fuchsian
differential equation (19) satisfying certain additional properties (Proposi-
tion 3.2.2). The set of singularities of this differential equation is the set (7;)



of branch points of g. The differential equation depends furthermore on a
set (3;) of accessary parameters. The following result is proved in Section
3.3.

Proposition 3.3.2:  Suppose that a; = 2 for all i ¢ {0, 1,2,3}. Then there
exists a special deformation datum with signature o.

In the situation of the proposition there is just one accessary parameter.
For more general signatures the answer to the existence question is more
subtle.

Our next result is an analog of Dwork’s accessary parameter problem
(Section 3.4). Fix a signature o, and suppose that there exists a (multi-
plicative) special deformation datum with signature . We define a variety
By essentially as the locus of all (7;, 8;);,; such that there exists a special de-
formation datum with the fixed signature o, branch locus (7;) and accessary
parameters (;). Equivalently, the moduli space By parameterizes the set of
singularities (7;);ep, together with the set of zeros (7;)icp,. of u. Together
these form the set of critical points of the deformation datum. Therefore the
curve Z which is part of the deformation datum is defined over By. In other
words, we may take k = k(By). One might call By the accessary parameter
space.

Theorem  The variety By is a smooth affine curve. The natural map
mo : Bg — IP’%\ of By is finite and separable onto its image.

The theorem is proven in Sections 3.4 and 4.7. It relies on studying the
deformation theory of u,-torsors ([52]).

The pseudo-elliptic bundle associated to a deformation datum Let
(g : Z — P!, w) be a deformation datum as above, where (P'; 7y = 00,71 =
0,79 = 1,73 = A) is generic. The following is our key assumption in most of
this paper:

Assumption 4.2.1:
e dim H'(Z,0), =1, i.e. the deformation datum is special,

e the Frobenius morphism F : H'(Z,0), — H'(Z,0), is an isomor-
phism.

10



Let By be the accessary parameter space, as above. Abusing notation,
we also write By for the corresponding smooth projective curve. Assumption
4.2.1 allows us to define a filtered flat vector bundle (£, V) on the (smooth
projective) curve By. The differential form w is a holomorphic logarithmic
differential form on Z, therefore it lies in Fil' ¢ H},(Z/k),. In Section
4.3 we define a 2-dimensional vector subspace V' C H1,(Z/k), which is
generated by w and a suitable lift of H*(Z,0),. This is the first step in
defining the pseudo-elliptic bundle (£,V); once £ is defined it holds that
V=E£®k.

We show that V is stabilized by the GauB~Manin connection

V: HY(Z/R)y — Hin(Z]K)y @ O,

This gives V' the structure of an F-crystal in characteristic p. The Hodge
filtration on H',(Z/k), induces a nontrivial filtration on V.

The reason for imposing Assumption 4.2.1 is the following. If we drop
the assumption that the deformation datum is special, the dimension of
HY(Z,0), is zero, and the analog of the bundle £ has rank one. If the
deformation datum is special but F' : HY(Z,0), — H(Z,0),, is identically
zero, one may define an analog of the bundle £ as well. (The definition we
give in Section 4.3 does not go through, but one may use the correspondence
between £ and the group scheme G defined in Section 4.4.) In this case the
bundle £ has rank 2, but it splits as a direct sum & ~ Fil' @M of flat
vector bundles. This is in some sense a degenerate case; one expects that
it only occurs rarely, if at all. To get an interesting theory in this case, it
is certainly not enough to study the flat vector bundle (£, V) which lives in
characteristic p. Probably, one would be able to extend some of the results
by replacing the F-crystal V = £ ® & in characteristic p, by a lift V to an
F-crystal in mixed characteristic, if it exists.

Sections 4.4—4.10 are the heart of the paper. They concern the properties
of the flat vector bundle (£, V). The following theorem summarizes the main
results (Proposition 4.6.1 and Theorem 4.7.5).

Theorem
(a) The vector space V extends to a pseudo-elliptic bundle (£, V) over By.
(b) Under a mild hypotheses, the associated Kodaira—Spencer map is an

isomorphism, and £ is an indigenous bundle.

The study of the Kodaira—Spencer map again relies on a study of the
deformation theory of p,-torsors. Since the corresponding theory for ay,-

11



torsors is not available, we need to impose a mild condition here. Namely,
we suppose that the socalled supersingular points are unramified in the
accessary parameter cover mg : By — IP’%\.

It is well known that the flat vector bundle (£, V) corresponds to a Fuch-
sian differential equation. We explicitly calculate this differential equation
in terms of certain expansion coefficients of a basis of V, following Katz
([28], [29]). Let us explain the idea. The differential form w is not de-
fined over k(By), but we may write w = @i/(p_l)wo with ®, € k(By) and
wo = zdz/z(x — 1)(z — N), i.e. wy may be defined over k(By). The rational
function ®,, called the Hasse invariant, may be interpreted as an expansion
coefficient of wy. In the case that g : Z — P! is the Legendre family of
elliptic curves, the function ®, is the classical Hasse invariant whose zeros
are the A for which the fiber Zy of Z is supersingular. We also define a
“dual” function ®; it corresponds in a similar way to a suitably chosen basis
of HY(Z,Q),~1 = H'(Z,0){!.

The Swan conductor of a Hurwitz curve In Section 5 we change
focus. We let f : Y — P! be a G-Galois cover with bad reduction, whose
stable reduction corresponds to the deformation datum (g,w). As before,
we let H = H; be the connected component of the Hurwitz space Hg of
(G-Galois covers such that f corresponds to a point of H. We show that the
cover m: H — IP’}\ has bad reduction.

Denote by w : H — IP’%\ the Galois closure of 7. Since 7 has bad reduction,
it follows that p divides the order of the Galois group I of w. In general, p?
divides the order of the Sylow p-subgroup of T.

Theorem 5.3.2 The bundle (£,V) corresponds to a differential Swan
conductor of the cover @ : H — P}.

The proof of this theorem relies on Raynaud’s construction of the auxil-
iary cover ([41]) together with what we showed before on the curve By. This
allows to determine the field over which the G-cover f acquires stable reduc-
tion (Proposition 5.2.3). The statement of the differential Swan conductor
follows then from Galois theoretic considerations (Theorem 5.3.2).

In the case that p strictly divides the order of the Galois group I' of
w there is essentially only one Swan conductor associated to w, which is
just the deformation datum, in the sense we considered before. It follows
therefore from the results of [51] that this differential Swan conductor com-
pletely determines the stable reduction of w. In particular this applies to
the case that G = Z/p x, Z/m for some injective character x : Z/m — F)

12



and |Bpew| = 0. This is the situation of [9], see also Example 4.10.2. In this
situation one can describe everything very explicitly. The main result of [9]
states that w has bad reduction if and only if there exists an f as above
with special bad reduction.

Section 6.3 contains complements and examples. We give a sufficient
condition on the G-Galois cover f : Y — P! for Assumption 4.2.1 to hold.
When G is SLy(p) we can say more. In Section 6.2 we give a criterion
which guarantees that if a G-Galois cover f has bad reduction then it has
special reduction. Under this condition, Assumption 4.2.1.(a) is therefore
automatically satisfied. In Section 6.4 we give a concrete example. This
illustrates how one can use our results to compute the number of SLa(p)-
Galois covers with good reduction, generalizing results of [13].

Section 1 is a bit independent of the rest of the paper. It considers the
definition of the F-crystal V in case G = Fy xy Z/m, where x : Z/m — F*
is an irreducible character and ¢ = p®. A major difference here is that we do
not suppose that p strictly divides the order of G. We focus on defining the
analog of the expansion coefficients ®,, ®, and studying their properties. We
do not consider the relation with the stable reduction of the Hurwitz space
of G-Galois covers here. This will be done elsewhere, generalizing the result
of [9] for ¢ = p. This section also recalls some p-adic limit formulas for the
eigenvalues of the Frobenius morphism on the lift V' of the F-crystal V over
Zy. This is a mixed characteristic analog of the expansion coefficient ®, we
discussed above. It seems that similar formulas exist in the more general
context of pseudo-elliptic bundles, but for this one needs to extend the mod
p description of this paper to mixed characteristic. The works of Katz [29]
and Ogus [39] suggest that this may be done.
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1 The Picard—Fuchs differential equation of a cyclic
cover of P!

This chapter serves as an introduction to the rest of the paper. We recall
known results on cyclic covers of the projective line in mixed characteristic.
In Section 1.1 we describe the de Rham cohomology of a cyclic cover of P
in characteristic zero, and in Section 1.3 we recall the definition of the unit
root F-crystal. Starting from Section 1.2, we suppose that ¢ : Z — P! is an
m-cyclic cover branched at four points in mixed characteristic p, where m is
prime to p. We then study the eigenvalues of the Frobenius morphism on the
de Rham cohomology of Z, and relate them to solutions of the Picard—Fuchs
differential equation of Z. These results are all known, but we present them
in a coherent way, which will motivate the rest of the paper. An interesting
aspect which will not be addressed in the rest of the paper is the p-adic
limit formulas for the eigenvalues of Frobenius (see for example Proposition
1.3.6). Similar formulas exist for the more general situation we consider later
on. This illustrates that the picture of Section 4 is the first approximation
of an F-crystal which carries a rich arithmetic structure.

1.1 The de Rham cohomology of a cyclic cover of P! Let m > 1
and 7 > 3 be integers. Let S = Spec(A4) be smooth over Spec(Z[(m,1/m]),
where (,, is a primitive mth root of unity. Write K for the fraction field of

A. Choose an injective character x : Z/m — K*. Let a = (a1,...,a,) be
an r-tuple of integers with 0 < a; < m and > a; = 0 mod m. We suppose
that ged(aq,...,a,,m) = 1. Let x = (1 = 0,29 = 1,23,...,2, = 00)

be pairwise disjoint S-valued points of P}g. Let Z — }P’}g be the m-cyclic
cover of type (a;x) ([8, Definition 2.1]). This means that Z is the complete
nonsingular curve over S corresponding to the equation
r—1
2™ = H(l‘ —x,)™,
pn=1
where h € H := Gal(Z,P!) ~ Z/m acts as h- z = x(h)z.

Notation 1.1.1 Write }°_, a, = (b+1)m and o, = a,/m. For a rational
number v, we denote by (v) its fractional part and by [v] its integral part. For
i=1,...,m—1, wewrite a,(i) = m(i-a,/m). Let 37/ _; a,(i) = (b(i)+1)m

and o,(i) = a,(i)/m.

The type depends on the choice of the character y. Replacing x by x*
with ged(i,m) = 1 changes (a1, ...,a,) into (ai(i),...,a(7)).

14



Denote by H1.(Z/S) the first relative de Rham cohomology group of
Z/S and write H} (Z/S),: for the eigenspace corresponding to x*. Recall
that the Hodge filtration looks in this case as follows:

0— HYZ,Q")\ = Hyy(Z/S)i = H(Z,0z),: — 0. (1)
The following lemma describes a basis of Hy,(Z/S),..

Lemma 1.1.2 Let 0 < i < m be an integer prime to m.
(a) The dimension of Hy,(Z/S),: (resp. H*(Z,Q),:) is 7 — 2 (resp. r —
2 —b(i)).
(b) The differentials

; R i .
w;: r—1 1+[iou]’ J=1.r=2
Hp:1(33_37u) a

form a basis over S of Hi,(Z/5),.
(¢) The differentials wy, . .. ,w,_o_p(;) form a basis over S of H*(Z,Q1), .

Proof: It is shown in [8, Lemma 4.3] that the dimension over S of H'(Z,0),.
is b(i). Serre duality identifies H'(Z,0),: with the dual of H(Z,Q"), -:.
Therefore H°(Z, ), i has S-dimension (a1(m—i)+-- - a,(m—1i)—m)/m =
r —2 — b(4). This proves (a).

Write Zj for the geometric generic fiber of Z . Part (b) follows for
example by considering H} (Zx/K),:. Since K has characteristic zero, this
space consists of differentials of the second kind modulo exact differentials,
[17, Section 5.3]. (Recall that a meromorphic differential on Zy is of the
second kind if it does not have any residues.) Part (c) follows from (a) and
(b). O

The following lemma describes a basis of H(Z,0), using Cech coho-
mology with respect to the covering U = {Uy,Us} of Z, where Uy = Z — {0}
and Us = z — {o0}.

Lemma 1.1.3 Let 0 < i < m be an integer prime to m.

(a) For j =1,...,b;, let




Then (€}); is a basis of HY(Z,0),:. Up to multiplication with an
element of ), this is the dual basis to (wjm_i) with respect to Serre

duality.

(b) Let w be a differential of the second kind which is holomorphic outside
oo. There exists a unique rational function f on Z such that w + df
is holomorphic at Z — {0}. The map

Hy(Z/S) — H'(Z,0)
of (1) sends the class of w to the class of f.

Proof: The statement that (5;)] form a basis of H*(Z,0),: is shown in
[8, Section 5]. We check that this basis is dual to (w;l_i)jzl,m,r_g_bi under
Serre duality. Recall from [43, Section 8] that Serre duality is given by the
pairing

HY(Z,Q") o x HY(Z,0)ym-i,  (w,&) =) Resp(&w).
PeZ

One checks that <w§,§§’7‘i> = 0, j». This proves (a).

Let w be a differential of the second kind on Zz. Suppose that the class of
w represents an element of Hy,(Z/S),:. Lemma 1.1.2 implies that the class
of w is represented by a differential of the second kind which is holomorphic
outside co. The existence of a rational function f as in the statement of
(b) follows from now [17, page 456]. Since [w] € Hy,(Z;/K),i, the rational
function f may be written as z'f1/f2, where the f, are polynomials in z.
It is easy to see that the map described in the statement of the lemma is
surjective and has kernel H°(Zz,Q'). Part (b) now follows from the fact
that Poincaré duality is compatible with Serre duality. |

In the rest of this section we suppose that » = 4 and denote the branch
point of the cover by 1 = 0,29 = 1,23 = A\,xy = co. We let S =
Spec(Z[Cm» A, 1/mA(N — 1)]). We compute the action of the Gaui—-Manin
connection V : Hj,(Z/S),i — Hix(Z/S),: ®s Qg. The results of this sec-
tion are probably known to the experts. Some of it goes back to Dwork
[16] and Stienstra—Van der Put—Van der Marel [46]. The case m = 2 is well
known, and can be found for example in [24].

We restrict to the case r = 4, since then the base space S is one dimen-
sional and the Picard—Fuchs differential equation is an ordinary differential
equation of order two. The computation of the Picard—Fuchs differential
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equation can be easily extended to the general case. Let 0 < ¢ < m be an
integer which is prime to m. Write

B Zdz
B $1+[wl}(x _ 1)1+[i02} (z — )\)1+[w3]’

(@) = Vgt = (1 - oal) s,

Recall from Section 1.1 that Hj,(Z/S),: has S-dimension two. The S-
dimension of H(Z, Q") i is 2—b(i) = 3—(a1(i)+az2(i)+as(i)+as(i)) /m < 2.
In other words, the Hodge filtration is “trivial” unless b(i) = 1. One checks
that w(i) (resp. w(i)’) is holomorphic if and only if b(7) < 1 (resp. b(i) = 0).

wi

(@) = V() @i

Lemma 1.1.4 Let 0 < ¢ < m be an integer prime to p. Write A*(i) =
1—o3(i), B*(i) = 2= (01(i) + 02(i) + 03(4)), and C*(i) = 2— (o1 (i) + 03(1)).
Put w :=wj. Then

A — Do’ + [(A*(6) + B*(i) + DA — C* ()] w' + A*()B* ()wr =0 (2)
in H3(Z/8),.

Proof: Lemma 1.1.2 implies that w and w’ form a basis of HJ,(Z/S),:. The
lemma now follows from the identity

A\ = 1)o” + [(A*(§) + B*(i) + DA — C*(i)] o + A*())B* (i)w =
1,0'1(7;) (l‘ _ 1)0’2(7L)
(z — X\)2=os(0)

= (o3(i) — 1)d

g

Welet x=x+x2+ -+ pril. The absolute Frobenius morphism acts
on
-1
Hi(2/8)x = 0l Hyn(2/5)

xP'”

This is seen as follows. The comparison isomorphism between Hl. (Z/S)
and H.,(Z/S) yields a p-semilinear map F : H..(Z/S) — H..(Z/S). Re-
stricting to the eigenspaces, yields a map F : HY (Z/S),s — Hi,(Z/S)wi.
Therefore we obtain a map F : H.,(Z/9)x — H}.(Z/S); and HL.(Z/9)x.

1.2 The Frobenius morphism in characteristic p Let p be prime
which does not divide m. Denote by f the order of p in (Z/m)* and write

g = pf. In this section we compute the action of the Frobenius morphism
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on de Rham cohomology in characteristic p. Essentially, this follows from
results of [8]. We use the notation from Section 1.1 and suppose that r = 4.
Write Z = Z ® F),. For t € P! —{0,1, 00}, we write Z; for the fiber at ¢ of
Z.

Lemma 1.2.1 Suppose that b(p') =1 fori =0,...,f — 1. There exists a
dense open subset U C P! — {0,1,00}, such that map F : H'(Z;,0); —
HY(Z;,0)5 is an isomorphism for all t € U.

Proof: This follows from [8, Proposition 6.7]. O
Suppose that b(p') = dim H'(Z, O)Xpi =1,fori =0,....,f —1. Tt
follows from Lemma 1.1.3 that £(i) := ffl is a basis of HY(Z,0)_,:. We

, _ xP
write w(i) := w} for the basis of H°(Z, Ql)xpi.

Definition 1.2.2 Let 0 < i < f — 1 be an integer. The polynomial

o0 = (N Y <[p02(p"‘1)]> <[p0-3(pi_l)]>)\n2 3)

n T
ni+n2=N; 1 2

is called the ith partial a-Hasse invariant, or ith Hasse invariant for short.
Here N; = p—1—[po4(p'~1)]. The Hasse invariant is defined as ® = H{:_OI ;.

It is shown in [8, Section 5] that F&;_1 = ®;§;. If m = 2 the only possible
typeisa = (1,1,1,1), and Z is the Legendre family of elliptic curves. In this
case ¥, is the classical Hasse invariant, whose zeros are the supersingular
\’s, i.e. the values of A for which the elliptic curve Z, is supersingular.

The Cartier operator C : HY(Z,Q') — H%(Z,Q') is defined as the trans-
pose of F: HY(Z,0) — H*(Z,0). This implies that Cw(i) = (®)/Pw(i —
1). Here ®F is the ith Hasse invariant corresponding to the dual type
a* = (m —ay,m — ag,m — ag,m — ayq), or, equivalently, the matrix of
F:H\(Z, (’))X,pifl — HY(Z, (’))X,pi.

One easily checks that ®; is a nonzero polynomial (Lemma 1.2.3.(d)).
This remark proves Lemma 1.2.1.(b). The open set & mentioned in the
statement of Lemma 1.2.1 consists of the complement in P! —{0, 1, 00} of the
zero locus of the polynomials ®;. Assume that b(p') =1fori=0,...,f—1.
Then we can describe the group scheme J(Z;)[ply, for t € U. Recall that
there exist integers €(i), (i) and a local-local group scheme L(7) such that

J(Z)ply: = (Z/p)D x ()" x L(3).
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Since the Frobenius morphism F : Hl(Zt,O)Xpi — Hl(Zt,O)Xpi+1 is an

isomorphism, we have that v(p') = dimg, Hl(Zt,(’))ipfi = 1. The Cartier
dual of J(Zt)[p]xpi is J(Zt)[p]x,pi. One easily checks that b(—p’) = 1 for
i =0,...,f —1, also. Therefore €(p’) = v(—p') = 1 and L(p*) = (0).
Alternatively, one could use that €(i) = dimp, H%(Z;, Ql)if
case m = 2, the zeros of the Hasse invariants corresponds to curves for which
the group scheme J(Z;)[p]; contains a local-local piece.

The Hasse invariant ®} is an expansion coefficient of the differential w(3).
To ease notation, we only explain this for ¢ = 0 and m prime, but it is clear
how to extend the formula’s. Our argument is adopted from [28]. Choose
uw =Y this is a local parameter of Z at oo. Write

zdx B dx
r(x—1)(z—N) 291 (x—1)-o2(x — \)1-os

it Just as in the

w(0) =

= —mu®(1 —u™)%27 1 - )\um)g3_1d—u

d
= 1> Prnyay V™0 52

u
n>0

u

for the expansion of w with respect to u. Here we use that o1 4+09+034+04 =
2. Note ) )
g9 — g3 — :
s (s
1+7=n
In particular for n = [pcr4 (pf_l)] we find
Pomta,(A) = @7 (mod p).

The main result of [28] implies that ®} is a solution modulo p of the Picard—
Fuchs differential equation of Lemma 1.1.4.(b). This is also easy to check
directly from the explicit formula (3) for ®;.

For future reference, we state the following elementary lemma.

Lemma 1.2.3 (a) The polynomial ®; is a solution modulo p of the dif-
ferential equation

A = Du” + [(A*(5) + B*(i) + 1)A — C*(i)]u’ + A*(4) B* (i)u = 0,
where A* (i), B*(i) and C*(i) are as in Lemma 1.1.4.
(b) The polynomial ®; has a zero of order max(N; — [poa(p*~1)],0) at
A=0.
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(c) The polynomial ®; has a zero of order max(N; — [po1(pi~1)],0) at
A=1

(d) The degree of ®; is min(N;, [po3(p'~1)]).

(e) The polynomial ®; is nonzero as polynomial in \. All zeros different
from A = 0,1 are simple zeros.

(f) We have

o _ (@) Cr(@)—1  C*() — A*(i) — B*(3)
3, e \ + P (mod p).
Proof: We already proved (a). Parts (b), (c) and (d) follow from the defi-
nition of ®; as in [9, Corollary 5.5]. Since 0 < [po,(p'~!)] < p —1 for all p,
the polynomial ®; is nonzero. All zeros of ®; different from 0 and 1 are sim-
ple, since ®; is the solution to a hypergeometric differential equation. The
Cartier dual of the group scheme J(Z Ml i s J Z APl p-i- This implies
that the zeros of ®; and @} different from 0 and 1 are equal. Therefore (f)
follows from (b) and (c). O

Definition 1.2.4 Let A, B,C € Q and consider the corresponding hyper-
geometric differential equation

AMA=1Df"+[(A+B+1)X=C]f '+ ABf =0. (5)
Define the hypergeometric differential equation dual to (5) as
AMA=Df"+[(A+B-3)A+C-2)f'+(A-1)(B-1)f=0. (6)

One easily checks that the dual to the Picard—Fuchs differential equation
of H},(Z/S)y is the Picard-Fuchs differential equation of Hl,(Z/S),-1.
Both differential equations play a role in the description of the unit root
crystal in Section 1.3. We write A(i) = o3(i) = 1 — A*(i), B(i) = 0% + 04 +
ol —1=1- B*(i), C(i) = o} + 04 = 2 — C*(i) for the parameters of the
differential equation

A = Dw(@)"” + [(A®GE) + B@E) + DX — C(1)|w(i) + A(@)B(i)w(i) =0 (7)
dual to (2).
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1.3 The unit root crystal The notations are as in Section 1.2. In
particular, we suppose that 7 = 4 and b(p’) = 1 for i = 0,..., f — 1. Choose
a lift ®; € Z[\] of ®;. Put o = Hlf:_ol ®;. Define R (resp. Ro.q) to be
the p-adic completion of Z,[A][1/A(A — 1)] (resp. Zy[A][L/A(\ — 1)®]. Put
S = Spec(R) and S,.q = Spec(R,.q). We choose once and for all a lift ¢
to S of the Frobenius morphism on [, (A) by defining ¢(X) = A?. We write
D(t,p™) (resp. D(t,pT)) for the open (resp. closed) rigid analytic disc with
center ¢ and radius p. Let k be the algebraic closure of F,,. In this section,
we denote by F' the relative Frobenius morphism.

Lemma 1.3.1 (a) We have that H},(Z/S..4)5 is an F-crystal.

(b) We write Fil' = H°(Z, Q) for the first part of the Hodge filtration.
There exists an F-crystal U C H1,(Z/S)s such that

HY(Z/S0a); = U @ Fill.
The F-crystal U is called the unit root part.

Part (a) of the lemma holds without assumption on 7 and b(p*).

Proof: There exists a canonical isomorphism H1.(Z/S) ~ HL. (Z/S) ([4,
Corollary 7.4]). This endows H1,(Z/S) with the structure of an F-crystal.
Concretely, there is a horizontal morphism F(y) : ¢*HY.(Z/S) — HL.(Z/S)
such that F(¢) ® Q is an isomorphism ([26, Definition 1.3]). The morphism
F(p) depends on the lift ¢ we have chosen, but it suffices to consider F(¢p)
for one chosen lift. Therefore we will sometimes drop ¢ from the notation.
Write R’ for the p-adic completion of W (IFg)[A][1/A(A — 1)]. Then

H}(Z)S)y ®@r R = &) H}(Z/S)

xP"
Restricting to the eigenspaces, we have that F(p) : gp*Hc}R(Z/S)Xpi —
H(}R(Z/S)XpiH. This proves (a).

It is proved in [33] that F(¢)Fil! € pH'(Z/S);z. Lemma 1.2.1 states
that for t € S,.u we have that F(p) : ¢*HY(Z;,0); — HY(Z;,0)5 is an
isomorphism. This implies that the Newton polygon of t*H1,(Z/S)y is

ordinary, that is, has f slopes zero and f slopes 1. Therefore (b) follows
from [26, Theorem 4.1]. O

The goal of this section is to give a concrete description of the unit root
crystal U, extending the description for m = 2 given in [26, Section 8]. In the
rest of this section we suppose for simplicity that the dual character of x does
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not equal x?', for some i. If y = x?' Poincaré duality induces a symplectic
pairing on H},(Z/S)5. This happens for example for m = 2, where ¥ is self
dual. In this case one needs to make a small modification to the construction
below. Namely, one should not choose a;(0) and (3;(0) independently, but
should make sure that the chosen basis respects the symplectic structure.

Since it is obvious how to adept the arguments, we leave out this case here.

We write M := HL. (Z/S.a)x. Let t € W(F,) — {0,1} with ®(¢) # 0.
Write M, for the restriction of M to the open rigid disk D(t,1—) and U; for
its unit root part. Both M; and U, are crystals over W (k)[[A — t]]. Recall
that we may write

M = &l 0 M (), U = {20 ).

We write M (resp. UD) for the value at A\ = t of M; (resp. Uy); these are
crystals over W (k). The special fiber M (i) ® k admits a basis &? (i), 87 (i)
such that

Fo'a(i—1)=ag(i),  CA()=¢"Fi-1).
Namely, it follows from Section 1.2 that Ff(x/)*€(0) = ®(t)¢(0). There-
fore we may define a?(0) as a suitable multiple of £(0) and put ) (i) =
Fi(gai)*o??(O). Similarly, define 37(0) such that C/32(0) = (©f)*8?(0) and
put G7(i) = €/~ (") 3(0).
It is clear that the basis a? (i), Y (i) lifts to a horizontal basis o (i), 87 (i)
of M such that

Fe*ad(i—1) = a(i),  Fo*B(i —1) = pB(i). (8)

Proposition 1.3.2 The vectors o?(i) and (i) are the value at t of a
horizontal basis of My over D(t,17) which we denote by ay (i), (¢ (7).

Proof: This is proved in [26, Proposition 3.12]. We sketch the argument.

Claim 1: We first claim that o (i) and 3?(i) extend to a horizontal basis
over D(t, par ), where pg is the valuation of pt/®P=1) The reason is that

_ z\"
(=0 € B = W0 o) = (L aw () 1an —0)
is a PD-ideal ([4, Example 3.2]). Therefore there exists an isomorphism

VM = ev* My = M; @) Ry- Here ,ev : W(E)[[A —t]] — R, are the
inclusion and evaluation at ¢, respectively. The horizontal basis (i), ¢ (%)
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over D(t,pf) is the basis on t*M; corresponding to the basis af(i), 87 (i)
of M} that we defined above. The construction of the basis implies that
FI(ph*au(0) = ay(0) and FF(pf)*B,(0) = ¢B(0), therefore we may define
(i) == F*(¢")*a:(0) and £y(i) := F*(¢")*0:(0) /p~".

Claim 2: Next we claim that (i) and (i) extend to a horizontal basis
over D(t,p") for all 0 < p < 1. Let K be the fraction field of R and put
K, = R, ® K. Choose some basis of M; and write A for the matrix of
F = F(p) : ¢*M; — M, with respect to this basis. The horizontal basis
(i), Bt (i) over D(t,pg) we constructed above defines a map My ® K,, —
M; ® K,,. Write Y for the matrix of this map. We obtain a commutative
diagram

" oY)
©* My @ Kpy <— p* M ® K,

Al lA(A:t)

Mt ®Kp0 <TMtO ®Kp0.

Note that A has coefficients in W (k)[[A — t]]. Therefore A converges
and is bounded on the open disk D(¢,1—). Since M; is an F-crystal we have
moreover that A(A = t)®K is invertible. This implies that if p(Y") converges
on D(t, p*) then Y converges on D(t,p*) also. Write Y = 3~ ¥;2/, where
Y; is a matrix with coefficients in K. Then ¢(Y) =3, ©(Y;)zP. Hence if Y

converges on D(t, p*) then ¢(Y) converges on D(t, (p*/P)*). Since we have
already shown that Y converges on D(t, par ) it follows that Y converges on
D(t,1-). Therefore a;(0) and (3;(0) are the value at A = ¢ of a basis of
M,(0) over D(t,17). We continue to denote this basis by «;(0) and 3;(0). It
is clear from the construction that a;(0) and 3;(0) are horizontal and satisfy
Flay(0) = oy (0) and FF3,(0) = ¢B3:(0). Therefore ay(i) and (i) extend for
i=0,... f—1

Claim 3: We claim that a;(0) is bounded on D(t,17) ([26, Proposition
3.1.3]). Recall that Ffolai(0) = a;(0) and ¢/™(a:(0)) = ©/™(a?(0)) mod
(A= t)pfn. Therefore

ay(0) = lim FFo@! (F/)o-- 0@ (F)p! D (a)(0)).

n—oo

This obviously converges. The same argument applies to ay(i) for i =
0,...,f—1 a
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Lemma 1.3.3 Every bounded horizontal section of M(0) is a multiple of
Oét(O).

Proof: This is proved as in [26, Corollary 7.5]. We sketch the argument.

Since o¢(0) and £;(0) form a basis of M;(0), there exists functions f;(0)
and ¢¢(0) such that the restriction of w(0) to D(¢,17) can be written as
f:(0)a¢(0)4+g:(0)5:(0). Since oy (0) and £;(0) are horizontal and w(0) satisfies
the Picard-Fuchs differential equation (2), it follows that f;(0) and g;(0) are
solutions of the Picard—Fuchs differential equation (regarded as ordinary
differential equation). We put 7(0) = f:(0)/g:(0) € W (k)[[A — t]][1/p]. It is
called the period.

Recall that the Kodaira—Spencer map is defined as

a1y Vi) a1
Fil'M; —" My — M /Fil* M; ~ Uy.

Lemma 1.1.2 states that w(i) and w(i) = V(%\)w(i) are linearly indepen-
dent for every t # 0,1,00. This implies that the Kodaira—Spencer map is
nontrivial. The Kodaira-Spencer map sends 7 € Fil' M;(0) to 7(0)'n, where
7(0)" is the derivative of 7(0) with respect to A ([26, Lemma 7.1]). Using
the congruences of [26, Proposition 7.4] it follows that there exists an un-
bounded solution of (2) in D(¢,17). This proves the lemma. O

Using our previous notation, we find that

_ f1(0)'g:(0) — £¢(0)g:(0)’
9:(0)? '

Since 7(0)" # 0, we conclude that f;(0) and ¢;(0) are linearly independent

solutions of the differential equation at A = t, i.e. they form a basis of

solutions at ¢. It is not so easy to give the boundary conditions which

determine the solutions f;(0) and ¢;(0), and hence 7(0). In [1, Section

11.6.3.2] this is worked out for m = 2 and t = 1/2. (There are some mistakes

in the formulas written there.) See [16] for more results in this direction.
Write

7(0)f

a(i) = h1 (DA — Dw(i) + ho ()M — Dw(7)'.

By assumption ay (i) is horizontal. An elementary computation shows that
this implies that ha (i) and hy (i) satisfy

ha, (i) MA = 1) + o, (1) (A(d) + B(i) + 1)A = C(i)) + o1 A(i) B(i) = 0 (9)
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i) = gty (A2 ¢ COZEOZEO) g . o)

In particular, hg(7) is a local solution to the differential equation dual to
the Picard-Fuchs differential equation (2) of M(i). We may suppose that
the constant term of hg (i) is one. The existence of the unit root crystal is
essentially equivalent to the following proposition.

Proposition 1.3.4 There exist functions H (i) and G(i) in R,.q whose local
expansions at t are ho (i)' /ha (i) and ho4(i)/ha+(1)?, respectively.

Proof: This follows from [26, 4.1.9]. The idea is the following. Note that
the proof also proves the existence of the unit root crystal (Lemma 1.3.1.b).

Recall that M (0) has a basis w(0),w(0)’. The matrix of F/ o (¢f)* with
respect to this basis may be written as

qA C
< ¢B D > '
Since the special fiber of M (0) is ordinary, it follows that D is invertible.
To find a basis of the unit root crystal U(0), we need to find an element
n(0) = E(0)A(A — 1)w(0) + A(A — 1)w(0)" € M (0) such that the span of 1(0)
is stabilized under F'/ o (p/)*. In other words, we want to find a basis such

that the matrix of Ff o (p/)* is lower triangular. This amounts to finding
E(0) € R,,q satisfying

B(0) = & < gA(p! )" B(0) + C ) |

D \1+ ¢D~1B(xf)*E(0)

The function E(0) can be shown to exist by approximating modulo higher
and higher powers of p (26, 4.1.7]).
We may define (i) = F(¢")*n(0), and write

(i) = E(@AN — Dw(i) + A\ — Dw (i) € M(i).

Then U is spanned over R4 by n(0),...,n(f —1). Now U is an F-crystal
if and only if U is preserved by the Gaui~Manin connection V. It suffices
to check this over W (k)[[A —t]] for t € S,.a-

We have already shown that over W (k)[[A — ¢]] there exist horizontal
vectors

(i) = h1¢ (AN — Dw (i) + hag (DA — Dw(d)".
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Since E(i) is unique, it follows that hj (i) /hg (i) is the power series expan-
sion at ¢ of E(i). Note

hali) _ 1= Cl) | ) = AW = BG) _ haali)

ha +(7) A A—1 hot(i)

Therefore L_Cl)  Ol)— AG) — B()
—C( i)— A(i) — B(i
H() =
) o P
has power series expansion ho¢(i)’/ha+(i) at t. This shows the existence
of H(i). Locally at t, we have that n(i) equals oy (i)/ho (7). Therefore
V(i) = —H(i)n(i) ® dA. This proves that U is an F-crystal.
Since U is an F-crystal, the following diagram commutes

0

UV —L U (11)

| N

(p*U ® Q‘lgord Fﬁ U ® 52‘ls‘ord :

Write Fo*n(i—1) = G(i)n(i). It is obvious that G(i) € R,.q exits. Then
Vo Fp*n(i—1)=(G@GE) — H@@)G())n(i) @ dX.
One computes that
(F®Id)o¢*Ve*n(i — 1) = —pAP L H(i — 1)?G(i)n(i) ® dA.
This implies that

G'(4)

a0 - H(i) — p\P~YH(i — 1)%.

The local expansion of G(i) at t is ho(2)/(he(7 — 1))%?. One checks that
G(7) is a solution to the dual differential equation (9) modulo p.

Lemma 1.3.5 We have
G(i) = ®(i) (mod p).

Proof: We want to compute the image of 7(i) in H'(Z, O)Xpi. Since (i) =
E(@)AN — Dw(i) + AN — 1)w(i)’, it suffices to compute the image of A(A —

Dw(7)’. Tt is explained in Lemma 1.1.3.(b) how to do this.
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First we need to write w(i)' = (1 — 03(i))da /2t =10 (g — 1)1—22(0) (1 —
A)2=#3(P") in terms of the basis (Lemma 1.1.2). To do this, note that

o aer @) (gp = 1)e2) B
AA—1Dw(i) +d RSN -

(1 —@a(p))z + Mp3(@') = 1) + 1 = 01(p') — o3(p")dz

_ o~

B xl—m(pi)(x _ 1)1—U2(pi)(x _ A)l—o‘g(pi) = w()"
Recall that

. all (x = 1)720) (z — X))
£ = 1‘1+£Pi01](1; — 1)[1’i02} (x — )\)EPiUS] N pl—o1(p?)

is a basis for H*(Z, O)Xpi. Note that @(7) + d&(4) is holomorphic outside 0.
Lemma 1.1.3.b implies that the image of A(A — 1)w(i)’ is £(i). The lemma
follows now from the definition of ®(7). O

Lemma 1.3.5 implies that hg (i) = ®(i)ho+(i — 1)¥ mod p. Therefore

_ haai) _ @()
hot(i) — @(i)

H{(i)

(mod p).

Here we use that the derivative of ho (i — 1)?(A\) = ho¢(i — 1)(AP) is zero
modulo p.

Proposition 1.3.6 For every n > 1 we define functions B, (i) € k[A] by
=y (I (0
J1tia=N (i) o 72

where N, (i) =n — 1 — [nog(p*~1)]. We have
G(i) = lim

Proof: This follows from the result of [46]. In this paper it is shown how
to compute G(i), by using an identification of U with the Witt vector co-
homology group H'(Z,W,0)z. (We refer to [46] for the definition of this
cohomology group.) The proposition is a special case of [46, Section 5.4].

O
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Since (B,(i — 1)?) 'Buy1(i) = (Bp_1(i — 1)?)7'B, (i) mod p" for all
n > 1, we have that
o Buld)
Gli)= ————— d p").
()= 5 f oy (mod ")
As in (4), one checks that the polynomials By, (i) are equivalent modulo
p" to certain expansion coefficients of w(i). Therefore it follows from [28]
that By, (i) is a solution modulo p™ of the Picard—Fuchs differential equation.
This is also noted in [46, Example 5.5].

Remark 1.3.7 If m = 2 it is easy to express the function G(0) in terms of
Gauf}’ hypergeometric function F'(1/2,1/2,1; A). Namely,

F(1, 11,0 1

Fi L0

GO)(A) = (~1)F=Dr2

This follows easily from Proposition 1.3.6. It should not be too difficult to
generalize this to arbitrary m.

As in [26], this description of the unit root crystal allows us to compute
the x-part of the zeta function of Z. Choose t € W (F,) with ®(¢) # 0. As in
[27, Section 1], we write P, = det(1—TF/) for the characteristic polynomial
of the fth power of the (relative) Frobenius morphism on H',(Z;)y. Suppose
that t € W (F,n) with ¢ = p/. Define

G0)(N) =GN ) o G2 2) 00 GO)(N),

Ga(0)(A) == G(0)(N) 0 G(0)(AT) 0 --- 0 GO) (A" ).
Then F/7()/mn(0) = G, (0)n(0).

Proposition 1.3.8 We have

_q
Gn(0)

Proof: This follows from the above discussion. O

P, =01-6G,07T)1 - T).

1.4 The supersingular polynomial In this section, we apply the re-
sults of Section 1.3 to obtain an expression of the so called supersingular
polynomial. We assume that p > 3. Recall that

ssp(7) = [ [ — 3(E)) € Fylil,
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where the product is taken over the elliptic curves /IF'], which are super-
singular. Denote

_[ﬂ} 5= 0 ifp=1 mod 3, 0 ifp=1 mod 4,
REED) 11 ifp=2 mod3, 11 ifp=3 mod 4.

There exists a polynomial ss,(j) with
ssp(d) = 47 (5 = 1728)" (),

compare to [22, Section 2]. The polynomial ss,(j) does not have a zero at 0
and 1728.

Write m = 12 and S = Spec(Zp[A, G, 1/mA(1 = A)]), where ¢, € Q) is
a primitive 12th root of unity. Choose an irreducible character x : Z/m —
Qp(Gm). As before, we let f be the order of p in (Z/m)*, and put x =
X"‘Xp"‘"“i‘pr_l'

Let Z — PL be the m-cyclic cover of type (1,11,5,7) given by

A2 = z(z — )M (z - N)°, (x,2) — x.

Define H/Q to be the Hurwitz space parameterizing Galois covers g : Y —
IP’(b with Galois group (Z/p)/ X g Z/m which are only branched at 0,1, A, co.
We suppose moreover that g factors as Y — Z — P!, with Z — P! as above
and Y — Z étale. Write 7 : H — }P& for the map with sends g to A and
write 7 : H — IP’%\ for the Galois closure of 7.

It is shown in [9] that 7 is an PSLy(p)-Galois cover branched only at
0,1, 00 of order 2,3,p. The cover 7 is rigid ([44, Proposition 7.4.2]). In this
particular case, this means that there exists a unique PSLy(p)-Galois of the
projective line branched at three points of order 2,3,p. (We refer the reader
to [44, Chapter 7] for a more precise statement and the definition of rigidity.)
We conclude that there exists a commutative diagram

HeQ— X(p)

-

Here X(p)/Q is the modular curve parameterizing elliptic curves E with
full level p structure and X (p) — }P’} sends E to its j-invariant. The arrow
P} — P} is given by A — 1728\,
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Lemma 1.4.1 Write J(Z)"V for the new part of the Jacobian of Z. Then
there exists an elliptic curve E) such that

J(Z)"V ~ EY.
Proof: We first note that Aut(Z) = Z/12 x (Z/12)*. We may choose
generators of this group such that
T —A A r—1
U@, 2) = (2,C22), 15(2) = ——7, m@)=_, (@) =A—.

One checks that 7;91; = ¢°. Write Zg (resp. Z4) for the quotient of Z by
¥? (resp. 1®). The new part J*¥ of the Jacobian J = J(Z) of Z is defined
as the quotient of J by the image of J(Zg) U J(Zy). Then V = (75, 77) acts

on J*¥ and E) := J"*"/V is an elliptic curve. The statement of the lemma
follows from the fact that ¢ acts on J»v. a

Let Z := Z ® Fp. Lemma 1.1.2 implies that dimHl(Z,(’))Xi =1, for
i =1,5,7,11. We denote by

g = o Pl — 1)"PHl(g — \) P
x
a basis vector of dim H'(Z,0),:, as defined in Lemma 1.1.3. (Note that
the numbering is different from what we wrote before.) Define polynomials
®(i) € Fp[A] by
F& = O(1)&p.

Lemma 1.4.2 Write g = [pli], = [p%] Then

(a)
(1) = (A= 1)T®(5), (7)=A"A—1)"®(5), &(11) = \"d(5).

(b) The polynomial ®(5) does not have a zero at 0, 1.

Proof: This is an elementary computation using Lemma 1.2.3. One also
uses the contiguity relations for the hypergeometric functions ([53]). O

Remark 1.4.3 Suppose p > 3, then ®(5) = s5, mod p. Namely, the fact
that X(p) is isomorphic to H implies that j(E)) equals A (up to some
constant in Q.) The claim follows by considering the stable reduction of H,
as in [9]. In that paper it is assumed that p = 1 mod m, but one can get rid
of this assumption. Details will appear elsewhere.

The above formula is a mod p version of one of the formulas for the
supersingular polynomial obtained in [22]. The other formulas found in
that paper seem to have no interpretation in our setting.
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2 Generalities on deformation data

In this section we define deformation data (Section 2.1), and explain their
relation to stable reduction of Galois covers of curves (Section 2.2). Section
2.3 introduces Galois covers with special reduction which plays a key role
in the rest of the paper. These are Galois covers with bad reduction such
that the corresponding deformation datum is special. This definition is an
extension to the case of covers of the projective line branched at more than
three points of the definition of [50]. We introduce the Hasse invariant ®,,
and show that it is nonzero in the special case. In Section 2.4 we prove a
lifting lemma. Roughly speaking, the statement is that every deformation
datum comes from the stable reduction of a Galois cover with bad reduction.

2.1 Definitions Let k be an algebraically closed field of characteristic
p > 2. Let H be a finite group of order prime to p. Fix a character
x:H—F;.

Definition 2.1.1 A deformation datum of type (H, x) is a pair (g,w), where
g: 2y — Xp = P/{; is an H-Galois cover and w is a meromorphic differential
form on Z; such that the following conditions hold.

(a) We have
B'w = x(F) - w, for all 5 € H. (12)

(b) The differential w is either logarithmic (i.e. w = du/u) or exact (i.e.
w =du). If w is exact we assume moreover that w is holomorphic. In
the first case, the deformation datum (g,w) is called multiplicative. In
the second case it is called additive.

Let (g,w) is a deformation datum. For each closed point z € Xj we
define the following invariants.

my = ‘Hz|a hx = OI'dZ(UJ) + 17 Oz = hx/mx

Here z € Z;, is some point above x and H, C H is the stabilizer of z. A
point x with (mg, h,) # (1,1) is called a critical point of the deformation
datum. We denote by (7;)iep the set of critical points of w which we call
tails. Define Byyq = {i € B|h; = 0}; it is called the set of wild tails. This
terminology is explained in Section 2.2. We denote by B’ = {i € B|7; # oo}.
We call (0;);ep the signature of the Fuchsian deformation datum. Define

Q;, V; by
a;

p—1

o; = + v, where 0 <a; <p—1 and y; € Z>o. (13)
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Example 2.1.2 Let g : Z — P! be an m-cyclic cover defined over k
branched at 0,1, \,00 of type a = (a1,a9,as3,a9) (Section 1.1). Suppose
that > a; = 2m. This implies that the k-dimension of H°(Z,Q), is one.
Let w = w] be the basis of this space defined in Lemma 1.1.2. Recall that
Cw= <I>>(k1/p)w, where @, = @ is the Hasse invariant (Section 1.2). Suppose
that ®,(\) # 0; we checked in Section 1.2 that this holds for general .
Then <I>>1k/ P=Dy, is logarithmic. The invariants a; defined above are the type
(Notation 1.1.1) multiplied by ged(p — 1, ag, a1, as, as).

Recall that g : Z; — IP’,IC is an H-Galois cover, where H is a group of
order prime to p. Dividing out by the kernel of y, we obtain a cyclic cover
g': Zj, — P} of order dividing p—1. Since the character x : H/ker(x) — F)
is injective, we may regard Z; as a connected component of the smooth
projective curve given by the Kummer equation

F =] -m)", (14)

1€B’

Note that w descents to a differential form on Z; ; we denote this differential
form also by w

When By;iiq = 0, the differential w is holomorphic, that isw € H?(Z}, ).
We have seen that H%(Z;,Q), has dimension |B|— (3", a;)/(p—1) (equation
(16)). If Byiq # 0, the differential w has logarithmic poles at 7; for i € Byjq-
Lemma 2.1.3 implies that this dimension formula remains true. We denote
by H%(Z;, Q") the space of meromorphic differentials which have at most
logarithmic poles at (7;)iep,,, and are holomorphic elsewhere.

Lemma 2.1.3 The differentials

2 zde

[Liew (z —7) ’

form a basis of HO(Z},, (05,

F=1 0 Buew| +7— O a)/(p—1),

)

wj =

Proof: This is proved like Lemma 1.1.2. O

2.2 Stable reduction We start by recalling some results on the stable
reduction of Galois covers. This gives a natural way of producing defor-
mation data and motivates the definition in the previous section. Let R
be a complete discrete valuation ring with fraction field K of character-
istic zero and residue field an algebraically closed field k£ of characteristic
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p. Let G be a finite group whose order is strictly divisible by p and let
f:Y — X = PL be a G-Galois cover branched at r + 1 > 3 points
xrg=00,21 = 0,20 = 1,23,...,x,. After replacing K by a finite extension,
we may suppose that the x; are K-rational. In this paper we assume that
there exists a model Xo g = P}% of X over R such that the x; extend to pair-
wise disjoint sections Spec(R) — Xo r. In other words, (X;z;) has good
reduction.

Denote the ramification points of f by y1,...,ys. We consider (y;) as a
marking on Y. After replacing K by a finite extension, there exists a unique
extension (Yg;y;) of (Y;y;) to a stably marked curve over R. The action of G
extends to Yg; write X g for the quotient of Yz by G. The map fr : Yr — Xg
is called the stable model of f; its special fiber f : ¥ — X is called the
stable reduction of f [51, Definition 1.1]. The natural map Xr — Xo g is
an isomorphism on a unique irreducible component of X := Xp ® k. We
denote this component by Xy and call it the original component. All other
irreducible components of X are contracted to a point.

We say that f has good reduction if f is separable. This is equivalent
to X being smooth. If f does not have good reduction, we say it has bad
reduction.

Suppose that f has bad reduction. Let T be the dual graph of X. The
set of vertices V' of T” corresponds to the irreducible components of X. We
denote by X, the irreducible component corresponding to v € V’. The set
E of (oriented) edges of T” corresponds to the singularities of X. If e € E' is
an edge with source v and target w, we denote by 7, € X the corresponding
point of intersection of X, and X,,. Let vy € V' correspond to the original
components Xg. Write Byjq C {1,...,7} for the set indexing the branch
points x; of f whose ramification index is divisible by p. We define a graph
T with vertices V = V' U Byjq. For every i € Byig, we add one edge e;
whose source is the component to which x; specializes and whose target is
1 € V, together with the opposite edge.

We consider the graph T to be oriented from vy. An vertex v € V —{vp}
is called a tail if there is a unique edge with target v. We write B C V for
the set of tails and I = V — B for the complement. The vertices v € T are
called the interior vertices. It is proved in [41] that v € V — By;q is a tail
if and only if the restriction of f to X, is separable. (This is no longer true
if one drops the assumption that p strictly divides the order of G.) A tail
X, is called primitive if one of the branch points x; of f specializes to X,,.
Otherwise, the tail is called new. We write Bpim (resp. Bpew) for the set of
primitive (resp. new) tails. Note that Byiiq C Bprim.
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Definition 2.2.1 We say that X is a comb if V.= B U {vg}.

If X is a comb, f is inseparable only over the original component Xj.

Write Ty for the graph corresponding to Y which is defined in the same
way as the graph T'. Choose a connected component Tii, of f~HIUBiq) C
Ty . Denote the fixed group of TL by Go. Let v € I be an interior vertex.
The restriction of f to X, is inseparable. Choose a component Y, of Y above
X, where we assume that the vertex of Ty corresponding to Y, is contained
in T}%. Let G, C Gy denote the decomposition group of the component Y.
It is easy to see that the inertia group of Y, is independent of v ([41]). We
denote this inertia group by Iy. It follows that Iy < Gy. Put Hy = Go/Ip.

The restriction of f to Y, factors as Y, — Z, — X,, with g, : Z, — X, a
separable Galois cover of order prime-to-p and Y, — Z, purely inseparable
of degree p. The inseparable map Y, — Z, is generically endowed with
the structure of a p,-torsor or an ay-torsor. This structure is encoded in
a meromorphic differential w,. Define H, := Gal(Z,, X,); then G, is the
semi-direct product Iy x H,. The action of H, on Iy by conjugation gives
rise to a character y, : H, — IF;. This implies that

B wy = Xo(B) - wy, for all g € H,.

We recall from [41] and [51] the existence of the auxiliary cover faux R :
Yaux,k — Xpg. The auxiliary cover is a Go-Galois cover over R with bad
reduction to characteristic p. It is essentially characterized by the property
that the restriction of faux,r to the interior coincides with restriction of f
corresponding to Uwersi Y,. See Section 5.2 for more details. We define
Zr = Yaux,r/lo. Let gr : Zr — Xpr be the corresponding H-Galois cover.
We write g : Z — X for its special fiber.

The original components X plays an essential role. We denote by w the
differential corresponding to v = vy and go : Zy — Xo the restriction of g to
Xo.

Definition 2.2.2 We call (gg,w) the deformation datum of f.

Note that the deformation datum depends on the choice of Y. We omit
this from the notation.

Let £ € Zy be a closed point and 7 its image in IP’}C. Denote by H¢ the
stabilizer of £ in H. Define

m, .= |H§" hT = ordg(w) + 1, Or = hT/mT' (15)

We say that 7 is a critical point of the differential w if (mg, he) # (1,1). Let
(7;) be the critical points of w.
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Lemma 2.2.3 The set of critical points of w is contained in the set of edges
with source vy.

Proof: This follows from [51, Proposition 1.7]. O

If X is a comb, Lemma 2.2.3 allows to simplify our notation. For i € B,
there exists a unique edge e with source vy and target i. We denote by 7; the
corresponding point of Xy. Lemma 2.2.3 implies that (7;);ep is exactly the
set of critical points of w. We then write m;, h;, o; instead of m,,, h,,0,.
For every i, choose a point & € Zy above 7; and write H(&;) C Hy for its
stabilizer. The set By;q is exactly {i € B|h; = 0}.

Lemma 2.2.4 Suppose that X is a comb. The o; satisfy the following
properties:

(&) > icn

(b) o; > 1 for all i € Bpey-.

Oi+ D e, (i — 1) =1 —1,

prim

Proof: This is proved in [41], see also [51, Corollary 1.11]. O

For every i € B, we define integers 0 < a; < p — 1 uniquely characterized
by the property (13).

The assumption that (X;x;) has good reduction implies that there is a
one-to-one correspondence between the points x; and the elements of Bpim.

Therefore we may write Byyim = {0,...,7}. We may assume that 79 = oo.
This implies that 7; # oo for i € Byew. Write B;rim = {i € Bprim | 71 # 00}

As in Section 2.1, we call (0;);ep the signature of the differential w.

Recall that gg : Zo — Xo is an Ho-Galois cover, where Hj is an abelian
group of order prime to p. Let g : Z) — X, be the quotient of g by the
kernel of x : Hy — F)'. Let H{ be the Galois group of gj and denote its
order by m. We may regard H, as a subgroup of IF';, via the character y.

Lemma 2.2.5 The disconnected cover
—n . Zn . F5' 7 %
is given by

21 = H(a: —1)%, (x,2) — x.

ieB’

The Galois action is given by 3*(z) = xo(f) - z for § € H|,.
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Proof: Kummer theory implies that there exist integers (¢;);ep with 0 <
g <p—1land ), gc; =0mod (p— 1) such that ZJ is the complete non-
singular curve associated to the equation

Zp=1) = H (x —1;)“ H (x — 7).

i€B’ 1€Bnew

prim

In [51], it is shown that ¢; = a; mod p — 1. O

2.3 Covers with special reduction In this section we define the con-
cept of special reduction. The notation is as in Section 2.2.

Definition 2.3.1 A deformation datum (gg,wq) is called special if v; = 0
for i € Bprim and v; = 1 for ¢ € Bpew. If v, = 1 we require moreover that

(I,‘#O.

Let f: Y — P! be a G-Galois cover defined over K branched at r + 1
points xg, 1, ...z, of order prime to p. Asin Section 2.2, we suppose that f
has bad reduction to characteristic p, but (X;x;) has good reduction. Recall
that the deformation datum associated to f consists of a Hy-Galois cover
9o : Zy — Xo of order prime to p together with a differential w on Zy and a
character yg : Hy — }F;. In this section, we suppose that this character is
injective and that H is cyclic. We write (o;) for the signature of w and (7;)
for its set of critical points. Recall from Section 2.2 that we may write

ord,, (w)+1=0; = ]% + v,

where v; > 1 for all i € Bphew and 0 < a; < p — 1. Here z; is some point of
Zy above 7;. We say that f has special reduction if f has bad reduction and
the corresponding deformation datum is special.

Specialty implies in particular that X is a comb. The condition that
a; # 0if v; = 1 is equivalent to o; # p/(p—1). The reason for this condition
is the following. The fact that X is a comb implies that the invariant o; =
hi/m; is the ramification invariant of the separable Galois cover fi:Y, = X;
at an intersection point y; of Yy with Y;. Here h; is the conductor of of f;
at y; and m; is the order of the prime-to-p ramification of f; at y;. The
ramification invariant is the jump in the higher ramification groups of y; in
the upper numbering. Therefore the condition o; # p/(p—1) is automatically
satisfied in the geometric setting, since ged(h;, p) = 1. We include this here
so that Definition 2.3.1 also makes sense for abstract deformation data as in
Definition 2.1.1.
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The notion of a special deformation datum in [50] corresponds to the
case that r + 1 = 3. In this case, every G-Galois cover with bad reduction
has special reduction. If r» > 3 this is not the case, although this holds
“generically” (in some suitable sense). In case G ~ Z/p X Z/m and r =
3 (resp. G ~ Z/p), these statements are made precise in [9] (resp. [31,
Proposition 4.1.1]).

Lemma 2.2.5 implies that Zj is a connected component of the projective
nonsingular curve corresponding to the equation

Pl = H (x — ;)%
i€B’

Therefore the definition of the a; and the assumption that the deformation
datum is special imply that

zdx

HieB’ (x—m)

prim

w = €Wy, with Wy =

for some € € k.
Put d,c, := |Bpew| Lemma 2.1.3 implies that

dimy H%(Zo, Q) vy = (1 + dyer,) — — > ai,
i (16)
dimy H'(Z, O)yo = (=—7 D i) — 1.

Lemma 2.2.4 together with the assumption that the deformation datum is
special implies that

S w1 Y=L ()

1€B %

Lemma 2.3.2 Suppose that w is a logarithmic differential. Then there
exists an element ®, € k™ such that

Cag = @i/pa}o.
Proof: We start by computing ®,. Write

Q= H (l‘—Ti)H_ai and u = H (x — ;)%

i€B! 1€Bnew

prim
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Then Py
z T
wy==——7"—"—+] G—,

<Hz‘eB' (z — Tl)) T

where ( :
dnew+1 p+ao
: /(1: — T‘)p
G= xHZGBQ—uz = Z gyl
N=1
It follows that
~ dnew+1
2 Gdx g 1/p_N-1

Cop = ,  with G = g NT
HiEIB%E) (= 7i) [LieByen (* — 7i) NZ::I N

By assumption, we have that w = ewg and Cw = w. Therefore Cwy =
e®=1/Pg,. Recall that @y has logarithmic poles in the wild critical points
7; for i € Byiia C Bprim, and is holomorphic elsewhere. Therefore Cig
is holomorphic outside the wild critical points as well. Therefore G is
divisible by [[;cp . (¥ — 7). Comparing degrees, we conclude that G =

1
o7 [Lics,. ( — 7). Moreover, @, = gy (g, .., +1)- O

It is easy to see that ®, is an expansion coefficient of wy (compare to
(4)). If w is exact, we have that Cwy = 0. In analogy with Section 1.2, we
call &, the Hasse invariant.

Denote by D the divisor Zieﬁwﬂd 7; on Zy. Let grp : Zr — Xg be the
Hy-Galois cover associated to the auxiliary cover, as in Section 2.2. Since
f 1Y — P! has special reduction, it follows that the special fiber Z of
Zr is isomorphic to Zy. The differential form @y lives in H O(Zg,Qlc’g)X C
HY.(Zy/k(logD)), which is isomorphic to H},(Zr/R(logDRr))y ®F,, by the
above. Here ¢ = Q!(logD) and Dg is the lift of the divisor D to a divisor
on Zg induced by fr : Yr — }P’}%. (Recall that Byijq C Bprim, therefore 7;
for i € Byigq lifts to a branch point of f: Y — P.) We have that

HL.(Zo/k(logD))y /H(Zy, Q%) ~ HY(Zy,O(— D)), =~ H(Z, Q).

One checks that dimy H'(Zy, O(—=D))y = (p — 1)(X;ep i) — 1 =r —2, by
(17). (Compare to Lemma 2.1.3).

Now assume that » = 3. (This is what we will mostly assume in the
rest of this paper.) Then dimy H'(Zy, O(—D)), = 1. Similar to Section
1.1 one show that the element ¢ := ZHz‘eB;ﬁM (x — 7;)/x forms a basis of

H'(Zy,0(~D)),, in Cech cohomology. Write
F¢é = ®E.
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We claim that ® € k[)] is the coefficient of #P~! in [],cp (z — 7;)*. This is
seen, for example, by noting that

dx

oz HieIB;Vﬂd (x — i)

w *

€ H(Zy, %)

is the dual basis vector to ¢ under the Serre duality (up to multiplication
by an element of ). It follows from the properties of the Cartier operator
that Cw* = ®Y/Pw*, where @ is as stated above. We call ® the dual Hasse
invariant. In Section 4.4 we will discuss the relation between the polyno-
mials ® and ®,. We will mostly consider the case Byjq = (. In this case
wp is holomorphic, and one may omit the logarithmic poles in the above
discussion.

Proposition 2.3.3 Let f:Y — IP’}{ be a G-Galois cover branched at xg =
o00,z1 = 0,29 = 1,23 = X of order prime to p. Suppose that (P';xz;) is
generic, and that f has special reduction to characteristic p. Then the
Hasse invariant ®, is nonzero.

Before proving Proposition 2.3.3, we need a some preparation. Let f :
Y - X = P}( be as in the statement of the proposition. Since we suppose
that (X;x;) is generic, we may degenerate f in characteristic zero. For
simplicity, we consider the reduction in case x3 = A goes to z; = 0. The
cover f has so called admissible reduction, which is well understood. The
reduction fagm : Yadm — Xadm may be described as follows.

The curve (X, z;) degenerates to a stably marked curve (X2d™;z;) of
genus zero consisting of two irreducible components meeting in one point .
Denote these two components by X’ and X", where the branch points x1, 23
(resp. zg,x2) specialize to X’ — {u} (resp. X" — {u}). We choose a point p
of Y™ ahove p and denote by Y’ (resp. Y”') the irreducible component of
yadm above X’ (resp. X”) passing through p. We denote by f': Y’ — X’
(resp. f"” : Y" — X") the covers obtained by restricting f2™ to Y’ (resp.
Y"). These are covers of }P’}{ branched at three points. The fact that f24™ is
admissible means the following. Let g be the canonical generator of inertia
at p € Y/, with respect to some fixed compatible system of roots of unity
in the algebraic closure K of K. Then the canonical generator of inertia of
yeY"is gL
Lemma 2.3.4 At least one of the covers f':Y' — X' and f" :Y" — X"
has bad reduction.
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Proof: This follows from the assumption that f:Y — IP’}( has bad reduc-
tion implies that at least one of the covers f’ and f” has bad reduction to
characteristic p ([13, Proposition 1.1.4]). O

It is no restriction to suppose that f” : Y” — X" ~ PL has bad re-
duction. (If not, rename the ramification points xg, x1, z2,23.) Let G C G
be the decomposition group of Y”. The cover f” is branched at at most
three points. Recall that we assumed that f” has bad reduction and that p
does not divide the ramification indices of the specializations of zg and xo
to X”. Since xy and x5 specialize to distinct points, this implies that f” is
branched at exactly three points. Write (gy : Z — X{/,w") for the defor-
mation datum induced by the reduction of f”. The results of [51] imply that
f" has special multiplicative reduction. In particular, w” is a logarithmic
differential form on Z{.

Proof of Proposition 2.3.3: Write (go : Zo — Xp,w) for the deforma-
tion datum corresponding to f : Y — P}(. Recall that Zj is a connected
component of the smooth projective curve given by the Kummer equation

Pl =2z 1)@ - N [] (z—m)"
T/GBHEW
The differential form w is a multiple of

zdz
x(z—1)(x—N)

wo ‘=

If we let 73 = X go to 1 = 0, the cover gy : Zg — Xo has admissible
reduction, since p does not divide the order of its Galois group. Write ggdm :
Zf}dm — ngm for the corresponding admissible cover of stably marked
curves. We denote by X/ (resp. X{) the unique irreducible component of
ngm such that zo and z( (resp. x1 and x3) specialize to distinct points
which are smooth in X39™. We let i be the unique point of X which is
singular in X34™ and lies in the direction of X). (This means that the unique
path in dual graph of ngm which connects the vertices corresponding to
X/, and X[J passes through the edge corresponding to fi. This is well defined
since the dual graph of ngm is a tree.)

Write

v= H (x —713)%, d = deg,(v).

1€EBnew

Substituting A = 0, we may write

v(A = 0) = 20wP™14,
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where the order of the zeros of o(x) is strictly less than p — 1 and © does
not have a zero at x = 0. Put d” = deg,(0). It follows that the cover
gy Z{ — X{ is given by

=1 — $a1+a3+6(x _ 1)a2@wl7—1'

Here we use that X/ occurs in the stable reduction of the cover f”:Y” —
X". Define 0 < a, < p—1 by the equivalence a, = a1 + a3 + 0 mod p — 1.
Then ag +az + a, +d” = 0mod p — 1. Since f” is a thee-point cover which
has special reduction, the vanishing cycle formula (Lemma 2.2.4) implies
that ag + ag +d” < p — 1, therefore ag + as +d" +a, =p—1.

Write 2 = z/(2® 7% 0% ) and

zdz
x(z—1)

Wy =

By comparing the orders of zeros and poles, it follows that there exists a
(iJ* € Fp such that
w= ((i)*)l/(p_l)(ju(]-
In other words, C&g = (®,)"/P&y. We already showed that & is a logarithmic
differential, therefore ®, is nonzero.
The explicit expression for @y shows that wg specializes to @y on Z(’)’ .

Since the Hasse invariant satisfies Cog = éi/ P @y, it follows that ®, special-
izes to ®,. Therefore ®, is nonzero. a

Unfortunately, the proof of Proposition 2.3.3 does not imply that ® # 0,
as well. In what follows we will have to impose this as a condition. In
Section 6.3 we give a sufficient condition for the dual Hasse invariant ® to
be nonzero.

2.4 A lifting lemma In this section we prove a lifting lemma for the
auxiliary cover. In some weak sense, this lemma says that every deformation
datum “comes from” the reduction of a Galois cover. A more precise state-
ment in this direction is given in Section 3.4. Our proof essentially follows
Wewers [50, Section 3], but our assumptions are not the same as in that
paper.

The following notations and assumptions replace those of Section 2.3.
Let Hy be a cyclic group of order prime to p and x : Hy — IF';; a character.
Put Gy = Z/p xy Hy. Let (go, @) be a multiplicative deformation datum
of type (Hp,x) (Definition 2.1.1) with Byjyq = 0. We suppose that the
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deformation datum is special (Definition 2.3.1). The assumption Byjq = 0
is not really necessary. To get rid of it, one should adapt the arguments
of [50] as in [51]. We impose the condition to simplify the exposition and
since this is the only situation we will use later on in the paper. Let (o;) be
the signature of the deformation datum (go,&p) and (7;) the set of critical
points. It is no restriction to assume that 79 = oo, = 0,72 = 1 € Bpim.
We write Bprim = {0,1,2,...,7} and suppose that 73, ..., 7, define a purely
transcendental extension of I, of transcendence degree r — 2.

Let k = k be an algebraically closed field of characteristic p > 0 such
that (Xo;7;) is defined over k. In other words, we may take k to be the
algebraic closure of IF,,((7;)icp’). Note that the deformation datum (go, o)
may be defined over k. Let K\ be the fraction field of Ry := W (k). Choose
an algebraic closure K of K. For i € Bprim, we choose a lift z; € P(Ky)
of 7; such that Q,((z;)iep,,.,,) is a purely transcendental extension of Q, of
transcendence degree r — 2. It is no restriction to suppose that xg = oo, x1 =
0,29 = 1. For every i € Byey, we choose a Ky-rational point z; € P'(K))
which lifts 7; € P'(k). The goal of this section is to prove the following
proposition.

Proposition 2.4.1 Let (go,wo) be a multiplicative deformation datum of
type (Ho, x) with Byyq = 0. There exists a Go-Galois cover fr, : Y — }P’}—J,
defined over some field L of characteristic zero, which has bad reduction and
whose deformation datum is (go,wo).

Proof: The Hy-Galois cover gy lifts uniquely to an Hy-Galois cover 93%0 :
ZRy — IP’}%O of smooth curves which is branched along (z;) € IP’}%O. We
write gx, : Zk, — P, for its generic fiber. We write J(Zx,) for the
Jacobian variety of Zk,, and let Jgr, be its Néron model. It follows from
[6, Section 9, Proposition 4] that Jg, represents the functor Pic’(Z Ro/ F0)5
since Z E%o is smooth over Ry. Therefore we have a specialization morphism
J(Zk,)(Ko) — J(Zo)(k), which is surjective by the universal property of
the Néron model. In particular, we obtain a surjective morphism

J(Zio)IP)(K)x — T (Zo) [p) (k) (18)

of IF)-modules.

The (holomorphic) differential form wg on Zj is logarithmic, by assump-
tion. Therefore @ corresponds to a line bundle £ on Zy with the property
that L% ~ O ([35, Section II1.4]). Concretely, £ is defined as follows.
Since @y is logarithmic, we may write @y = dv /v, for some rational function
¥ on Zy. Since @y is holomorphic, there exists a divisor D of degree 0 on Zg
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such that (0) = p- D. Put £ = Oy, (D), then clearly L& ~ Oy . It is easy
to check that h*L = x(h)L, for all h € Hy. Therefore £ € J(Zy)[p](k)y-
Since (18) is surjective, we may lift £ to £ € J(Zk,)[p](K)y. By Kummer
theory, £ corresponds to a p,-torsor Yz — Zg. After choosing a pth root
of unity, we may regard Yz — Z; as an étale p-cyclic cover. Let K/K, be
the minimal extension over which Yz — Zz may be defined as Galois cover.

The composition fz : Yz — Zg — P! is a Galois cover with Galois
group Go = Zp Xy Hy. Let L/ Ky be the finite extension over which the stable
reduction of fz is defined. Since p is totally ramified in L/Kj, the field L
is complete; we write R for its ring of integers and vg for the corresponding
discrete valuation. We write fr : Y — PlL for the model of fi over K.
Proposition 2.4.1 is now a consequence of the Lemma 2.4.2. O

Contrary to the situation of three point covers in [50] it is not true that
L/Kj is a tame Galois cover. We will show in Section 5.2 that for covers
branched at 4 points, p strictly divides the degree of L/Ky. However, if
K C L is a minimal field of definition of f then p does not divide the order
of Gal(L, K). This this the only thing we need in the proof of Lemma 2.4.2.

Lemma 2.4.2 Write f: Y — X for the stable reduction of fr. The defor-
mation datum corresponding to f is (go,wp). The curve X is a comb. For
every i € B there is a unique tail of X; it intersects Xg in ;.

Proof: This lemma and its proof are adapted from [50, Proposition 3.5]. It
follows from the construction of f7, that f; has multiplicative bad reduction.
Moreover, it is clear that the restriction of f to the original component X
of X gives rise to the deformation datum (go,@g). Let Yy be the unique
irreducible component of Y above Xy. Then Y; — Xy factors through go
and Yy — Zp is a p,-torsor.

It remains to show the second part of the lemma. We write B* for the
set of tails of X. We want to show that we may identify B* with B.

Suppose that B* # B. It follows from [50, Lemma 3.3] that Xq intersects
the rest of X exactly in the points 7;. For every i € B, we denote by 7}
the subtree of the dual graph X whose root is the edge corresponding to
7;. The assumption B* # B implies that there exists an ¢ € B such that
T; contains more than one tail. It is proved in [50, Lemma 3.3] that this
may only happen for i € Byey and that in this case T; contains two tails.
More precisely, there exists a component X, of X which intersects Xg in 7;
and two tails which intersect X,. Write 7/,7” for the intersection points of
X, with the two tails. We may suppose that z; specializes to the tail X
which intersects X, in 7", as illustrated by the following picture. Let Y, be
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a component of Y above X, and let Z, be the corresponding component of
Z. Then Z, — X, is totally branched at 7 and ;.

I
o
S

>
\]

)

Ti

Let K be as in the proof of Proposition 2.4.1. Recall that K contains a
pth-root of unity. Let I' = Gal(L, K). It follows that T' acts faithfully on Y.
As in the proof of [50, Proposition 3.5] and [41, Section 4.2] it follows that
" acts trivially on Yy. In particular, if we choose a point 4 of Y above 7,
then 7 is fixed by T

Write T' for the image of I' in the group of automorphism of Y,. As in
the proof of [50, Proposition 3.5], it follows that I acts trivially on X,,. The
argument of step 3 of the proof of [41, Proposition 4.2.4] implies that I has
order prime to p. Therefore the proof of [50, Proposition 3.5] applies to our
case. This proves the lemma. O

3 Existence of special deformation data

In this section we show that a deformation datum (gi,w) corresponds to a
solution u of a Fuchsian differential equation with certain properties (Propo-
sition 3.2.2). Under this correspondence, the signature of the deformation
datum corresponds to the local exponents of the corresponding Fuchsian
differential equation (i.e. the restricted Riemann scheme). Our description
translates the existence of a deformation datum with given signature into the
existence of an algebraic solution u of a certain Fuchsian differential equa-
tion with given restricted Riemann scheme. In our situation, the existence
of an algebraic solution implies that the p-curvature of the Fuchsian differ-
ential equation is nilpotent (Section 4.1). Dwork ([16]) describes the mod-
uli space of Fuchsian differential equations with given restricted Riemann
scheme whose p-curvature is nilpotent. Recall that a Fuchsian differential
equation of fixed restricted Riemann scheme is determined by the position of
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the singularities and certain extra parameters which are called the accessary
parameters. Dwork’s result amounts to expressing the accessary parameters
in terms of the singularities. We call this the accessary parameter problem.
For the existence of deformation data, we need to consider a variant of this
problem. Namely, we are interested in Fuchsian differential equations with
nilpotent p-curvature which admit an algebraic solution satisfying additional
properties.

The main results of this section are the following. If the number of
accessary parameters is one, we show that there always exists a deformation
datum with given signature o (Proposition 3.3.2). In the general case,
we show that the deformation functor of deformation data with signature
o is formally smooth and one dimensional (Lemma 3.4.2). Therefore if
there exists a deformation datum with signature o, then there exists such
a deformation datum for which the marked curve (Xy;79 = 00,7 = 0,79 =
1,73 = A) is generic (Proposition 3.4.3). As an application, we show that
the accessary parameter cover mgy : By — }P’}\ is separable.

3.1 Relation with solutions of Fuchsian differential equations in
characteristic p Let k be an algebraically closed field of characteristic
p > 0. Suppose that we are given a special multiplicative deformation
datum (g,w) over k of type (H,x) with x : H — F, injective. Recall from
Definition 2.3.1 that this means that B = Bpyim U Brew, where Bpim = {7 €
B|0<o0;<1}andByew = {i € B|1 < 0; < 2}. The goal of this section is to
associate to (g,w) a polynomial solution of a Fuchsian differential equation
in characteristic p. Similar results occur in [11] and [14]. For the results
of this section, it is not necessary to assume that the deformation datum is
special and multiplicative, see [11]. However, this is the only case we will be
interested in in what follows.

Put 741 = |Bprim|. choose a subset By of {i € Bpew |03 = (p+1)/(p—1)}.
We call B,s the set of nonsingular critical points. The complement By :=
B — B, are the singularities of the Fuchsian differential equation we will
associate to the deformation datum.

Write s4+1 = |Bg|. We may assume that the set of primitive critical points
(Ti)ieBy, contains 0,1,00, and moreover that 7o = oo. Then 7; # oo for
1 € Bphew. Write Bgrim = {i € Bprim | 7i # 00} and B = {i € By | 7; # oo}. It
is no restriction to suppose that Bpyim = {0,1,...,7} and By = {0,1,...,s}.

Suppose that Bys # 0. Define u(z) = [[;cp, (¢ — 7), and let d be the
degree of u. It follows that the curve Z; is a connected component of the
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smooth projective curve defined by
zp—l — H (w _ Ti)aiu2’
icBy
since a; = 2 for i € B,s. Moreover, it follows that

ezdx
w = ,

[Liew . (z—m)

prim

for some € € k*.
The Riemann—Roch formula, together with the assumptions we made on
the signature, implies that

2d—|—Zai:(p—1)(r—2)

1€Bg

(Lemma 2.2.4.(a)). In particular, this implies that » ;. a; is even.
Write

Q= [[@-m)'"", R=]]G-7), P:=QR/Q

1€By i€By

Put v1 = —d and v = 1 — ap.

In the following proposition, we show that for fixed (7;);cp,, the nonsin-
gular critical points (7;);ep,. are characterized by the fact that u is a solution
to a Fuchsian differential equation.

Proposition 3.1.1 Let (g,w) be a special, multiplicative deformation da-
tum of signature (o;). Suppose that d = |Bys| > 0. Let k be the algebraic
closure of the field obtained by adjoining to k the 7; for i € B,.

(a) There exists a polynomial Py = Z;;(Q) Bja? with 3; € k and cs_g =
v1 - 2 such that u := HieBnew (x — 7;) Is the solution to the Fuchsian
differential equation

Pgu” + Plu’ + Pyu = 0. (19)
(b) The function
1
w = W
satisfies
Res;,w =0, for i € Bpew-
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The coefficients Jy, ..., Bs—3 of P, are called the accessary parameters of
the differential equation. The number of accessary parameters is s — 2. The
differential equation (19) has singularities at x = 7; for ¢ € By. The local
exponents at 7; are 0, —a; + v; for i € B{j and 71,72 at oo.

Proof: The following proof is inspired by [5, Lemma 3]. A similar argument
can be found in [20, Theorem 5]. See also [14, Proposition 3.2] and [11,
Lemma 4.2]. Write

z €zP

Lew (z—7) Qu¥

prim

F=c¢

We suppose that w = F dz is logarithmic. This is equivalent to DP™1F =
—FP where D := 3/dz. Since DP~'F = e2? DP~1[1/(Qu?)], we find

1
_ —1
02~ " T @ mp (20)

prim

Then
1

HieIB%’ (z — Ti)p'

prim

1 Cc_1

D o =l et 1=

We conclude that c_1 = 0, since 7 € Bpim.
Write

Qul = [Q(r) + Q' (m)(x — 7)) + -+ - [/ (7)) (x — 73) + %u”(n)(g; —m)? 4P

= (2= 7)* [Q(r)u' (1) +u/ (m)(Q (r)u'(13) + Q(ri)u” () ) (@ — 73) + -]

We see that —c_1 = u/(7;)[ Q' (1:)u/(7;) + Q(m3)u” (7;)]. Since u/(7;) # 0, we
have that Q'(r;)u/ (1) + Q(m)u” (7;) = 0 for all i € Byey.

Define G = Qv + Qu”. This is a polynomial of degree less than or
equal to e := deg(Q) + deg(u) — 2. The coefficient of z¢ in G is g. :=
deg(u)(deg(Q) + deg(u) — 1) = —v172. The polynomial G is divisible by
u Hiel% (x—7;)%. Therefore G = Hi@% (r—7;)*uR, where R is a polynomial
of degree less than or equal to s — 2. The coefficient of R of degree s — 2 is
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ge. Dividing by Hi@% (x — 7;), we find that u is a solution to the Fuchsian
differential equation
P(]u” + Plu' + Pyu=0.

This proves (a).
We have already shown that the residue of w at x = 7; is zero for i € B.
For i € Bpew N By, this follows from (20). ]

3.2 A converse to Proposition 3.1.1 In this section we prove a con-
verse to Proposition 3.1.1. The result is a generalization of [11, Proposition
4.3]. We start by recalling the notation.

Let s+1 > r+1 > 3 be integers. Suppose given 0 < ag,aq,...,as < p—1
such that A :=ap+a; +--- + as is an even integer less that (s —1)(p — 1),
and let d = ((s — 2)(p — 1) — A)/2. We assume moreover that a,;1,...,as
are different from 1. For an explanation of this condition, see Section 2.3.
Put Byrim = {0,1,...7} and By = {0,1,...,s}. Define v; = 0 if i € Byrim
and v; = 1 otherwise. For ¢ € By we choose pairwise distinct points 7; € IP’,lc,
where we suppose that 79 = 0o, 77 = 0,79 = 1. Define

s s ’
Py = H(w -7), Q= H(w — )t gy = g,
i=1 i=1 Q
d(d+ ag)z* ™2 + Be_gz®* 3+ -+ B
p2 =
Py
and
L(u) = u" 4+ pru’ + pou = 0. (21)
Let k be an algebraically closed extension of & which contains 7, ..., 7. Let
v1 = —d and 9 = —d — ag. Recall that these are the local exponents of

L(u) =0 at z = co.
For future reference, we note the following properties of L.

Lemma 3.2.1 Let u = u(x) be a polynomial solution of L(u) = 0. Then
(a) deg(u) = —v; mod p, for j = 1,2,
(b) ord;,(u) =0 or ord,(u) = —a; + v; mod p, for i = By,

Proof: Let i € By and choose a local parameter ¢t of P! at 7;,. Rewriting
the differential equation in terms of ¢t immediately implies the lemma; (a)
corresponds to ¢ = 0 and (b) corresponds to i # 0. O
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Proposition 3.2.2 Suppose that there exist fg,...,0s—3 € Kk such that
L(u) = 0 has a solution u € k[x] which satisfies:

o deg(u) =d,
e u(r;) # 0 for i € By,
e Res,,1/Qu? =0 fori € By — Bprim-

Let Zy, — IP’,lC be the cyclic cover of smooth curves defined by taking an
irreducible component of

s—1
P = H(a: — 1) %2

i=1
Then, for suitable € € k™, the differential
ezdzx
[Tz —m)

on Zj, defines a special deformation datum.

w =

Proof: Let By,...,0s_3,u, Z,w be as in the statement of the proposition.
We have seen that w is logarithmic if and only if
DV — = =" — where D = 0/0z.
Qu [[i=i (@ —7)P
Similarly, w is exact if and only if
1
p—1 =0
Qu?

Since u is a solution to L(u) = 0 which does not have zeros in the set Bj,
of (finite) singularities, it follows that « has at most simple zeros. Therefore

u = H(SL‘—Ti),

1€Bns

we may write

where (7;)iep,. are pairwise disjoint and different from the (7;);cp,. As in
the proof of Proposition 3.1.1, one checks that the residue of 1/Qu? at 7; is
zero for i € Bs.

Consider the partial fraction decomposition of 1/Qu?:

s l1+a;—v;

Z Z (x — 1) +Z (x —7;)?

i=1 j=1 1€Bns
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By assumption, p;(1) = 0 for i € By — Bprim. Therefore

pr1 L _ _zT: pi(l) Cdp gz 4 d g 4 dy
Qu? = @—m)p [[ioy (@ = 7) ’
where
di=% >  |ea@-p) I 7w
1<ji<<gi<r CF G150 Ji
Claim: d,_1 =---=d; = 0.

Note that the claim implies that there exists an € € x* such that w is
logarithmic if and only if dy # 0. Moreover, if dy = 0 then w is exact, for
every choice of €. Therefore the proposition follows from the claim.

To prove the claim, we apply the Cartier operator to w:

T
(1)
C — l/p 101( )
w=¢e'Pz (Z pr— dz
i=1
For a point z = oo of Zj above oo € IP’,Ic we have that

ordeew =

aw . [ -1 ifag=0,
ged(p — 1, ag) | >0 otherwise.

Therefore Cw has a simple pole above = oo if ¢y = 0 and is regular
otherwise. One computes that

ordeozdx = —r(p— 1) + ag — ged(ag,p — 1).

This implies that d; =0 fori=1,...,r — 1. O

In Section 3.4 we show that, for fixed position of the primitive sin-
gularities 7;,7 € Bpim, there are at most finitely many solutions v as in
Proposition 3.2.2. Something similar, but weaker, is proved in [16]. In case
s+ 1 =r+1 =4, this follows from the results of Section 3.3. If we fix
the 7; for i € Bprm, the differential equation L(u) = 0 has s — r varying
branch points and s — 2 accessary parameters. To show the existence of
u as in Proposition 3.2.2, one has to solve 2s — r equations. (This will be
illustrated in the next sections.) Alternatively, one could work directly with
the equations coming from Cw = w (resp. Cw = 0), depending on whether w
should be logarithmic or exact. This is done for example in [12]. In this case
one has s + d — r variables, corresponding to the moving singularities and
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the nonsingular critical points p;. This means that if s is small with respect
to d, the method of Proposition 3.2.2 is more efficient. In practice, this
becomes rather complicated as soon as the number of accessary parameters
is larger than one, therefore in concrete examples we mainly restrict to the
case s =1 = 3.

3.3 Existence of special deformation data: the case of one ac-
cessary parameter In this section, we analyze the existence of special
deformation data with given signature if r +1 = s + 1 = |Bpim| = 4. For
analogous results in the case r = 2, see [14]. We show the existence of
polynomial solutions of (21), for suitable choice of the accessary parame-
ter 3 = Gy. Let 0 < ag,...,a3 < p— 1 be nonnegative integers such that
A :=3"% a;is even and suppose that A < 2(p—1). Put d := (p—1) — A/2.
We suppose that 190 = oo, 71 = 0,7 = 1,73 = A with A transcendental. Put
k= k((\)). Then

Py=a2*— (1+\a2? + Az,
P =22B+a;+ag+a3) —x(AN2+ai +a2) + 2+ a1 +a3) + A1+ ar),

Py = y1v0m + 3.
(22)

We are interested in finding the possibilities for the accessary parameter (3
for which the differential equation L(u) = Pyu” + Piv/ + Pou = 0 has a
solution u € k[z]| of degree d with u(0)u(1)u()\) # 0 (Proposition 3.2.2).
Following Beukers ([5]), we reformulate this as an eigenvalue problem.

Write Vj for the set of polynomials u € k[x] of degree less than or equal
tod. For = 1,2, 3, we write Vdi for the subset of V; of polynomials which have
a zero at 7; of order at least p — a;. Let L = Py(0/0x)% + P10/0x + y17y22.

We claim that the differential operator I acts on V; and Vdi. Namely,
for every integer j we have

L(z") = (j+7)0 +72)2 ™ + (-)2? + (G +a)jra’~" (23)

In particular, L(27) has degree less than or equal to j + 1. Since v = —d,
it follows that L(x¢) has degree < d. This shows that L acts on Vj.

To show that L acts on Vdi it suffices to consider ¢ = 1; the other cases
follow be renumbering the primitive critical points. Let u € V. Then (23)
shows that L(u) has a zero of order at least p — aj. Therefore L(u) € V].

A solution u € Vy of the differential equation satisfies L(u) = fu. We
write xq (resp. ) for the characteristic polynomial of L on Vy (resp. V).
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Lemma 3.3.1 The dimension of le + Vd2 + Vd3 is strictly less than the
dimension of Vj.

Proof: One checks that V} N V2N V3 = (0), since a; < p — 1. Therefore

dim(le + de + Vdg) =
3
Zmax(d—l— 1—p+a;0)— Z max(d + 1 —2p + a; + a;,0).
i=1 1<i<y<3

Ifa; <p—-1-—d=A/2for i =1,2,3 then dimV} = 0. In this case the
lemma holds.

The equality ag+aj + a2+ a3 = 2(p—1—d) implies that there is at most
one i € {0,1,2,3} such that a; > p— 1 — d. Suppose that a3 >p—1—d.
Then V! 4+ Vi + Vi = V¥ has dimension d+ 1 +aj — p, which is strictly less
than dimVy; =d + 1. O

The following proposition show the existence of special deformation data
with given signature. For simplicity, we assume that 2ag < A4 =2(p—1—d).
The proof of Lemma 3.3.1 implies that we may always assume this, after
renumbering the branch points if necessary.

Proposition 3.3.2 Suppose that 2a¢ < A.
(a) There exists a 3 € k such that the differential equation
Py + P/ + Po(B)u =0
has a polynomial solution u of degree d with u(0) - u(1) - u(\) # 0.
(b) For given \, the number of 3 as in (a) is finite.

(c) For given 3 as in (a), there exists a unique monic solution u of degree
d.

Proof: The discussion above Lemma 3.3.1 shows that the differential equa-
tion . = LLg has a solution of degree < d if and only if x4(8) = 0. Since
Xa(t) € k[A][t] is a polynomial in ¢ of degree d + 1, such 3 always exists in a
finite extension of k[\].

The assumption 2ag < A implies that 0 < d < d 4+ ag < p. Therefore it
follows from Lemma 3.2.1.(a) that if u € Vj is a solution of the differential
equation (for some [3) then deg(u) = d.

Lemma 3.3.1 implies that there exists a # such that x4(8) = 0 but
Xé(ﬂ) # 0 for i = 1,2,3. Choose [ like this and let u be the corresponding
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solution of the differential equation. Since u & V7, it follows that u does not
have a zero in « = 0,1, \. This proves (a). Part (b) is immediate.

To prove (c), we use the following notation. We let 5 and u be as above.
Define

Ai=(i+1(i+1+a), Bi=(i+y—1)(i+7—1),
Ci = 2(1 4+ A) +i(M1 4 a1 + ag) + 1 + a1 + a3).

Since u = Y, u;x’ is a solution of the differential equation Pyu” + Pyu’ +
Pou = 0, one checks that the u; satisfy the recursion

Miuip1 = (C; — B)u; — Biu;—1. (24)

If p—ay; > d then A; # 0 for 0 < ¢ < d. In this case the recursion
immediately implies that the coefficients u; are uniquely determined by uy.

Suppose that p —a; < d. Then A,_;_,, =0and 4; #0for 0 <i < d
with ¢ # p — 1 — a;. Therefore w; is uniquely determined by ug and [ for
1 <p—1—aq. It follows that g satisfies

0= (Cp—l—al - ﬁ)up—l—al - Bp—l—alup—Z—al-

The values u; for p—a; < i < d are uniquely determined by ug, up—,, and .
The value u,—q, is determined by the condition 0 = (Cyq — f)uq — Baug—1.
This condition is linear in u,_,,. Since we know that a solution u exists, it
follows that w is uniquely determined by ug and 3. O

3.4 The accessary parameter problem In this section we discuss a
variant of a result of Dwork ([16]) on the accessary parameter problem. Fix
a type (o;) as before, and let (a;) be as defined in (13). Recall that giving the
(0;) is equivalent to giving the local exponents of the differential equation
(21). Roughly speaking, Dwork shows that the locus of all (7, 3;) such
that the differential equation (21) has nilpotent but nonzero p-curvature is
locally a complete intersection which is a finite cover of the configuration
space of singularities (7;). Similar results where proven by Mochizuki ([36],
[37]). We refer to Section 4.1 for the definition of the p-curvature. In our
terminology the result of Dwork implies that for given signature (o;) and set
of critical points (7;);cp,, there is a finite set of possibilities for the accessary
parameters (3;) such that the differential equation (21) admits an algebraic
solution w.

The variant of this problem we want to discuss is the following. We fix
a special signature (0;) together with the set of primitive critical points
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(Ti)ieBpm- We want to show that the number N of corresponding deforma-
tion data is finite. More concretely, IV is the number of (7;)ieB,NBuew Y (5i)
such that the differential equation (21) has a solution u which satisfies the
conditions of Proposition 3.2.2. In case BoNBpew = 0 and |Bpyim| =7+1 =4
this follows already from the results of Section 3.3.

Since we want to use similar techniques in Section 6.2 to give a criterion
for special reduction, we consider a somewhat more general set-up than
would be needed for the results of this section. Let R be a complete discrete
valuation ring with fraction field L of characteristic zero and algebraically
closed residue field k of characteristic p > 0. Let G be a group whose order
is strictly divisible by p. Let fr : Y — IP’lL be a G-Galois cover defined
over L branched at r + 1 = 4 points zg = oo,x1 = 0,29 = 1,23 = X of
order prime to p. We suppose that (IP’lL;xo,xl,xg,xg) has good reduction,
and fr: Yy, — IP’}: has multiplicative bad reduction f : Y — X. Note that
at the moment we do not assume that the reduction is special. Choose an
irreducible component Y of Y above the original component Xj. Let (go :
Zy — Xo,w) be the corresponding deformation datum. Our assumptions
imply that w is a holomorphic, logarithmic differential form.

Since we do not assume that the deformation datum is special, we need
to slightly adapt our notation. It coincides with the usual notation if the
deformation datum is special. We let B be the set of critical points of the
deformation datum, and write o; = v; + a;/(p — 1) with 0 < a; < p—1
for its signature. We denote by Bprim = {0,1,2,3} C B the set of primitive
critical points and Bpew = B — Bpim the set of new critical points. Let
Bram = {¢ € B|a; # 0}.

We write f2UX : Y2ux _ X for the auxiliary cover, as defined in Section
2.2. See also Section 5.2 for a more detailed discussion. We choose a set
Bps C {i € Bpew |0i = (p+1)/(p—1)} of nonsingular critical points, and let
By = B — Bys. Since Byilg = 0 and [Bpyim| = 4, it follows from Lemma 2.2.4

that

%(Zai) € {1,2}.

p 1€B

The reduction is special if and only if this sum equals 2.

Let Gy C G be the decomposition group of Y. Recall that Gy ~ I X\ Ho
where I is a Sylow p-subgroup of G, which has order p, and x : Hy — F
is a nontrivial character. We denote by Gy the group scheme p,, X, Ho, as
defined in [52, Section 4.1]. We associate to the deformation datum (go,w)
a singular curve Y, together with an action of the group scheme Gy, as in
[52, Construction 4.3]. Since w is a logarithmic differential, locally on Z it

54



may be written as
_dh
=5
Define Ysing locally on Zy by the equation y? = h. Then obviously Gy acts on
King and the natural map King — X is a Go-torsor outside the branch points
of Zy — Xo ([52, Remark 4.6.i]). Moreover, [52, Remark 4.6.ii] implies that
King is generically smooth.

Let €, be the category of local artinian k-algebras of equal characteristic
p. A Gy-equivariant deformation of King over an object A of € is a flat R-
scheme Yx together with an action of Gy and an Gy-equivariant isomorphism
YSing ~ Yr ®p k. We consider the deformation functor

w

R — Def (Kinga gO)(R)

which sends R € € to the set of isomorphism classes of Gy-equivariant
deformations of Ygins over R. Let

R — Def (Xo;Ti |Z S Bram)(R)

be the deformation functor which sends R to the set of isomorphism classes
of deformations of the pointed curve (Xo;7;|i € Bram). We consider the
points 7; on Xy to be ordered and up to the action of PGLy(k). We obtain
a natural transformation

Def (Ysinga Go) — Def (Xo;7;|i € Bram). (25)

In the situation of [52, Sections 4 and 5] the natural transformation (25)
is an isomorphism. This is no longer always the case in our situation as the
following lemma shows. This lemma uses the assumption that r +1 = 4.

Lemma 3.4.1 (a) If f is special, the natural transformation (25) is a
,-torsor.

(b) Otherwise, the natural transformation (25) is an isomorphism.

Proof: First suppose that f is not special, i.e. > icg @i = p— 1. This implies
that dimy, H'(Zp, O), = 0, and (b) follows from [52, Theorem 4.11].
Suppose that f is special, i.e. DieB @ = D e, @ = 2(p —1). The
group scheme J(Zy)[p] decomposes into eigenspaces for the Hy-action, since
Hy acts via x(Ho) C F)*. Write .J(Zo)[p], for the subgroup scheme where
Hy acts via x. We will show in the proof of Proposition 4.4.1 that we have

an exact sequence

0 — p, — J(Zo)ply — (Z/p)™*" — 0,
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where d,.,, = |Bpew|- (Section 4.4 is independent of the results of Section 3.)
The differential form w on Z corresponds to a line bundle £ € J(Zo)[p](k)y-
The set of lifts of £ to an element of J(Zy r)[p]y is a torsor under p,,. This
proves the lemma. O

For every i € B, we let Yz be the completion of Ysing at 7;. Let R € € and
Yr be a Gg-equivariant deformation of YSing. Write (Go.r : Zr — Xg,wgr) for
the corresponding deformation datum. Let i € By and choose a point z;
of Zy above 7; € Xy. Let H; C Hy be the decomposition group of z;. There
exists a local parameter t = t; of z; on Zr and a character y; : H; — R
such that Oz . = R[[t]] and h*t; = x;(h) - t; for all h € H;. We denote by
}A/i, r the completion of Yg at 7;; this is an equivariant deformation of Y;. We
obtain a morphism

locgl : Def (Yaing, Go) — | [ Def (¥, Go)
i€B

called the local-global morphism ([52, Section 5.3]). We say that the Go-
equivariant deformation Yg is locally trivial if it lies in the kernel of the
local global morphism. We denote by

Def (Ysing, Go)'°™™ C Def (Ysing, Go)
the subfunctor parameterizing locally trivial deformations.

Lemma 3.4.2 The deformation functor Def (King, go)locmv of locally triv-
ial deformations is formally smooth. Its dimension is

%(Zai) Y

P=1 B

Proof: We use the terminology of [52]. The lemma follows from [52, Theo-
rem 4.8, if we show that Exté»o (Eysing I OYsing) = 0.

In our situation, the integer s = dimg, V' of [52] equals one. This corre-
sponds to the assumption that the order of I is p. This implies that the sheaf

1 _ _ . . . o .
Extg (Ly, ing/k" Oy, ing) has support in isolated points (namely the critical

points of the deformation datum). Since H' (X'Q,Sxtéo (E?Sing/k’ O;;Sing)) =
0, it follows from [52, (43)] that

EthG(ﬁYsing/k’ Oy) =0.

This implies that the deformation problem is formally smooth.

56



We now compute the dimension of Def (?Smg,go)loctm. The tangent

space to the deformation functor Def (}_fsing, Go)loetiv s

Hl(XO,HOW(EYSmg/ka Ofiing)) = H' (X, M™),
[52, Proposition 4.10]. Here M0 is defined in [52, Section 4.3]. In our
situation it is the sheaf of derivations D of Og, such that D(w) is a regular
function on Zy. The proof of [52, Lemma 5.3] implies that MHo i isomorphic
to ((0)«Oz,)y- A local calculation shows that

a;
deg(M0) = -~ — T
1€B p

By the Riemann—Roch Theorem, the dimension of H 1(X'(),/\/IHO) equals
—1+ (3_,cg@i)/(p —1). This proves the lemma. O

In the rest of this section we assume that the deformation datum (go,w)
is special. Our first goal is to prove the following proposition.

Proposition 3.4.3 There exists a deformation datum (g, : Zy) — X{,w')
with signature (o;) for which (X{;7; |4 € Bprim) Is generic.

Proof: Recall that we have the following morphisms of deformation functors

Def (Yiing, Go)'* —— Def (Yiing, Go) (26)

|

Def (Xo; Ti),

where the vertical arrow is finite and flat, and the horizontal arrow is an
immersion. Since Def (King, QO)IOCtriV has dimension one, it follows that its
image Z in Def (Xo;7;) has dimension one as well. It follows from the con-
siderations of Section 3 that the forgetful map Z — Def (X¢;7; |4 € Bprim)
is finite. Since Def (XQ;TL‘ |i € Bprim) has dimension one, the proposition
follows. O

In Section 4.7 we will show that the image of Def (Ysing,go)locmv in
Def (Xo; 7;) is in fact smooth.

We now come to the accessary parameter problem. Let A be transcen-
dental over IF,. Proposition 3.4.3 implies that there exists a deformation
datum (g{),w") whose signature is the fixed signature (o;) and whose set of
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primitive critical points is g = 0o, z1 = 0,22 = 1,3 = A with A transcen-

dental. Let
u = H (x — 7).
ieBnS
There exist accessary parameters Jo, ..., Os—3 € k((A; 7 | i € BpewNBy)) such

that «’ is a solution to the differential equation (21) and residue condition of
Proposition 3.1.1.(b) holds (Proposition 3.1.1). This defines a field extension
k(Bo) = k(\)[73, 55 |1 € BrewNBo, 0 < j < s—3] of k(\). Proposition 3.4.3
implies that this is a finite extension. We let By be the smooth projective
curve over k with function field k(By), and write my : By — P} for the
natural map. We call this map the accessary parameter cover.

Proposition 3.4.4 The map gy : By — IP’%\ is separable.

If [Bo| = |Bprim| = 4, this follows from the proof of Proposition 3.3.2. In
fact, in that case we showed that deg(mg) < p.

Proof: Define an algebra A = k(X\)[7;, 5; i € Brew NBo, 0 < j < s—3]/J,
where J = (R;, pj), is the ideal expressing the necessary conditions on the
7; and ; we encountered in Proposition 3.2.2. These necessary conditions
correspond to the fact that the differential equation (21) should have a
solution w with deg,(u) =d = (p —1) — (ap + - - - + a5)/2 which satisfies the
residue condition of Proposition 3.1.1. To prove the proposition, we then
need to estimate from above the degree of these relations in the variables.
This is similar, though more complicated than what we did in Section 3.3.
We first start by defining the relations po, ..., ps—3 which express the
accessary parameters (3; in terms of the critical points 7; for i € By. Write

s s—1 s—2
Po = E 5jl‘j, P1 = E Gj."L‘J, PQ = E ﬁjl‘j,
Jj=1 Jj=0 Jj=0

with

ﬁs—2 = d(d + (IQ), 55 =1
Write u = Zizo w;z’. It is no restriction to suppose that up = 1. As in the
proof of Proposition 3.3.2, we obtain a recursion for the coefficients wu; of u

from the differential equation Pyu” + Piu’ + Pyu = 0. One computes that
for all © > 0 we have

Ai(—l)’U,H_l + -+ AZ(S - 2)U7;_5+2 = O, (27)
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where
Ai(j) = B+ €;(i = j) + 0j42(i — j) (i —j — 1). (28)

In particular,

A(=1) = (=) i+ D)+ 1+a) [[ 7
j=2
Ai(s—2)=(i—d—s+2)(i—d—s—apg+2).

We conclude that

, 1 if0<j<s—3,

Here degg denotes the total degree in [y, ..., Fs—3. This immediately implies
the estimate
degg(ui) < i. (30)

We now describe the conditions on the 3;. If ig := p —1 —a; < d then
Ai,(—1) = 0. In this case we obtain a first relation

Aiouio + -+ Aio (8 — 2)ui0_5+1 =0.

By (30) and (29) the total degree in (3 of this relation is less than or equal to
19 + 1 which is strictly less than p. As in the proof of Proposition 3.3.2 one
should take wu;,4+1 as a new variable. Whether this case occurs or not does
not make any difference in the arguments that follow, therefore we omit the
variable u;,+; from our notation.

First suppose that d+ s —2 < p. Then the conditions we need to impose
on the accessary parameters ((;) for u to be a solution of the differential
equation are

Udy1 =+ = Ugqs—2 = 0.

It follows from the expression for A;(s — 2) that if these conditions are
satisfied then ugys—1 = 0, and therefore we may take u; = 0 for i > d. Put
pj = Ug4j+1- The assumption on d implies that

degg(ugy;) <d+s—2<p, forj=1,...,8—2.

Next suppose that d + s —2 > p. Then A, 1(—1) = 0. Since 2d =
2(p—1) — (ap+ -+ + as) and a; # 0 it follows that d < p — 1. Let

pj = Ugyjt1, forj=0,...,p—2—d.
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As before, we have that
degg(ua+j) <p—1<p.
For j = p—1 — d, we have the condition
Ap1(0)up—1 + -+ Ap—1(s — 2)up_s11 = 0.

Using that we already imposed ugq41 = -+ - = up—1 = 0, this conditions may
be replaced by

Pp—1—d:=Ap_1(p—1—=d)ug+---+A,_1(5 = 2)up—s41 = 0.
Continuing, we define for all j > p—1—4d
pj = Ap—1ta—j(J)ud + -+ + Ap_14d—j(5 — 2)Uj1d-s42 =0

whose degree in 3 is less than or equal to d 4+ 1 which is strictly less than p.
Next we impose the conditions on the 7; for i € Bew. As before, we
write Q@ = [[;cp/(z — 7)1 7% 7¥i. We let R; be the condition expressing that

Res;;—= =0
u

for i € Bpew N Bg. Recall that this condition is automatically satisfied for
i € By, see the proof of Proposition 3.1.1. Since the order of 1/Qu? at 7; is
strictly larger than —p, it follows that the total degree of R; in 7 is strictly
less than p.

Proposition 3.2.2 implies that we have described all necessary conditions
on the (7, 3;) for defining a deformation datum. Therefore the curve By
corresponds to a connected component of the normalization of Spec(A).
The degree estimates of the R; and p; now imply that m¢ : By — Pi is
separable. O

An important difference between the version of the accessary parameter
problem studied by Dwork and the one of Proposition 3.4.4 is that Dwork
considers the question whether the differential equation has nilpotent p-
curvature. This is equivalent to the existence of an algebraic solution u €
k[x] ([16, Section 2.2]). We require that the algebraic solution u has degree
d < (s—=1)(p—1)/2. In general, the existence of an algebraic solution
u € klx] does not imply the existence of an algebraic solution u € k[z] of
degree strictly less than p.

It can be shown using [18, Lemma 1] that if L(u) = 0 has an algebraic
solution, then it has an algebraic solution of degree strictly less than (s—2)p.
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In particular, for s = r = 3 it follows that L(u) = 0 has a solution u € k[z]
of degree strictly less than p. This was shown by Beukers ([5]) in the case
that a; = 0 for all 3.

Let (go,w) be a multiplicative special deformation datum with [Bpyim| =
4 and (Xo;7]i € Bprim) generic, as in the beginning of Section 3.4. In
Section 4 we associate to (go,w) a pseudo-elliptic bundle (£, V). We will see
that (€, V) corresponds to a differential equation Lg(y) = y” +07y' +d5y = 0
such that the Hasse invariant @, is a solution of Lg (Section 2.3). One could
also consider the accessary parameter problem for the differential equation
L¢ rather then the one for L as we did here. This is approach taken by
Mochizuki ([36], [37]), in a more general context then we consider here.
This yields information on the moduli space of pseudo-elliptic bundles.

We end this section with a corollary to Proposition 3.4.3. We let f :
Y — P! be a G-Galois cover as in the beginning of Section 3.4.

Corollary 3.4.5 There exists a G-Galois cover f' : Y' — P! with spe-
cial multiplicative reduction and signature (o;) which is branched at xy =
o0, x1 = 0,79 = 1,3 = \ with (P';z;) generic.

Proof: This is standard argument using the auxiliary cover construction
and formal patching, see for example [51, Section 4.2]. The point is that, by
assumption on the cover f :Y — P! there exist G;-Galois covers f; : Y; —
P! with ramification invariant o; for every i € B. Here G; is a subgroup of G.
Recall that f; is wildly branched only at the point co € X; of intersection
between X; and the original component Xy. The cover f; is unbranched
outside oo if i € By and is tamely branched at exactly one other point
if i € Bprim. We call such covers primitive (resp. new) Gj-tail covers ([51,
Definition 2.9]). Since 0; < 2 for i € Byew and o; < 1 for i € Bprim, all
G-tail covers with ramification invariant o; are locally isomorphic around
the unique wild branch point oo € X; ([51, Lemma 2.12]).

The proof of the corollary now roughly goes as follows. Let faux : yaux _,
X be the special fiber of the auxiliary cover of f : Y — X. By Proposition
3.4.3 there exists a locally trivial deformation f2™ of fa™ such that the
marked curve (X;7; |i € Bpyim) corresponding to f 'aux ig generic. By Propo-
sition 2.4.1 we may “lift” f 2" to a Go-Galois cover f;?ux : Y}/{’L“X — Xp over
R (in the sense of Proposition 2.4.1). The local triviality of the G;-tail cover
stated above now implies that we may define a G-Galois cover fj, : Y, — Xpg
which agrees with Indg0 ;?ux in a neighborhood of the original component
Xy and such that the restriction of the stable reduction f of f}, to a tail X;
is isomorphic to Indgi fi- Here one uses formal patching. We refer to [51,
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Section 4.2] for details. O

Let 0 = h/(p—1) with p+1 < h <2(p—1). It is an interesting question
for which o there exists a group G and a new G-tail cover with ramification
invariant o. The only positive results in this direction that I am aware of are
the following. For o = (p+1)/(p — 1) there exists a new PSLy(p)-tail cover.
In fact, in this range this is the only possible new PSLy(p)-tail cover ([14]).
For 0 = (2p — 4)/(p — 1) there exists a new Ap-tail cover ([10]). For o = 2
there exists a new Z/p-tail cover; this is just the Artin—Schreier cover with
conductor 2. It would be interesting to know whether all such ¢’s occur. It
seems likely that a closer inspection of the explicit equations written down
by Abhyankar yields further results in this direction.

4 The pseudo-elliptic bundle corresponding to a
special deformation datum

This section is the heart of the paper. We start by recalling generalities
on flat vector bundles and define pseudo-elliptic bundles (Section 4.1). Sec-
tion 4.2 contains the notation and assumptions which hold for the whole
of Section 4. In Section 4.3 we associate to a special deformation datum
(9 © Zr, — PL,w) an F-crystal V; it is a sub-F-crystal of the de Rham
cohomology of a lift of the curve Zj. We show that V =V ® k extends to
a pseudo-elliptic bundle (£,V) (Theorem 4.8.2). A key tool is an explicit
description of the differential equation corresponding to the flat vector bun-
dle (£,V) in terms of the Hasse invariant @, and the dual Hasse invariant
® in Section 4.5. Properties of the Hasse invariant are collected in Section
4.4 which also contains the definition of the supersingular points. (Essen-
tially, these are the zeros of ®,). We use the explicit description of V to
show that the Kodaira-Spencer map is nontrivial (Section 4.7) and that the
p-curvature is nilpotent and nonzero (Section 4.8). Theorem 4.8.2 follows
from these statements.

A more subtile argument is used in Section 4.7 to show that the Kodaira—
Spencer map is an isomorphism, except possibly at the supersingular points
which ramify in the accessary parameter cover my : By — IP’%\ (Theorem
4.7.5). This argument uses the deformation theory of p,,-torsors as in Section
3.4. The condition on the supersingular points is used since an analogous
theory for ay,-torsors is not available.

The section finishes with some quantitative results on the supersingular
points (Section 4.9) and a description of the Hurwitz deformation datum
(Cop,0) corresponding to the pseudo-elliptic bundle (£,V) (Section 4.10).
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This is an extension of the result of [11]. It introduces the topic of Section
5. Namely, in that section we interprete (Cp,0) as the differential Swan
conductor of a cover of Hurwitz spaces. Section 4.11 contains a concrete
example. For completeness, we give in Section 4.12 some results on the
special case of elliptic bundles.

4.1 Pseudo-elliptic bundles In this section we recall generalities on
flat vector bundles. We explain the correspondence between flat vector
bundles and differential equations. We also define pseudo-elliptic bundles.
The following notation replaces the previous notation in this section.

Let k£ be an algebraically closed field of characteristic p > 0, and let By
be a smooth projective curve over k. We fix r + 1 > 3 pairwise distinct

points bg, ..., b. on X, where we suppose that by = co. Denote by ngi/k =

QEO /k(z b;) the sheaf of differential 1-forms with at most simple poles in

the marked points b;, and by T]];f/k = (ngi/k)_l its dual, i.e. the sheaf of
vector fields on By with at least simple zeros in the marked points.

A flat vector bundleis a vector bundle £ on By together with a connection
ViE-E® Qgi Ik Recall that a connection is an additive map

ViE—ERNE,

satisfying the Leibniz rule
V(fm)=df @m+ fV(m),

for f € k(Bp) and m € £. The connection V has regular singularities in the
marked points b;. Since we work on a curve, the connection is automatically
integrable.

A horizontal morphism from (€1, V1) to (€2, V2) is a morphism ¢ : & —
&y of vector bundles which is compatible with the connections. We write
MIC(By) for the category of k(By)-modules with (integrable) connection.

Let (£,V) be a flat vector bundle on By. For i = 1,..,r, we define the
monodromy operator p; as an endomorphism of the fiber £|;, of € at b;, as
follows. Let ¢ be a local parameter at b;. Then V(t0/0t) defines a k-linear
endomorphism of the stalk &, of £ at b; which fixes the submodule my, - &,,
where my, denotes the maximal ideal of the local ring Op,,. Therefore,
V(td/0t) induces a k-linear endomorphism p; of the fiber |y, = &, /my,.E,
One checks easily that p; does not depend on the choice of the parameter t.

Let «y, §; be the two eigenvalues of p;. We call a;, 8; the local exponents
of V at b;. We distinguish two cases. If pu; is not semisimple, i.e. o; = 3;
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and

) (67 1
/J’l 0 o I

then we say that V has logarithmic monodromy at b;. Otherwise,

) (67 0
Hi 0 Bi)’

and we say that V has toric monodromy at b;.

A flat vector bundle (€, V) corresponds to an ordinary differential equa-
tion, as follows. Let £* be the K-linear dual of £. We define a connection
V* on £* by

(V(D)wl,w2> + (wl,V*(D)w2> = D(wl,w2>,

for wy (resp. wa) a section of £ (resp. £*) over an open U C By.

Let e1 be a section of £ such that e = (eq, e := V(D)ey) forms a basis
of £, locally outside the marked points b;. We call such a basis a cyclic basis
of £.

Write

V(D)e = Ae, with A= <0 _p2> : (31)
I —m

Let e* be the dual basis of e. Then V*(D)e* = —Ale*. Therefore a local

section s = gie] + gee5 is horizontal if and only if

_ /
{ 92 =g},
L(g1) = g{ + p1gy + p2g1 = 0.

We call L the differential operator associated to £.
Let b = b; be a marked point and suppose that ¢ is a local parameter at
b;. Then

0 —t?
V(t0/0t)(eq, tes) = (1 . _f;) (e1,tes).

Write p; = ¢;it=% +t~“F1(...), with ¢; € k. The local exponents a;, 3; are
the roots of the so called indicial equation:

X2+ (-14+e)X 4+ =0. (32)

The reason for taking the horizontal vectors of the dual flat vector bundle
E* is that the concept of local exponents coincides with the classical ones
([18], Appendix).
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A filtration on a flat vector bundle (€, V) of rank two consists of a line
subbundle Fil€ C &£ such that Gr€& := £/Fil€ is also a line bundle. For
such a filtration, the connection V induces a Kodaira—Spencer map

k:FilE — GrS®QEi/k.

If it seems more convenient, we will regard x as a morphism

K T;(‘f/k — (Fil&) '@ Gré&.

Note that, written in either way, x is Op,-linear.

We set 7 := (Tgs/k)®p. This is a line bundle on By of degree —p(2¢g —
2+ 1) < 0. We endow 7 with the unique connection V7 : 7 — 7 ® Q'

Bo/k
such that the subsheaf TV of horizontal sections consists precisely of the
‘p-th powers’, i.e. of sections of the form D®P, where D is a section of T]];f Ik
([25, Theorem 5.1]).

Let (£,V) be a flat vector bundle on By. The p-curvature of (£,V) is
an Op,-linear morphism

Ue:T — Endog, (€),

defined as follows. Let D be a rational section of 7';5’ Ik We regard D as
a derivation of the function field k(Bp). Then DP := Do ---0 D is again
a derivation of k(By) and V(D) and V(DP) are k-linear endomorphisms of

the K-vector space V := & ®o,, k(Bo). We define
Ue(D®P) := V(D) — V(DP).

This is a k(Bp)-linear endomorphism of V. One shows that the rule D®P
U(D®P) extends in a unique way to the desired Op,-linear map g ([25,
5.0.1]). One can show that V is the reduction mod p of an F-crystal, compare
to Section 4.3.

It is important to notice that the p-curvature is horizontal in the sense
that it commutes with the canonical connections on 7 and Endo, (£). In-
deed, by the definitions of these connections, W¢ is horizontal if and only
if the endomorphisms We(D®P) and V(D) of V commute. This is easy to
check explicitly, see also [25, 5.2.2].

Definition 4.1.1 A flat vector bundle bundle (£,V) on By is called

(i) active if Ug #£ 0,
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(ii) nilpotent if the image of Wg consists of nilpotent endomorphisms,

(iii) admissible if W¢ is nonzero at every point b € By, except possibly at
the marked points.

If (£,V) is active, a point b € By where W¢ vanishes is called a spike. We
write np := ordy(¥g) for the order of vanishing of e at b and say that b is
a spike of order ny,.

Definition 4.1.2 A pseudo-elliptic bundle of By is a flat vector bundle
(E, V) of rank two which satisfies the following conditions.

(i) There exists a nontrivial filtration Fil(€) C & such that the associated
Kodaira—Spencer map is nontrivial.

(ii) The flat bundle (£, V) is active and nilpotent.
A filtration Fil€ C £ as in (i) is called a Hodge filtration.

The concept of a pseudo-elliptic bundle is a generalization of Ogus’ el-
liptic crystal, see Sections 4.4 and 4.12 for a discussion of the differences. It
is also a generalization of active, nilpotent indigenous bundles as defined in
[11], [36], and [37]. The main difference is that the Kodaira—Spencer map
of an indigenous bundle is required to be an isomorphism, rather than just
nonzero. We decided to introduce this new notion here since we were not
able to show that the flat vector bundles we define are always isogenous.
Moreover, for the application to the reduction of Hurwitz spaces this is not
an essential property.

The p-curvature ¥ = WU¢ is p-linear, [25, Proposition 5.2]. To check
whether ¥ is nilpotent it suffices to check the condition for one derivation
D. The notion of p-curvature coincides with the classical notion as in [16].
It is shown in [16, Section 2.1] that ¥ is nilpotent if and only if U(D) is a
nilpotent matrix, for some derivation D. Moreover, V¥ is active if and only
if ¥(D) is nonzero as element of Ms(k(Bp)). Note that ¥ is nilpotent if and
only if the p-curvature U* of the dual module (M*, V*) is nilpotent.

Honda ([18, Appendix]) shows that W is nilpotent if and only if L has
sufficiently many solutions in a weak sense. This means that the differential
equations

o L(y) =y" +py +p2y =0,

o Ly(w) :=w 4+ pjw=0.
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both have an algebraic solution. The differential equation Ly (w) = 0 is
called the Wronskian equation. Let g1, g2 be solutions of L(g) = 0. Then
the Wronskian W := W (g1, 92) := 9195 — ¢} 92 satisfies Lyy(W) = 0. We
will see in Section 4.8 that if L is the differential equation corresponding to
a deformation datum, then Ly, always has an algebraic solution.

Let us, from now on, assume that (£,V) is active and nilpotent, and
choose some rational section D of 7'155 Ikt Let M C & be the kernel of
Ue(D®P), i.e. the maximal subbundle on which Ug(D®P) is zero. Our as-
sumption implies that M is a saturated line bundle. Let £ := £/M denote
the quotient line bundle. It follows from the fact that W¢ is horizontal that
M is invariant under the connection V. In other words, we obtain a short
exact sequence of flat vector bundles

0O—- M — & — L—0.

Moreover, the p-curvature of the induced connections on M and L is zero.
If (£,V) is a pseudo-elliptic bundle, the Kodaira-Spencer map is nonzero.
This implies that M is a complement to Fil(E).

4.2 The setup Suppose we are given a special deformation datum (gy, :
Zy, — PL w) with [Bo| = s+1 > [Bprim| = 7+1 = 4. Let (0;) be the signature
of the deformation datum and (7;) the set of critical points. Recall that we
write 0; = v;+a;/(p—1) with 0 < a; < p—1 and v; > 0. Assume that Byq =
{i € B|la; = 0} = (. Together with the assumption that the deformation
datum is special, this implies that a; # 0 for ¢ = 0,...,s. We suppose that
Bprim = {0,1,2,3} and that 7y = 0,72 = 1,73 = A, 79 = oo, where (X¢;7;)
is generic. We choose a subset Bps C {i € Bpew |0; = (p+1)/(p — 1)} of
nonsingular critical points.

Recall that to the deformation datum (gx,w) we associated a curve Z
defined as a connected component of the smooth projective curve given by
the equation

P = 2% (- 1)%2(z — \) B2 (33)

The cover g : Zr — P} sends (z,2) to z. The differential w is a certain

multiple of
zdx

x(z—1)(x —N)’

Proposition 2.3.3 implies that the deformation datum is multiplicative. This
means that w is generically logarithmic. The polynomial u € k(By)[z] is the
solution of a certain Fuchsian differential equation (21). Here my : By — P}

Wy = (34)
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is the accessary parameter cover (Section 3.4). The coefficients of u = u(x)
depend on A and the accessary parameters (g,...,0:s—3. We showed in
Proposition 3.4.4 that 79 : By — IP’%\ is finite and separable. In this section,
we will mostly consider A as “parameter” on Bjy. This makes sense outside
the ramification locus of By — P, and is mostly very convenient. However,
for doing local computations at the ramification points one may have to
change the parameter.

Recall from Section 2.3 that to a special deformation datum we may
associate the Hasse invariant @, and the dual Hasse invariant ®. These are
elements of k(By). We shows that ®, is nonzero (Proposition 2.3.3).

In the rest of this paper we make the following assumption.

Assumption 4.2.1 (a) The deformation datum (g,w) is special (Defini-
tion 2.3.1) and Byyq = 0.

(b) The dual Hasse invariant ® is nonzero as function of k(By).

Using the results of Section 2.3, we may reformulate Assumption 4.2.1
as follows.

e The dimension of H!(Zy, 0), as k-vector space is 1,
® Byia =0,
e F:HYZ,0)y — HY(Zy, ), is generically an isomorphism.

The following proposition determines for which values of X the curve Z
is singular.

Proposition 4.2.2  (a) Write u(x) = [[;cp_(* — 7i). For every b € By —
751 ({0,1,00}) the zeros of u(b)(x), different from x = 0,1, are simple.

(b) Ifb € By—my ' ({0,1,00}) then 7;(b) and ;(b) fori, j € By are different
ifi # j and 1; # {0, 1,00, A(b)}.

Proof: Part (a) follows immediately from the fact that u is the solution to a
Fuchsian differential equation (19). Part (b) is more or less the same thing.
Suppose that for b with my(b) # 0,1, 00 there exists distinct 7, j such that
7;(b) = 7j(b). Then u(b)(x) has a double zero at 7; = 7;. But by (a), this is
only possible if 7; = 7; € {0, 1, 00, A(b) }. O

Proposition 4.2.2 implies that the curve Z;, is singular for A = 0,1, co and
for the points b € By for which 7;(b) € {0,1,00, A}, for some i € Bew. We
denote this set by ¥y C By. We will show that ¥ is the set of singularities
of (V,V) (Section 4.6).
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4.3 The F-crystal associated to a deformation datum Notations
and assumptions are as in Section 4.2. The goal of this section is to associate
to the special deformation datum (g : Z, — P}, w) a 2-dimensional k(By)-
vector space V, together with an action of Frobenius F. This is the first step
in the construction of the pseudo elliptic bundle (£, V) corresponding to the
special deformation datum. Namely, eventually we will have V := I'(Bg, £).

As in Section 2.4, we choose a lift z; € P(Ky) of 7;, where Kj is an
unramified extension of Q, of transcendence degree one. In Section 2.4
we defined a Go-Galois cover fg, : Yg, — Xk, branched at the z; which
has stable reduction over a finite extension K/Kjy. The stable reduction
f Y — X defines the special deformation datum (gp,w). The cover fx,
factors through the Hy-Galois cover Zg, — Xk, which is branched at the
ZT;.

We assumed in Section 4.2 that (Xo;7i|i € Bprim) is generic. As in
Section 2.4, we may assume that g = oo, 1 =0, 2 = 1, and z3 = A with
A transcendental over Q,. Then K is a finite extension of Q,(\). Therefore
K is the function field of a smooth projective curve B which admits a finite
cover mg : B — }P’i. By construction, the curve B has good reduction to
characteristic p; its special fiber is the curve By defined in Section 4.2.

Choose b € B such that b does not reduce to a point of the singular
locus ¥¢ C By. Write g : Z, — X, for the fiber of g : Z — X at b, and
let g : Zy — X, be it stable reduction. Then there is a unique irreducible
component ZOJ) of Z;, above the original component XOJ) of X. The genus
of Zy equals the genus of Z, and we may identify g5 : Z — P/{; with the
restriction gob : Zg’b — X(),b of gy to Xg’b.

We choose arbitrary lifts to Ky of the Hasse invariant ®, and the dual
Hasse invariant ® which we denote again by ®, and ®. Define R,.4 as the p-
adic completion of W (k(By))(1/@®Px [[pex, (A — b)) Put Sora = Spec(Roa)-
We choose once and for all a lift ¢ to S of the Frobenius morphism on
k(Bo) = Ko ®z, F,. We obtain an inclusion of F-crystals

ngis(ZO/Sord) C H(}ris(Z/Sord) =~ HC}R(ZR/Sord)'

Write My, = HL . ((Z0/Soa)y- It is a sub-F-crystal of HL (Zg/Sua)y- Write

Fil' for the Fil'-part of the Hodge filtration of M, and M, = M, ®g_, Fp.

ord

Lemma 4.3.1 There exists a sub-F-crystal U of M, called the unit root
sub-F-crystal such that

M, =Fil' o U.
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Proof: This follows from [26], completely analogous to the results in Section
1.3. a

Choose a basis vector n of U/S,,q. Write F'n = Gn and Vnp = —Hn®dA.
As in Lemma 1.3.5, we may assume that G = ® mod p. We use here that

there exists a basis vector ¢ if H!(Zg, O), = Mx/ﬁl with F¢§ = ®E.
Since U is an F-crystal, the following diagram commutes

©*U

U (35)
p*V v
SO*U ® Q‘]éord Fﬂ U ® Q‘lsord :
This implies that
G' — HG = —p\"1H?G.

In particular H = G'/G = ®'/® mod p.

Proposition 4.3.2 (a) There exists a holomorphic differential wy € M,
such that

Fy*wy = pDowo + pD17,
for some Dy, D1 € R,.4.

(b) The elements wy and 7 span a sub-F-crystal V,, of M, of rank two.

Proof: Recall that Cwy = @i/pwo and ®, # 0, by assumption. There-
fore there exists wy,...,0y € HO(ZO,Ql)X — T c M, which span a d-
dimensional complement to wy which is stable under C. Write 7 for the
image of n in M,.

In [34] it is shown that F(Fil') C pM,,. Since the restriction of F to Fil!
is divisible by p, we may define ¢' = F/p : Fill! — M,,. It follows from [21,
Proposition 3.8.c] that the composition of ¢! with the projection of Mx to
Fil s given by the inverse of the Cartier operator. Therefore, the matrix
(modulo p) of ¢! with respect to our basis is

o7t 0 0
0
o= " , (36)
0
€0 €1 ... ¢€q



for certain coefficients e;.

By approximating modulo higher and higher power of p and using that
1 is invertible, one checks that there exists a lift wy of wy such that Fuwy =
pDowy + pD1n, for some Dy, D; € R. Moreover, we may choose lifts
Wi, ...,wq of wy,...,wg such that F' stabilizes the subspace spanned by
w1, -..,wq. In particular, this shows that Fwy = pDowg + pD1n, for some
functions Dy, D1 € R..q. (The argument we use here is essentially the same
as in the definition of the unit root crystal.)

Let V, be the subspace of M, spanned by wp and 7. To show that V,
is a sub-F-crystal, we have to show that V, is stable under the Frobenius
morphism and the connection. We already know that F' stabilizes V). We
claim that this automatically implies that V stabilizes V, also. Write

P d
V(a) wo = Cowo + ; Ciw; + Cat1m,

with C; € R. Since M, = Fil' @ U is an F-crystal, we have a commutative

diagram
1

o Filt M, (37)

L FeId

¢'Fil' ® Q) "—= M, @ Q% .

We apply this to wy and compute that

d
Voo'g* (wo) = [(Dy+DoCo)wo+ Do Y Ciwi+(DoCas1+Dj — Dy H)npl@dA.
=1

Note .
©*V(wp) = (CFwo + Z Clwi+ Cl n) ®dNP.
i=1
This implies that

1

}—)(F ®1Id) o *V(wp) = )\p_lC'fHGT] ®dA  (mod p).
The commutativity of (37) implies therefore that p|C; for i = 1,...,d. Writ-
ing C; = p(5z~1 and repeating the argument shows that p?|C; for alli = 1, ..., d.

Continuing, we find that C; =0 for all ¢ = 1,...,d. This shows that V sta-
bilizes V), and therefore that V, is an F-crystal. O
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For future reference, we note that since Cyp = —D{,/Dp mod p and Dy =
1/®, we conclude that

ol
Co = o, (mod p).

4.4 The Hasse invariant The goal of this section is to prove some
properties of the Hasse invariant ®, and the dual Hasse invariant ® which
play an important role in the description of the differential equation corre-
sponding to (£, V) in Section 4.5. In Section 4.9 we will redefine the Hasse
invariant and the dual Hasse invariant in the context of filtered flat vector
bundles.

Recall that ®, and ® are defined as certain expansion coefficients of

dx

zde S HO(Z(),Q)X, and wo,« = ? S HO(ZQ,Q)X—I.

z(x—1)(x —A)

wo =

Write v = Zfzo wiz’. Then for i = 0,...,d, we have that .ul is the
coefficient of zP0H+D=1 in gP—1=a1 (g — 1)P—1=a2 (g — \)P~1-392=2 and & is
the coefficient of 2P~1 of 2% (z — 1)%2(z — A\)®u?. Recall that ® and ®, are
nonzero as elements of k(By) (Assumption 4.2.1 and Proposition 2.3.3).
We can characterize ® and ®, in terms of the action of the Cartier

operator on differential forms. Namely, we have that
CWQ = @i/pwo, CWQ* = (I)l/pr*'

It follows that w = @i/(p_l)wg (resp. wy = @/(p_l)wo,*) are fixed by the
Cartier operator, hence are logarithmic differentials. (Here we use Assump-
tion 4.2.1.(c).) Alternatively, one can also describe ®, ®, in terms of the
action of the Frobenius morphism on H*(Zy, O).

We denote by B§® C By — Xy the locus where ord,(®,) = 0 mod p and
ordy(®) = 0 mod p. We call B§® the ordinary locus. To V =V @ Fp,
we may associate a flat vector bundle £ on B§® C By — ¥y. This vector
bundle together with the filtration associated by the Hodge filtration on the
sheaf H.,(Z/B) defines a flat vector bundle £ on Bg¢. We will show that
€ extends to a flat vector bundle on B (Proposition 4.6.1).

It follows from the definition of V', that we have an exact sequence

0—>ﬁ1—>V—>H1(ZO,O)X—>O,

where Fil is the 1-dimensional subspace of HY(Zj, ), spanned by wy. Over
the ordinary locus, we have a splitting V = WI@U, where U is the reduction
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mod p of the unit root crystal (Section 1.3). Since the unit root crystal U is
an F-crystal, the Frobenius morphism induces an isomorphism F : U — U.
In Section 4.3 we constructed a generator n of U which satisfies F'p = .
On ﬁl, the Frobenius morphism is divisible by p. Therefore we have a map
¢t = F/p: Fil — V. We computed that ¢'w = ®;lwy + egn, for some
function eqg (36).

Proposition 4.4.1 Let b € By—%. Iford,(®.) # 0 mod p, then ord,(®) #
0 mod p as well.

Proof: This proposition is well known if v = 1, and in that case the converse
holds also. (This is the situation of Example 2.1.2. It is proved for example
in [9, Proposition 2.7].) We write Hy for the Galois group of go. Recall that
Hjy has order prime to p. The argument we give here is adapted from the
proof of [50, Lemma 1.4].

We write J := J(Zy). For every b € By — X, we write .J;, for the fiber
of J at b. Similarly, we write Jge, for the generic fiber. The group scheme
J[p] decomposes into eigenspaces for the Hy-action, since I, contains the
(p—1)th roots of unity and Hy acts on J[p] via its image x(Ho) C F,;. Write

Jp] = HJ[p]xi

for this eigenspace decomposition.

By the comparison isomorphism between de Rham cohomology and crys-
talline cohomology, it follows that H1,(Zy), defines the (contravariant)
Dieudonné module of the finite flat group scheme J[p], ([3]). It follows
that the sub-F-crystal V. C H.,(Zy), corresponds to a finite flat group
scheme G of rank p? which is a quotient of J[p].

We claim that for b € B we have an isomorphism G ~ Z/p x p,,. It
is well known that a holomorphic logarithmic differential corresponds to a
p-torsion point. The natural isomorphism

H%(Zy, )¢ — J[p]

is compatible with the Hy-action. Therefore it induces an isomorphism on
the y-eigenspaces. By Serre duality, we obtain an isomorphism

H'(Zy,0)X — Hom(p,, J[p])y

where Hom should be regarded in the category of finite flat group schemes.
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Recall that w € V is a holomorphic and logarithmic differential, i.e.
w e H(Zyy, Q)i for b € Bg®. Therefore w corresponds to a p-torsion point
P € Jlp]y over Bg. Similarly, via Serre Duality, w, corresponds to a map
wy, — Jply pgra- The group scheme G C J [ply| pgra is generated by the
image of w and w,. In particular, G ~ Z/p x p,. We write G° C J[p],-1|v, .,
for the dual group scheme.

Since dim H'(Zy,0), = 1 and dim H%(Zy,Q), = s+ d — 2, it follows
that J[p], has rank p*T4=1. Choose b € B§d. Assumption 4.2.1 implies that
this holds for b in a dense open subset of By. The definition of ® implies
that F : HY(Zy,0), — H'(Zy,0), is an isomorphism, locally around b.
The above identifications imply that the étale part of Jb[p]x—l has rank p.
Therefore, after passing to the separable closure, we may write

Tolply-1 =GP x ()" x A(D),
where A(b) is a local-local group scheme. Dualizing, we find that
bl =G x (Z/p)"® x A(B)P. (38)
There exists a canonical isomorphism
Lie(J[p]) = Lie(J) ~ H'(Zo, ),

([38, p. 147)), which is compatible with the Hop-action. This implies that
Lie(J[p])y =~ H(Zo, ©), is 1-dimensional. Therefore (38) implies that A(b)P
is trivial. This means that

Tolply = G % (Z/p)*H47% = p, x (Z/p)* 472,

Now let b € By — X be such that ord,(®,) # 0 mod p. We want to show
that ord,(®) # 0 mod p as well. As before, we may write

Tolply = (Z/p)™® x (p,)™® x A(D)P,

where A(b) is a local-local group scheme.

We know that H'(Zy, O),, is 1-dimensional, and that F' : H(Zy,, 0), —
HY(Zyp,0), is an isomorphism if and only if ord,(®) = 0 mod p. Therefore
m(b) = 0 if ordy(®) # 0 mod p and m(b) = 1 otherwise. Moreover, the
assumption ord,(®,) # 0 mod p implies that A(b)P is nonzero. In particu-
lar, dim Lie(A(b)P) is nonzero. Therefore dim Lie(J,[p]), < 1 implies that
m(b) = 0, and hence that ord,(®) # 0 mod p. O
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Corollary 4.4.2 Let b € By — Bg*'. Then one of the following occurs:
o Gy ~7Z/p X oy,
e Gy is a local-local group scheme.

Proof: Suppose that b € By—Bg*. Proposition 4.4.1 implies that ord,(®) #
0 mod p. The statement of the proposition now follows immediately from the
relation between G, and the Hasse invariants ® and ®, as explained in the
proof of Proposition 4.4.1. The two cases correspond to ordy(®.) # 0 mod p
and ordy(®,) = 0 mod p. O

Definition 4.4.3 Define X1 C By — X be be the set of points b such that
ordy(®,) #Z 0 mod p. We call these points the supersingular points of the
deformation datum.

Corollary 4.4.2 states that b € By — ¥ is supersingular if and only if G,
is a local-local group scheme.

The converse to Proposition 4.4.1 does not hold. Corollary 4.7.6 de-
scribes the points b € By for which the group scheme G, is isomorphic to
Z/p x oy,. A concrete example is given in Section 4.11. Ogus defines in [39]
elliptic crystals. These are certain 2-dimensional F-crystals very similar to
our crystal V. As in our case the group scheme G corresponding to an el-
liptic crystal is generically isomorphic to Z/p x . However Ogus does not
allow Gy, ~ Z/p X ap.

4.5 Explicit description of the crystal V' In this section we compute
the differential equation corresponding to the F-crystal V in terms of the
Hasse invariant @, and the dual Hasse invariant ®. In some sense, this is a
concrete version in our situation of the result of Katz [29]. The result of Katz
implies that one can extend this description to the whole F-crystal V, by
using the higher expansion coefficients. These higher expansion coefficients
are analogs of the polynomials B, (i) of Section 1.3.

Lemma 4.5.1 Write wj := V(9/0Nwo. Then § = z/x is the image of
A = Dwjy in HY(Zy, 0)y,.

Proof: We deduce this lemma from Lemma 1.1.3.

Write
u= H(:L‘—Ti), uy = H (x — 7).

iean IB0 mIBnew
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One computes that

o= zdx
07 2(x —1)(z — Nuou

(39)

(1 + ag)ugu a; O ou
T — A +u. Z :L‘—Tiﬁ_zuoﬁ
1€BoNBrew

Note that du/dX and Oug/OX have poles in the ramification points of 7 :

By — }P’}\. However, this makes no difference for our argument.
To be able to apply Lemma 1.1.3, we need to find a representative @&y of
the class of wjy in H},(Z/B), ® F, which has no pole outside z = co. One

computes that

d <x - )\> T z(z— 1)Z(ix— Nuou

<_ L aslhA ~ Duelo = ule =) + hOlomorPhiC> :
T —A
Therefore -
A — Do = A\ — Dy +d
T —
is holomorphic outside z = oo. Moreover, z/(x — A) is regular outside

x = )\, 00. Therefore [@0] = [w)] € HY(Z/B)y.

Claim: A\(A—1)wg —dz/z is holomorphic outside = 0. The lemma follows
from this claim and Lemma 1.1.3.

To prove the claim, we note that the image of A\(A — 1)w}, in H'(Zy, O),
is nonzero, since wy, is a differential of the second kind which is not holo-
morphic. This implies that there exists a constant e such that A(A — 1)wg —
ed(z/z) is holomorphic outside z = 0. Write
»de d+s—1

AR = 1) = z(x—1)(z — Nu iz:; git’

and
d+s—1

zdz ;
d— = hz 'L.
z  z(z—1)(r—Nu i:z_:oo .

One computes that ggis—1 = hgrs—1 = (—1—a1; —as — a3z —2d). This proves
the claim, and hence the lemma. O

N

76



Proposition 4.5.2 Let p be a parameter on By and D = 0/0p. Write

wy + Sfw)y + dgwo =0 € V. (40)
Then
CD/ CD/ 1 1 )\// CD/ @//
=—=-= -+ — N == d o) =-—==267— =,
173 " 3, <)\+)\—1> oo e 0T T AT g,
Here ®' = 0®/0p and w(, = V(D)wy, etcetera.
Proof: Let

AA=1) AA=1)

Wt = W (41)
be a generator of the unit root part of V. Write V(D) = —Hn and Fn =
Gn. Tt follows from the commutativity of the diagram (35) that H = G'/G.
Therefore Lemma 4.5.1 and the fact that F'§¢ = &£ implies that G = ® and
(D/

H=—.
o

n:==F

Recall from Section 4.3 that

F 1
—wp = —wo + Dn,
p D,

for some D € k((p)). Together with (37), this implies that £ = —®’ /®,.
One computes that

V(0/0p)n = [EM +EQRA—1) = BEAQA - 1)%] wot
+ [E% +2A-1) = AA - 1)%} wo + LA; 1)w6'
= _HE%MO — H%wé

The last equality follows from the fact that V(D)n = —Hn. This implies
that

1 1 N9 L /1 1 N
61<:H+E+<—+—>X— :———*+(—+—>X——(42)

A A-1 N o, \x A-1 N
and
1 1 N/
s =HE+F +FE(~+— | XN -E%
0 e </\+/\—1> Y
S A A ST oy
= _—*x= Bl I S (T I VATt SAN
<1>*<1>+<<1>*> P, <I>*</\+/\—1> LIS
O
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4.6 The singularities of the bundle £ In this section we show that
the F-crystal V extends to filtered flat vector bundle (£,V) on the whole
of By. We determine the singularities of (£,V). We show that wg defines a

holomorphic section of (£, V); it is a generator of the filtration Fil' (&) Cé&.

Proposition 4.6.1 (a) The bundle £ extends to a filtered flat vector bun-
dle on By.

(b) The singularities of (£,V) are b € ¥. These are regular singularities.

Proof: We have already defined € over B§™. To show that £ extends to By,
we need to show that for b € By — Bg™, there exists an Op, j-lattice & C Vv
with

V(D)(Sb) C &. (44)

Here t is a local parameter at b and D = t9/0t if b is a singularity and
D = 0/0t otherwise.

Let b € By — By U Xy and let ¢ be a local parameter at b. We define &,
as the intersection of Hur(Z/B) @ F,, with V.

Suppose that b & 3. We claim that b is not a singularity of (£, V). Set
D = 9/dt. By definition of ¥y, we know that the curve Zg; is nonsingular.
Therefore b is not a singularity of (H.x(Z/B)®Fy, V). It follows that V(D)
stabilizes Hur(Z/B) ® F,. We have seen that V is generated by wo and
wh = V(0/0Nwp as k(By)-vector space. Since

V(D)(wo,w)) = (wyoN/Ot, —63woON/Ot — 5w ON/Ot),

it follows that V is stabilized by V(0/0t) also. This shows that b is not a
singularity of (£,V). We define a filtration on &, by intersecting the Hodge
filtration of Hax(Z/B) with V.

Suppose that b € ¥ and set D = t0/0t. Define &, C V to be the OBy b
lattice spanned by wo and V(t9/0t)wp. It follows from Proposition 4.5.2
that V(D) stabilizes &. This shows that b € ¥y is a regular singularity of
(€,V). We define the Hodge filtration on &, as the line bundle generated by
wo- O

By definition of £, we have that &, is generated by wy,wy, for b sufficiently
general. The following lemma extends this partially.

Lemma 4.6.2 Let b € By. Then wy is nonzero as element of &,.

Proof: Let ¢ be a local parameter at b € By. It is no restriction to suppose
that u € k(Bp)[x] is monic.
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If b € ¥, then wy is nonzero as element of &, by definition of &, (see
the proof of Proposition 4.6.1).

Suppose that b ¢ Yy and that b is not a zero of ®,. Then Cwy =
@, (b)wo # 0, hence wy € H(Zy, Q) is nonzero.

Now suppose that b ¢ ¥y is supersingular (Definition 4.4.3). Write
Zop/k(b) for the fiber of Zy at b € By. Since the Hodge to de Rham spectral
sequence degenerates at level 1 ([15]), we may describe the first de Rham
cohomology group in characteristic p by

{ (65, fij)i |0 — 0; = fi;}
(dfi, fi— fi)} ’
with respect to a suitable covering (U;); of Zy,. Here 60; (resp. fij) is a

holomorphic differential on U; (resp. a holomorphic function on U; N Uj).
Write

Hy(Zop/k(b)) =

2(z —21()1&1 —N) [x(:c - 1)(1 - )\)ugur

G = H (x — ;)P 17 %iyP=2 = z:gz:nZ
i

i€l

wy = Gdx,

with

Recall that
ngi_lxz = P ubuP.
i

Since ®, has a zero in b, it follows therefore that wqg is exact. Concretely,
we have that

d h z g gy
i .t = |
wo=df,  with f [x(a: - (- /\)“0“] iz—lzr;lodl’ R

We claim that wy is not a coboundary (df;, fi — f;). Since wg is holo-
morphic on Zg}b, it corresponds to the cocycle (6;,0). Therefore if we could
represent it as a coboundary (df;, fi — f;), then f; = f; is holomorphic as
function on Zo,b. But it is easy to see that f has poles, for instance above
x = 1. This proves the lemma. O

4.7 The Kodaira—Spencer map In this section we investigate the
Kodaira—Spencer map. We show that it is everywhere nonzero, except possi-
bly at those supersingular points b € 31 which are ramified in g : By — IP’%\.
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The reason for this exception is the following. Our argument showing that
the Kodaira—Spencer map is nonzero at the ramification points of 7y relies
on the deformation theory of p,-torsors ([52]). To extend this to the ram-
ification points of my which are supersingular, one would have to study the
deformation theory of «-torsors which appears to be much more compli-
cated. I have not been able to find an example of a special deformation
datum such that the accessary parameter cover mg is ramified at a supersin-
gular point, so I do not know whether this actually occurs.

Proposition 4.7.1 Letb € By andt a local parameter of By at b. Ifb € X1,
we suppose that b is unramified in my : By — P}\. Write D = t9/0t (resp.
D =0/0t) ifb e Xy (resp. b € ¥p). Then (wg, V(D)wp) form a basis of &,.

The proof of this proposition for b unramified in 7 is easy. The proof for
nonsupersingular ramification points relies on the deformation of p,-torsors,
as in Section 3.4. We first show that if b &€ ¥y U X1 is a ramification point
of mp and V(D)wy is zero at b, then the derivative of 7; is zero, for all i € B’
(Lemma 4.7.2). For 7; = 0, 1 this always holds. For 7; = A this follows from
the assumption that b is a ramification point. Therefore we only need to show
this for the new critical points. After that, we show that the deformation
space Z defined in Section 3.4 is smooth. This allows us to identify Z with
By — Xy U X;. Since 7 is naturally embedded in A™ = {(A\,7;) |7 € Buew)},
the proposition follows. The statement that the Kodaira—Spencer morphism
is nonzero at these points follows easily (Theorem 4.7.5).

Suppose b € Y is a ramification point of my : By — IP’}\. Assume that
b is not supersingular, i.e. ordy(®,) = 0 mod p. After multiplying wg by a
nonzero element of k(By)P, we may assume that ord,(®,) = 0.

Lemma 4.7.2 Suppose that V(0/0t)wy is zero at b. Then Ot; /0t is zero at
b, for all i € Byew.

Proof: We have that V(9/0t)wy = (0A/0t)V(0/OX)wy. Therefore (39)
states that

zdx
V(9/9t)wo = z(z — 1)(z — Nuou
(1 + ad)ugu OA ai Ori _ Ou
s-x o " 2 ot g
1EBoNBrnew
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Since my : By — Pi is ramified at b it follows that OA\/0t is zero at b. The
assumption that V(9/0t)wy is zero at b implies therefore that

a; 87‘,‘
Z x—ngzo

ieBnew

at t = 0. Since b € ¥, the 7; are all distinct at t = 0. Since a; # 0, it
follows that 07;/0t is zero at t = 0, for all i € Byeyw. This proves the lemma.
O

To deduce the proposition from Lemma 4.7.2, we consider the defor-
mation of deformation data, as in Section 3.4. We freely use the notation
introduced in that section. Recall that we have the following morphisms of
deformation functors

Def (nlnga gO)IOCth —— Def ( sing gO) - HzeB (Y;, gO)

|

Def (X |i € B).

As in the proof of Proposition 3.4.3, let Z for the image of Def ( sing> QO)IOCtriV
in Def (Xo;7;), i.e. Z is the moduli space of auxiliary covers Z given by

Pl =2z -1 @ -0 [ (@-n)*
ieBnew

with fixed signature (¢;). Let dyew = |Bpew|. Concretely, T C A%ew™! is the
locus of tuples A, (7;)ieB,.,, such that

zdx
z(x—1)(x —A)

wo =

is an eigenvector of the Cartier operator with nonzero eigenvalue.

Note that the function field k(Z) of Z is equal to k(By), where 7y : By —
IP’%\ is the accessary parameter cover, since the accessary parameters 3; are
contained in k(Z). This is easily seen from the definition of the accessary
parameters in terms of the Fuchsian differential equation (21). Namely, it
follows that

Zﬁjl‘] —Po——Pl——d(d+a0)

where the right hand side only depends on the signature and the critical
points (7;)ieB-
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We showed in Section 3.4 that Z is an affine curve. Proposition 4.7.3
below states that Z is formally smooth. This implies that there exists an
open immersion Z C Bjy.

Proposition 4.7.3 The moduli space Z is formally smooth.

Proof: Write A (resp. B) for the universal deformation ring of Def (X | 7;)
(resp. Def (Yaing, Go)) in equal characteristic. Since Def (X¢ |7;) is formally
smooth and the morphism Def (Ying, Go) — Def (Xo|7;) is a p,-torsor
(Lemma 3.4.1), we may choose isomorphisms

A~klz;|jeB—{0,1,2}]], B~ Aly|y* = f],

with f = 14 higher order terms. In fact, we may choose the coordinates
x; as follows. Let Y5 be the universal deformation of King over B. The
quotient Xp = Y5 /Gy is naturally equipped with sections 7B, for all j € B.
We may identify Xp with }P’}3 in such a way that 7o p = 0o, 71,3 = 1, and
T2, = 1, and regard 7; g for j # 0 as an element of B. Set x; = 755 — 7;

Since Def (Ysing, Go) is formally smooth as well (Lemma 3.4.2), it follows
that the degree-one part of f is nonzero. After changing coordinates, we
may therefore suppose that f = 1 + x3. Substituting y = 1 + z, we find
therefore that B ~ A[z | 2P = 3] ~ k[z,24,...,2y], where n = [B| — 1. We
write m4 (resp. mp) for the maximal ideal of A (resp. B)

Write J for the ideal of B such that B/J is the universal deformation
ring of the locally trivial deformations Def (}_fsing, Go)loet v, Put I = AN J.
Then A/I corresponds to Z. The proof of [52, Proposition 5.15] in our

situation shows that we may choose generators J =< t4,...,t4 > in such a
way that
p—1 '
ti:xi—l—szgf(u,...,xn), (45)
j=1

where g; does not have a constant term. Write

9i=>_45

>1
where gf is homogeneous in x4, ..., z, of degree /.

Claim: J C B-my.
We first show that the claim implies the proposition. Let i € B —
{0,1,2} ={3,...,n}. For every £ > 1 there exist Hi(e) and Ki(g) with

o) =2+ HY + K,
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such that :EH—HZ@ € Aand 2 < deg(Hi(é)) < £ (resp. deg(KY) > ¢). Namely,
for £ =1 take a:z(l) = t;. One now defines the :cl(-é) inductively, by substituting
T, :tk—zjzjgi for all k =3,...n. Let

O

Z; = limx; .
¢

Then z; € A, and we conclude that I =< Z3,...,Z, > . This proves that

A/I is smooth, and the proposition follows.

It remains to prove the claim. Define R = B/B-m4 = k[z| 2P = 0]. Let
J:=J/B-my. Then J =< z* >, for some £ € {1,...,p}. Put € := 2. The
claim is equivalent to £ = p.

Let Yr — Zg be the pull back of the universal deformation corresponding
to B — R. Since R-my = 0, it follows that Zp = Zy xj, R is the trivial
deformation. We want to show that Y is a locally trivial deformation. This
implies that J = 0.

Choose an affine covering (U; = Spec(4;)); of Zg. Since Zp is the trivial
deformation, we have that A; = A;¢ ®; R, where A;o = A; ®r k. The
restriction of Yz to U; is given by

Yr|u, = Spec Alyi |y = i),

for certain u; € A, Write y; = y;+ew; (resp. u; = u;+ev;) with g, a; € A; p.
Since € = 2¢, we have that €” = 0. Therefore u; = y!’ = g¥ = 4;. This implies
that v; = 0.

The logarithmic differential form wg corresponding to King — Zy is given
by

)

wo =

U

Similarly, the logarithmic differential form w; corresponding to the g, -torsor
Yr — Zp is given by
dui

w; = .
Ug

Since u; = u;, it follows that w; = wy, and hence that the deformation is
locally trivial. This implies that J = 0. This proves the claim, and hence
the proposition. O

Proof of Proposition 4.7.1: If b € ¥, the proposition follows immedi-
ately from the definition of &, in the proof of Proposition 4.6.1.
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Suppose that b & ¥ is not a ramification point of mg : By — IP’%\. Then
V(0/0t)wy = V(0/0N)wq. It follows therefore from Lemma 4.5.1 that the
image of V(9/0t)wy in H'(Zyp, O), is nonzero.

Suppose that b ¢ ¥y U Xy is a ramification point of my : By — IP’%\.
Let ¢t be a local parameter of By at ¢t. Since Z is an affine smooth curve
(Proposition 4.7.3) whose function field equals the function field of By, it
follows that Z = By — (X9 U X1). This implies that we have an embedding
T =By — (3gUX;) — A" for n = |Byew| + 1; this embedding is given by
sending a point of By — (X¢U31) to its set of critical points (A, 7; | i € Bpew)-

Lemma 4.7.2 implies that (97;/0t)(b) = 0 for all i« € B,,. Moreover,
since b is a ramification point of my, we have that (OA/0t)(b) = 0. Since
b & ¥ U X1, we obtain a contradiction. O

Let b € By and let t be a local parameter at b.

Lemma 4.7.4 (a) The line bundle Fil' C £ is generated by w.
(b) The degree of Fil' C & as line bundle on By is zero.

Proof: By definition of the filtration on V, we have that Fil is generated
generically by wgy. Since wy defines a nonzero element in &, for all b € By
(Lemma 4.6.2), (a) follows.

This implies that Fil'! C &, regarded as line bundle on By, has degree
zZero. O

The following theorem is an immediate corollary of Proposition 4.7.1.

Theorem 4.7.5 (a) The Kodaira-Spencer map

k= ke : Fill = Gr ®Q11§i/k:

is nonzero.

(b) Suppose that 7y : By — IP’%\ is unramified at the supersingular points.
Then the Kodaira-Spencer map k = ke : Fil! — Gr ®Qgi/k is an
isomorphism.

Proof: Part (a) follows immediately from Proposition 4.7.1. To prove (b),
we compute the degree of Gr = £/ Fil as line bundle on By. The differential
0 := V(0/0N)wy is a rational section of Gr.

Let e; be the ramification index of b in 7y : By — }P’}\. Let t = (A —
mo(b))'/e (resp. t = A~1/¢) be a local parameter at b € By, depending
on whether my(b) # oo (resp. mo(b) = o00). Put D = Dy = t0/0t (resp.
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D =Dy, =09/0t) if b€ Xy (resp. b € Xp). Since V(D)wy = D(A)0 is nonzero
at b by Proposition 4.7.1, it follows that

—eyp if b € Xy and 7o(b) # oo,
ordy(0) =< e if mo(b) = oo,
1-— €p if b Q 20.

Here we use the assumption that my : By — IP’%\ is unramified at the super-
singular points.
Write R =) (e, — 1). Then

deg(®) == (—e)+2 > e+ Y (1—e)
beXg mo (b)=00 bZ>o
= —R — s+ 2deg(mp) = —29(Boy) + 2 — s.

Together with Lemma 4.7.4, this implies that
deg(Gr) — deg(Fil) = —2¢g(By) +2 —s = — deg(ngi/k). (46)

Therefore x is an isomorphism. O
Let D = td/0t if b is a singularity of (V,V) and D = §/0t otherwise.
Then the Kodaira—Spencer map at b may be computed as

k(D) :Fil - V"2V L VRV, wo— V(D)wo.

Corollary 4.7.6 Suppose that the cover mg : By — Pi is unramified at the
supersingular points. Let b € By — Y and let e, the ramification index of b
inmg: By — IP’%\. Then

ordy(®,) =0,1modp and ordy(P) = ord(P,) + e, — 1 mod p.

Proof: Let b ¢ ¥ and let ¢ be a local parameter at b. Write D = 9/0t.
Write o, := ordy(®.) and « := ord,(®). Taking p = ¢ in Proposition 4.5.2,
one finds that

V(D)*wy + 8;V(D)wp + 6w = 0,

with
o= a-a ; i + higher order terms,
5y = W + higher order terms.
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Theorem 4.7.5 (or also Proposition 4.7.1) states that wg, V(D)wq form a basis
of &. Therefore 67 and d; are regular in b. This implies that o = o, +e,— 1
and o = ep mod p or a, = 0 mod p. O

In Section 4.9 we give a variant which extends Corollary 4.7.6 to the
supersingular ramification points of mg : By — IP’%\.

4.8 The p-curvature In this section we show that the p-curvature Uge
of £ is nonzero. We also express the order n, mod p of a spike b € By in
terms of the ramification index and the order at b of ®, and ®.

Proposition 4.8.1 The p-curvature V¢ of £ is nilpotent and nonzero.

Proof: It is well know that ¥¢ is nilpotent (resp. nonzero) if and only if
the p-curvature of the differential operator L := (9/9p)? + §;(0/9p) + & is
nilpotent (resp. nonzero) ([18, Appendix]).

The nilpotence of ¥y, follows from the fact that ® + 67 @/, + 55D, = 0.
Namely, as explained in Section 4.1, it suffices to show that

w + 5w =0 (47)

has a solution. Proposition 4.5.2 implies that w = ®,(0A/0p)/PA(A — 1) is
a solution to (47).

Suppose that Ug = 0. Then [25, Theorem 5.1] implies that V = E@k(By)
is generated by its horizontal sections. More precisely, this result states that

Vo (FR(V))Ven,

where Vuy is the canonical connection on F*V whose horizontal sections
consist precisely of the pth powers, i.e. the sections of the form e®?, where
e is a section of V.

Choose 01,05 € V horizontal elements which generate V. It follows from
the previous discussion that we may choose 61,65 to be eigenvectors of F'.
We know that one of the eigenvalues of F' is zero, say F'0; = 0. Since the

kernel of F on V is Fil' (V), it follows that 61 = vwy, for some v € k(By).
But this contradicts the assumption that 6; is horizontal, since V(9/0\)

does not fix ﬁl(‘_/) (Lemma 4.5.1). This proves that W¢ is nonzero. O

Theorem 4.8.2 The bundle (£,V) is pseudo elliptic.
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Proof: Theorem 4.7.5 implies that the Kodaira-Spencer map « : Fil! —
Gr ®QE§ Ik is nonzero. The statement that the p-curvature V¢ of £ is nilpo-
tent but nonzero is proved in Proposition 4.8.1. O

As in Section 4.1, we let M C & be the kernel of the p-curvature
U (D®P), where D is some rational section of T]];f s Recall from Section 4.1
that M is stabilized by V(D). Proposition 4.8.1 implies that M is uniquely
characterized by this property. Moreover, the restriction of M to the ordi-

ord

nary locus Bg™ corresponds to the unit root part of the F-crystal V (Section
1.3). Recall that we have an exact sequence

0O — M — €& — L — 0

of flat vector bundles, where the p-curvature of M and L is zero. The
p-curvature of £ can be regarded as a nonzero, horizontal homomorphism

Ue: T — ML

In particular, for any vector field D we may regard We(D®P) as a horizontal
section of M ® L1

Let p be a parameter on By. For example, one could choose p = A. In
what follows ’ denotes derivation with respect to p.

Let us compute the p-curvature in the singularities b € ¥y. Let t be a
local parameter at the point b;, and set D; := t9/0t. It is easy to see that
Df = D;. Therefore,

Uy, = Ue(DP)y, = pf — pus.

Hence if £ has a logarithmic singularity at b; with exponent «; then

D
oy — -1
Yo, < 0 al — ai> ’

which is nonzero at b. If £ has a toric singularity at b with exponents «;, 5;

then »
o — 0
“’“( 0 ﬂf’—@)'

Since V¢ is nilpotent, it follows that the local exponents «;, 3; are elements
of IF,. Therefore ¥y, has a zero in the toric singularities. In the terminology
of Section 4.1: the toric singularities are spikes of £. From now on we
suppose that «; is the local exponent of the subbundle M of £ at b = b;.
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Remark 4.8.3 If ny : By — Pi is unramified at the supersingular points,
then (£,V) is an indigenous bundle, as defined in [11]. Namely Theorem
4.7.5 states that under this assumption the Kodaira—Spencer map is an
isomorphism. To show that £ is indigenous, it remains to check that the
monodromy at the marked points is nonzero. If b € ¥ has logarithmic
monodromy, this holds by definition.

Suppose that b = b; € ¥y has toric monodromy. Recall from the proof
of Lemma 4.8.4 that «; # ;. This obviously implies that the monodromy
at b; is nonzero.

The next lemma computes the order n; of the spikes. The same result
in a somewhat different set-up is proved in [11, Prop. 2.2].

Lemma 4.8.4 (a) Let b =b; be a logarithmic singularity. Then n, = 0.
(b) Let b =b; be a toric singularity. Then ny = 3; — a; # 0 mod p.
(c) If b is not a singularity, then n, = 0 mod p.

Proof: Part (a) follows from the discussion preceeding Remark 4.8.3. Sup-
pose that b = b; has toric monodromy. Then M ® £~! has a regular sin-
gularity with local exponent «; — ;. Let D be some derivation, and regard
Ue(D®P) as horizontal section of M ® £71. One checks that this implies
that W¢ has a zero whose order is congruent to 3; — «; mod p. Suppose that
a; = ; mod p. Then wg is an eigenvalue of the monodromy operator u;.
But this contradicts the fact that (wo, V(t9/0t)wp) form a basis of &,. (See
the proof of Proposition 4.6.1.)

Suppose that b € ¥y. Then M ® £L~! does not have a singularity at b.
Hence the same argument as above implies that ny = 0 mod p. O

Let us express the local exponents «;, 3; of a singularity b = b; in terms
of a := ordy(®), and o, := ordy(®P.), and the ramification index e of b in
m : By — IP’%\. Let t be a local parameter at b;.

Suppose that mp(b) # 0,1, 00. Then

0] = % + higher order terms,

0y = W + higher order terms.
Therefore the indicial equation is X? + (@ — aw — €)X + ax(—a +¢€) =
(X +a—e)(X — ay). Since

0%, /9t \(A — 1)
5. onjor 0T

AN = 1)

=0 “oNjot

V(9/dt)wo
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is horizontal, we conclude as in the proof of Lemma 4.8.4 that e — « is the
local exponent corresponding of M, i.e. a; = e — a and §; = ..

Similarly, if 7o(b) = 0,1, we have that the indicial equation is (X —
) (X + ). We have that o; = —a and §3; = .

If mo(b) = oo, we find that a; = e — o and ; = . This proves the
following lemma.

Lemma 4.8.5 Let b=10b; € Xg. Then

_ J ax+amodp if mo(b;) = 0,1,
"= e ta- ep, mod p  if mo(b;) # 0,1

4.9 The supersingular points In this section we investigate what hap-
pens at the supersingular points, without assuming that the supersingular
points are unramified in the cover my : By — }P’i. The following proposition
is a generalization of Corollary 4.7.6.

Proposition 4.9.1 Let b € By — %o be a supersingular point, and write ey
for the ramification index of b in my : By — }P’%\. Then

(a) ordy(®,) = ordy(P®) = e, mod p,

(b) the Kodaira—Spencer map has a zero of order -y, = e, — 1 mod p,

(c) after tensoring with k(b), the group scheme G, is isomorphic to E[p],
where E/F 2 is a supersingular elliptic curve.

Proof: Let b be a supersingular point and write e for its ramification index.
Let t be a local parameter of b € By and put D = 9/0t. Lemma 4.6.2
implies that wg is nonzero as element of &,. Therefore V(D)wy is regular at
b. Define v, = ordy(V(D)wp). Then 6 := ¢t~V (D)wy is nonzero in &, and
not contained in Fil, C &,. It follows that V(D)@ is regular at b. Therefore
(wo,0) is a basis of &,.

Define o, = ord,(®,) and o = ordy(P). One computes that

a(—a+ep)

V(D) =0 (-G

_9<—’Yb+oz—oz*—€b+1
t

+ higher order terms> +

+ higher order terms> . (48)

Since a, #Z 0 mod p by definition of supersingularity, it follows that a =
ep mod p and v, = ax — 1 mod p.
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Next we consider the differential equation corresponding to the dual F-
crystal V*. Recall that wo . = dz/z € HY(Zy,Q),-1 is the basis vector dual
to & = z/x € H'(Zy, 0), under Serre duality (up to an Fj,-constant which
we may ignore.) Using this, one computes as in Section 4.5 that wy , satisfies
the differential equation

V*(D)QwQ* + 61 V*(D)wo « + dowo «, (49)
where
_ D(®) D(®,) 1 1 D%()\)
0=t -5 (5 ) P - B
D(®,) D(®) (D(@®)\? D®) D@ (1 1
=TT o +< d ) T D@) @ <X m)D(AH
D(®) D2%(\)
T Ty

Note that dp,d1 are obtained from ¢; and 47 by reversing the role of @,
and ®. The differential equation (49) is the dual differential equation as
defined in Section 4.1, expressed with respect to the basis vector A(A —1)e3,
where (e], €3) is the basis dual to (e; = wp, e2 = V(D)wyp). The reason for the
appearance of the factor A(A — 1) is explained by Lemma 4.5.1. Recall that
® is an expansion coefficient of wy .. It can be easily checked directly that
® is a solution of (7). This observation can be used to give an alternative
computation of the dual differential equation.

The argument of Lemma 4.6.2 also implies that wg 4 is nonzero as element
of Har(Zo)y-1. Define ~f = ordy(V*(D)wo.), and let 6, = t=7% V*(D)wy ..
Proposition 4.4.1 together with the assumption that b is a supersingular
point implies that o = ordy(®) # 0 mod p. Applying the argument of (48)
to the dual differential equation (49), we obtain that a. = e, mod p and
v, = a— 1 mod p. We conclude that a = «a, = e, mod p. This proves (a)
and (b).

To finish the proof, we determine the structure of the group scheme
Gp. Recall that n defined by (41) is a rational section of M which satisfies
Fy*(n) = ®n. Using that Fo*(wp) = 0, one computes that

D(\) D(®,)®

Fo =N _gp= I, 5.
TN Dm0

Since @ > 0 and a— 11—y, = e, — . = 0 mod p, it follows that Fp*(0) =
(unit)wo at b. A similar argument applied to 6, shows that Fo*(6,) =
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(unit)wp « at b. Dualizing and using that A(A — 1) is nonzero at b since
b ¢ ¥, we find that V0 = (unit)wg. Part (c) follows. O

Remark 4.9.2 Let b be supersingular and write J, for the Jacobian of
Zop- Recall from Corollary 4.4.2 that Jy[pl, ~ (Z/p)® x A(b), with A(b) an
indecomposable local-local group scheme which surjects onto Gp. It follows
easily from the description of local-local group schemes ([30]) together with
Proposition 4.9.1.(c) that such a surjection only exists if the rank of A(b) is

p?, ie. if Jp[ply ~ (Z/p)* x G(b).

Lemma 4.9.3 (a) The degree of L as line bundle on By is equal to
Zb621 b-

(b) The degree of M as line bundle on By is deg(L)+ >, ny —p(2(g(Bo) —
2+5s)).

Proof: Let b € By and t be a local parameter at b. As usual, we write
D =19/0t (resp. D = 0/0t) depending on whether b € ¥y or not. We write
[wo] (resp. [V(D)wy]) for the (rational) section of £, induced by wq (resp.
V(D)UJQ)
First suppose that b is not a supersingular point. Proposition 4.7.1
implies that
min(ordy|wp], ordy[V(D)wy]) = 0.

Since —D(®.)wo+ PV (D)wy is a rational section of M (cf. (41)), it follows
that

V(D)) = 28],
Hence
ordp|wp] = 0.

Now let b be a supersingular point and write e, for the ramification index
of bin mp : By — P}. Then Proposition 4.9.1 implies that ord,([V(D)wy]) =
7 = ey — 1 mod p. As above, it follows that ordy([wo]) = 7% +1 =€, mod p.
This proves (a).

For (b), choose a derivation D and consider ¥g : T = (7';5 /k,)®p —

M ® L£71. The definition of the order ny of a spike implies that

deg(M) —deg(L) = an +deg7.
b

This finishes the proof since deg(7) = —p(2(g(Bo) — 2 + 3)). O
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Lemma 4.8.5 computes the degree of M modulo p.
Define 1 to be the natural map

VM — £ — G = (£/Fill).

The map ) is called the Hasse invariant.
The following lemma shows that the supersingular points are the zeros
of 1. Therefore it makes sense to call both ¢ and ®, the Hasse invariant.

Proposition 4.9.4 (a) A point b € By — ¥ is supersingular if and only
if ¢ has a zero at b.

(b) The map v has a zero of order 7, in the supersingular points and is
regular elsewhere.

Proof: Let t be a local parameter of By at b € ¥ and let e = ¢, be the
ramification index of b in 7o : By — P}. Let D = 9/0t.

Let € = 0 if b is not supersingular and € = «, otherwise. Then for 7 as
in (41), the element

=t T T g,

A = 1)two + AN — 1)tV (D)wp

generates M. (This follows from Proposition 4.9.1 if b is supersingular and
Corollary 4.7.6 otherwise.) Therefore ¥(n;) = [MA — 1)t°V(D)wy] € Gry,
and v has a zero of order e.

The proof for b € ¥ is similar. O

Corollary 4.9.5 We have that

> = (p—1)(29(Bo) — 2 + s).
b

Proof: Proposition 4.9.4 implies that the degree of 1 equals } ;5 V. Since
deg(y) = deg(M) — deg(Gr) the corollary follows from Theorem 4.7.5 and
Lemma 4.9.3. a

Example 4.9.6 We illustrate the results of this section in an easy example.
Let p > 7 be a prime and take a = (1,p —4,p — 4,1). It follows that d =
p—1—(ap+ai1+az+asz)/2 = 2. To find a Fuchsian deformation datum of type
a, we need to find a polynomial solution of degree 2 of Pyu” + Pyu’+ Pyu = 0,
for some choice of the accessary parameter 5. Here Py = z(x — 1)(x — \),
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Py = —72% + (6A + 1)x — 3\ and P» = 6x + 3. The recursion (24) easily
implies that 8 should satisfy

(8 + 6X)(108A + 30\ + 62 + ) = 0.

Suppose that 3+ 6 = 0, for simplicity. (The other case can be analyzed
analogously, compare to Section 4.11.) Then the unique monic solution of
degree 2 of Pyu” + P/ + Pou =0 is u = 22 — 2z + \. It follows that

D, =6(A—1/2) and O =4\A—1)(A—1/2).
This implies that

2 2 2\ — 1 4
=Xty 0 AA— DA —1/2)  AA—1)

Therefore £ has no logarithmic singularities and three toric singularities
A= 0,1, 00 with local exponents 0, —1;0, —1;4, —1 respectively.

4.10 The deformation datum corresponding to £ In[11]it is shown
that one can associate to a pseudo-elliptic bundle (£, V) a deformation da-
tum (Cp, ) which we call the Hurwitz deformation datum. We make this
construction explicit in our case. This construction is not a converse to the
definition of the pseudo elliptic bundle corresponding to a special deforma-
tion datum. This is illustrated by Example 4.10.2 below. It may be helpful
for the reader to look at this example before reading the rest of this section.

The example considers a special deformation datum with |Bpew| = 0.
This is the situation of Section 1. In this case the Hurwitz deformation
datum (Cj, #) describes the reduction of the Hurwitz space parameterizing
metacyclic covers, reproving the result of [9]. This is the starting point for
the results of Section 5. Namely, in Section 5 we interprete the Hurwitz
deformation datum (Cp, 6) as the differential Swan conductor (in the sense
of Kato) of a suitable Hurwitz space.

We now recall from [11, Section 3.3] the construction of the deformation
datum corresponding to £. For this construction we do not need to assume
that mg : By — IP’%\ is unramified at the supersingular points.

For simplicity, we suppose that there exists a parameter p on By which
has a pole in one point co with mp(c0) = oo, and that ord,(9p/dt) = 0 for
b # oo. Let D = 9/9p. Then DP = 0. As before, we write

D@)AA—1)  AA-1)
o, D) °T Dy

n=-— V(D)WO
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It is a rational section of M which satisfies

V(D)n = —@n, and Fn= dn.
Therefore ®7 is horizontal.

Define W1 € k(By) to be a rational function such that W¥®n is a section
of My for all b # co. We may choose W; to be minimal in the sense that
0 < ordy(W;) < p for all b € By — {oco}. We call 7} := WP®n the minimal
generator of M (with respect to the choice of p).

Define €1 := Wlwy/®.. One computes that

D(®,)

V(D)el = — (1)2

1
wao + (}TWfV(D)WQ =

Since 7 is horizontal, it follows that
Te(D®P)ey = DP ().
Alternatively,
Ve(DP) = D' H )i @ [ea] ™,
as (horizontal) section of M ® £
Write v = 3. v;p'. Then DP~lv = — " vp1pP" is a pth-power, say
DPly = WP, (51)

Replacing e1 by eg := e1 /WP = woW?F/(®,WP), we find therefore that

V(D)ey = (v/WP)n and
We(DP)eg = —ij.

The section ej is the analog in our situation of what is called the canon-
ical section in [11]. Tt is well-defined up to multiplication by an element of
k*. We refer to [11] for more details.

The Hurwitz deformation datum corresponding to £ is now defined as

follows. Let Cy be a connected component of the nonsingular projective
curve with generic equation

WP

—1
yP :
v

Note that Cj is a cyclic cover of By of order dividing p — 1. Put 8 := ydp.

Lemma 4.10.1 The differential 8 on Cy is logarithmic.
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Proof: Put D = 9/0p. We have that 8 = ydp = (y/W)Pvdp. Applying
the Cartier operator, we find

00 = () vdp = =L (D" 10) /7 dp = y .

since DP~1(v) = —WP. This shows that @ is logarithmic. O

Example 4.10.2 Let k£ be an algebraically closed field of characteristic p >
0, and A a transcendental element. Choose an injective character x : Z/(p —
1) — IF;. Let 0 < ag,a1,a2,a3 < p — 1 be integers with ag + a1 + as +
as = 2(p — 1), and let (gx : Z — P},w) be the corresponding deformation
datum, i.e. Z; is the smooth projective curve corresponding to a connected

component of
P = 2% (1 —1)%2 (z — \)%,

and w = @i/(p_l)wo with

zdz
x(z—1)(x—N)

wo =

One computes that

s X (N e 5 ()

t+j=ao i+j=aop

In particular, Assumption 4.2.1 is satisfied (cf. [8, Proposition 6.7].)

Since we have no new tails, and hence also no accessary parameters, the
degree of my : By — IP’}\ is 1. Let (£,V) be the corresponding pseudo elliptic
bundle. The singular locus ¥ consist of 0, 1, 0o, i.e. the differential equation
(52) corresponding to (£, V) is hypergeometric.

It is easy to compute the order of zero of ® and ®, at A = 0,1 and
the degree ([9, Corollary 5.5]). From this one compute that the differential
equation corresponding to (£,V) is

O + 5. + 5P, =0,  with (52)
5 - —92—a0  —a1—ag 5 — ag(az — 1)
! A A—1 " 07 AA-1)

The expression for d; uses that the differential equation corresponding to
(€,V) is hypergeometric. Note that this is the same differential equation
we encountered in Lemma 1.1.4.
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The Hurwitz deformation datum associated to (£, V) is now (Cy — By =
P!, 0) where Cj is the smooth projective curve given by

y”_l _ ToM
AP\ —1)p—17
and
0 =ydA.

This deformation datum has been found also in [9]. Loc. cit. relates this
deformation datum to the reduction of the Hurwitz space parameterizing
metacyclic covers. Namely, let H = H(a) be the Hurwitz space of metacyclic
covers of type (ag,a1,a2,a3) and 7 : H — Pi the natural map, as in Section
1.4. Recall that we assumed that ag 4+ a1 + az + ag = 2(p — 1). This means
that the deformation datum (gx,w) is special. One can define the Hurwitz
space H(a) of course also without assuming that ag+a; +a2+az = 2(p—1).
It is shown in [9, Theorem 4.2] that the Galois closure w of 7 : H(a) — P}
has bad reduction if and only if ag + a1 + as + ag = 2(p — 1). This suggest
a relation between specialty and bad reduction of the Hurwitz spaces cover
w which would be interesting to investigate in a more general context.

The Galois group I' of w is either PSLa(p),SLa(p) or PGLa(p) ([9,
Corollary 3.6]). In particular, p strictly divides the order of I'. Since
ap + ay + ag + ag = 2(p — 1), the cover w has bad reduction to charac-
teristic p, and the corresponding deformation datum is just (C,6).

In Section 5.3 we interprete the differential form 0 as a differential Swan
conductor of a certain cover w : H — }P’}\, generalizing what we explained
above in the case of the Hurwitz space of metacyclic covers. This explains
the name “Hurwitz deformation datum”. The cover w is the Galois closure
of H — IP’%\, where H is a certain Hurwitz space parameterizing G-Galois
covers of P! branched at four points defined over a number field. The cover
w is branched at three points, but in general p? divides the order of the
Galois group of w.

The following lemma is proved in [11]. It expresses the signature (Section
2.2) of the deformation datum in terms of the orders of the spikes.

Lemma 4.10.3 Let b € By and write oy, for the ramification invariant of
the Hurwitz deformation datum (Cy,0), as defined in Section 2.2. Then

0 if b € ¥y is unramified in m : By — P,
np =14 (p—1)oy ifb e I,
(p—1)(op — 1) otherwise.
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Note that Corollary 4.9.5 is now follows from the Riemann—Roch The-
orem applied to the differential form 6. It gives a formula for the sum of
the ;. Lemma 4.8.5 now computes the signature of the deformation datum
modulo p. Moreover we know that o; > 0. Unfortunately, this information
does not determine the o; completely.

In the situation of Example 4.10.2 we know that the Hurwitz deformation
datum (Cp,0) is the deformation datum of a I'-Galois cover w : H — P},
where p strictly divides the order of I'. Namely, w is Galois closure of the
Hurwitz space of metacyclic covers. This implies that that o; > 1 for ¢ €
Bhew ([41, Proposition 3.3.5]). The vanishing cyclic formula (Corollary 4.9.5)
implies that there are three primitive critical points. Moreover, 0 < g; < 1
for i € Bprim and 1 < 0; < 2 for i € Bew. Together with the formula for
the o; modulo p, this is enough to determine the signature. (Compare to
Section 6.2.) The same holds more generally, as long as p strictly divides the
order of the Galois group I' of w. It would be interesting to know whether
Raynaud’s estimate for the ramification invariant of the new critical points
also holds if p? divides the order of the Galois group of w.

4.11 An example In this section we give a more involved example of a
pseudo-elliptic bundle. We focus here on the role of the accessary parameter.
Let p > 7 be a prime number and consider a := (1,p—2,p—6,1). It follows
that d=2(p—1) — (ap + a1 + a2 + az) = 2.

We need to find a polynomial solution u = wusx? + wiz + ug of the
differential equation Pyu” + Pyu’ + Pyu = 0 for some choice of the accessary
parameter 3, where

Py=xz(zx—1)(x —N), Py = —42% + (6\ — 1)z — ), Py, = 6x + 5.
The recursion (24) implies that
g

up=Sug, A1)+ =0, up(4A—10X" ~AB) ~20up = 0.
Therefore
L BB
6(8+1)

Choosing ug = (8 — 1)(3? + 28 + 6), we find that
u=—18(8+1)%2? — 6(B + 1)(8* + 28 + 6)z + (8 — 1)(3* + 28 + 6).

This choice is made in such a way that u does not have denominators and its
coefficients are relatively prime. We denote by my : By — }P’}\ the accessary
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parameter cover. It is defined by A = —((5 — 1)/6(8 + 1)., and is ramified
at 2+ 26 —1=0. We choose 3 as parameter on By.

We first determine the set g C By of points where the curve Z; given
by
L= (2 — 1)%2(z — \)®B>

is singular. Since deg(u) = 2, it follows from Proposition 4.2.2and Lemma
3.2.1 that Zj is singular if and only A = 0,1, 00 or u(0) = 0. One computes
that this corresponds to the set 5= 0,1, -2, -3, —1,00 and 3?>+25+6 = 0.
Therefore Yy has cardinality 8.

It follows from the explicit expression of ®, and ® given in Section 4.4
that

P

(8 +3)* (B8—1*B*+28+6)*(B>+28-1)

ERCESVER - B+1
Note that ® has a zero at points with 3% + 23 — 1 = 0, but ®, does not.
This shows that the converse of Proposition 4.4.1 does not hold. There are
no supersingular points.

We write V(9/03)%wo = —6iwo—0;V(9/98)wo. Using Proposition 4.5.2,

we find that

5 2(635 4403 + 105 8% + 156 3% + 89 32 — 54 8 — 18)

b (B +56+6)8(F2+20+6) (5 —1)

and
st 2(1235 492 8% + 261 8* + 408 33 + 403 3% + 198 3 — 78)
’ (B +50+6)0(8-1) (52 +20+6) (8 +1)*
The local exponents at 3 = 0,1, —1, 00, —2,—3 are 0,0;0, —2; 2, —5; 3, 8;0, 0;
0,2, respectively. At the roots of 32 + 23 + 6 the local exponents are 0, —1.
One checks that indeed

62@* + 5*%
o2 o

Let v be as in (50), i.e.
oN/0p —6(8+1)°

"TRB A1) (B-1)P(B2+28+6)2(B+3)PB(B+2)

One computes that Resjv = Respv = —Res_ov = —Res_3v = 1/324. There-
fore

+ 65P. = 0.

ey (B0 @OMOBrBLYF
THBB-DE+EFIP | evh-r
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The corresponding Hurwitz deformation datum is

-t _ WP (82 +268 — 1)P(B° + 28 +6)° 0= yds
ST T (I 1O H5) Py (RN e (C A

The signature of this deformation datum is therefore

b ‘0‘ 1 ‘—2‘ -3 ‘ -1 ‘ 00 ‘ﬁ2+26+6:0‘ﬁ2+2ﬁ—1:0

2 2 p=7 | p=5 p+1 2p—1
Ub‘o‘p—l‘o‘—l‘ ‘ ‘ p—1°

3

4.12 Families of elliptic curves In this section we define elliptic bun-
dles This is a (slightly simplified) mod p version of elliptic crystals as defined
by Ogus [39, Definition 1.1]. Let R be a discrete valuation ring with residue
field k£ an algebraically closed field of characteristic p and fraction field K
of characteristic zero.

Definition 4.12.1 Let By/k be a complete nonsingular curve, and let (£, V)
be a pseudo-elliptic bundle over By. We say that £ is an elliptic bundle if
there exists horizontal isomorphism

tr: /\25 — Op,

which is compatible with the Frobenius morphism in the following sense.
Write (-,-) : £2 — O, for the alternating bilinear form corresponding to tr.
Then the compatibility with the Frobenius morphism on £ amounts to

(Fo*z, Fo*y) = pp*(z,9). (53)

Here ¢ denotes the Frobenius morphism on k(By), as usual.

Let £/ By be the pseudo-elliptic bundle associated to some special defor-
mation datum. Let b € By — X U X1, and write &, for the fiber at b. The
existence of a horizontal isomorphism tr : A2 — Op, corresponds to the
choice of a horizontal vector. Choose a derivation D and write

D(®,)

wh = V(D)wo, n=— T

A = Dwy + A = Dwyp.

It follows from the results of Section 4.3 and 4.5 that

F 1 o
—ptwy = — D d Fo'uh=—n.
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This implies that

P P

F
— ooy Fofwhy = —— — —— Y.
<p90 wo, L'y w0> (D*A(A—]_) <WO,’I7> P, <WO,Wo>

Therefore the condition of Definition 4.12.1 is satisfied if and only if & = ®,.

Lemma 4.12.2 Let b € By — Yo U X1. Then &, admits a trace map if and
only if b is unramified in 7wy : By — IP’%\.

Proof: Since b € By — Xy U X1, the curve Zo,b is smooth and b is not
supersingular. The lemma follows easily for the explicit expressions from eg
and 1), together with the expression for the order of the zeros of ® and @,
(Corollary 4.7.6). O

The lemma is easy to understand in terms of the group scheme G, (Sec-
tion 4.4). The trace map corresponds to a duality on &, which corresponds
to Cartier duality on G,. But we have seen that if b € By — g U X is a
ramification point of mg : By — }P’i, then G, ~ Z/p x ay. Therefore G, is not
isomorphic to its Cartier dual; it follows that a trace map as in Definition
4.12.1 does not exist.

Suppose that B/ Spec(R) is a complete, nonsingular curve, and £ — B
a semistable family of elliptic curves. We write Fy — By for the reduction
modulo p, and assume that it is not isotrivial.

The Gau3i-Manin connection

Vi Hi(E/R) — Hi(E/R) @ O,

makes H := H..(E/R) into a flat vector bundle with logarithmic singulari-
ties ([25]). Denote by Fil' () the filtration induced by the Hodge filtration.

Write Eg = E ®p k, and X for the set of points b € By := B ®p k for
which the elliptic curve Ey is singular.

Lemma 4.12.3 The bundle H := H.,(FEy) is an elliptic bundle.

Proof: Since we assumed that gg : Ey — By is not isotrivial, the fiber
of Ey above the generic fiber of By is a smooth ordinary elliptic curve.
It is well known that this implies that the Kodaira—Spencer map of H is
nontrivial. The statement that the p-curvature W4 is nilpotent is shown
in [25]. The statement that the p-curvature is nonzero follows again from
the assumption that Ej is generically ordinary, by using that the Frobenius
morphism vanishes on Fil'(H) c H.
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Let tr: A?H — OB, be the natural map induced by Serre duality which
identifies Fil'(H) = H(Ey, Q) with the dual of Gr°(H) = H/Fil'(H) =
H (Eo, ©). Write V = H ® k(By), and

(-,-) :FilY(V) x Gr%(V) — k(By)

for the corresponding alternating pairing. It is well known that this pairing
satisfies (Vz,y) = (x, Fy), where V : V — V is the Verschiebung. We claim
that this is a trace map as in Definition 4.12.1. Let wy € T'(By, Fill(H)) =
HO(Ey, Q') correspond to the invariant differential form on Ey, and let & €
H'(Ep, O) be the dual basis vector with respect Serre duality. Write F¢ =
®E. As in Section 4.3 it follows that we may lift & to a rational section 7 of
‘H such that F'n = ®n. Since we are in characteristic p, we have VF = 0.
This implies that Vwy = ®wy. This shows that H is an elliptic bundle. O

Write V(D)2wo + 67V (D)wg + §iwo = 0 € H for the Picard-Fuchs differ-
ential equation. As in Section 4.3 it follows from Vwy = Pwy that ¢ satisfies
the same differential equation, i.e. D?(®) + 67 D(®) + §5® = 0. From this
one easily deduces as in Section 4.5 that

D(®
n= —%wwo + wV(D)wy,
where w satisfies 07 = dw/w, i.e. w is essentially a solution of the Wronskian
equation, cf. Section 4.1. Moreover, one checks that
wo 1

As in Section 4.10 this implies that

0 0
w W
Ee(D%) (G- ) = (m—l_l o> (Ge-2)
wd?

We finish this section with a concrete example. We formulate this here
in the more classical terms of families of elliptic curves, but it is clearly
equivalent to the formulation in terms of deformation data as we did before.

Example 4.12.4 Consider one of the families of elliptic curves over a pro-
jective line with four singular fibers found by Beauville [2]. Picard—Fuchs
differential equations of some of these families have been computed by Stien-
stra and Beukers [45] in characteristic zero. They also consider the differen-
tial equation in mixed characteristic zero, and relate the unit root eigenvalue
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of Frobenius to solutions of the Picard—Fuchs differential equation, similar
in spirit to the discussion in Section 1. For similar computations on the
family we consider here see [47].

Let p > 2 be a prime, and B = }P’%p. The family of semistable elliptic
curves over B we consider is given by

E;: (x+y)(:cy—22):¥.

This family is the universal elliptic curve with a ' := T'y(8) N 'y (4)-level
structure. The elliptic curve E; is singular if ¢ € Xy := {0, 00, £i/4}. One
checks that the modular curve B of level I' admits a degree two cover m :
B — X((8) ramified at ¢ = 0,00. Denote by ¥, the image of ¥y on X (8).
Since 7 is Galois, this set has cardinality three. Clearly, what we compute
below is only a small illustration on all what can be said here. For example,
the relation to K3-surfaces is not touched upon. We refer to [45].

It is computed in [47] that the Picard-Fuchs differential equation of
H :=HL (E/k(By)) is given by

L = t(16t* + 1)(0/0t)* + (48> + 1)(0/0t) + 16t.

We may choose an isomorphism Xg(8) =~ P! such that the Picard-Fuchs
differential equation corresponding to X(8) is Gauf’ hypergeometric differ-
ential equation

L' :=s(s—1)(8/0s)* + (25 — 1)(8/ds) +

] =

In particular, ¥ ~ {0,1,00}. Moreover, my : B — X(8) is given by s =

7o(t) = —16t% and L is the pull-back of L’ via mg. This gives an alternative

way of computing the Picard—Fuchs differential equation in characteristic p.
We now consider the differential equation L in characteristic p. Let

(p—1)/2 2
_ 1)/2 )
(p/ — (p 2
Z < . > s' e Fpls]
1=0
be the classical Hasse invariant. It satisfies L'(®’) = 0. Therefore
B(t) == ®'(—165%) (54)

satisfies L(®) = 0. Since deg,(®) = p — 1, this implies that ® is the Hasse
invariant of F, in the notation of the proof of Lemma 4.12.3 (cf. Section 3).
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Let w = t(t* + 1/16) be the minimal solution of dw/0t = (48t +
1)/(16t3 +t) = §f. Put v = 1/(w®?). As in Section 3, it follows from

the differential equation that the residue of v at a zero of ® (a supersingular
point) is zero. Write {b1,ba} = 75 '(1) = {£i/4}. Then

1 1
R — = R — =
B(0)2 T e hy) B (b )2

Resi—gv = —

It follows from (54) and the well-known fact that ®(0) = 1 and ®'(1) =
(=1)®=1/% that ®(0) = 1 and ®(b;)?> = 1. Therefore

Res;—gv = 16, Resi—p, v = Resy=p,v = —8.
Writing D = 9/0s, we find that

Drly = 1 + 5 + 5 = - ! =:
ot (t—bl)p  (t—b2)» (2 +1/16)P

WP,

This describes the Hurwitz deformation datum corresponding to the elliptic
bundle, as in Section 4.10. We find

(-1/2 _ g2 _ ¥y
4 Y=t @

5 The Swan conductor of a Hurwitz curve

Let f : Y — P! be a G-Galois cover branched at four ordered points
T, T1,T9, T3 in characteristic zero, and H the component of the Hurwitz
space of G-Galois covers such that f corresponds to a point of H. The goal
of this section is to relate the reduction of f to characteristic p with the
reduction of the natural map m : H — P1. Assume that (P!;;) is generic
and that f has special bad reduction to characteristic p. Let (£,V) be the
corresponding pseudo-elliptic bundle. The main result of this section inter-
prets (£, V) as a differential Swan conductor in the sense of Kato associated
to the Galois closure of 7 (Theorem 5.3.2). In Section 5.1 we review Kato’s
definition of the Swan conductor. In Section 5.2 we determine minimal field
over which the stable reduction f of f may be lifted to characteristic zero
(Proposition 5.2.3). In Section 5.3 we use this to prove the main result.
relies on the determination of the minimal field over which the stable
reduction f of f may be lifted to characteristic zero (Proposition 5.2.3).
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5.1 Review of Kato’s Swan conductors We define the Swan con-
ductor of a finite Galois extension L/K of complete discrete valued fields
whose residue field extension is purely inseparable, following Kato [23]. In
case the degree of L/K is p, this Swan conductor may be identified with the
deformation datum of the residue field extension (Example 5.1.5).

Let K be a complete discrete valuation field, with residue class field &
of characteristic p > 0. We write Ok for the valuation ring of K and mg
for its maximal ideal. We denote by vgx the normalized valuation, with
v (K*) = Z. Given an element = € Ok, we write € k for its residue
class. We make the following assumption on the residue field k.

Assumption 5.1.1 The field k£ has an absolute p-basis of length 1.

Equivalently, the k-vector space of absolute differentials € of k has
dimension 1. A unit z € O such that dZ is a basis of Q is called a
generator of K. Another equivalent formulation of Assumption 5.1.1 is that

[k« k"] = p",

for all n > 0 ([32, p. 2011f]).
We define the group Sk as the group of units of the k-algebra

o ;
@ mZK/m’I}rl ® QY.
i,jEL

For an element = € K>, let [z] be the corresponding element of mb, /m’* C
Sk (with i := vk (x)). Similarly, for an element w € Q,E@j, we write [w] for the
corresponding element of Si. The group law for Sk is written additively.
Thus, if we fix a generator x of K and a prime element 7g, then every
element of Sk can be written in the form

[f (d2)®'] +n - [7k],

for unique integers i,n and a unique element f € k. In other word, the
choice of  and 7k yields an isomorphism Sx = k* @ Z2.

Let K be as before, and L/K a finite Galois extension, which satisfies
the following condition.

Assumption 5.1.2 The extension of residue class fields [/k is purely in-

separable, of degree
l:k=[L:K]=p",

and generated by one element, i.e. | = k().
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This assumption corresponds to Case II in Kato’s paper [23]. An ele-
ment z € O] whose residue class Z generates the extension [/k is called a
generator of L /K. Such an element is automatically a generator of the field
L (in the sense we gave this term above).

Note that if K satisfies Assumption 5.1.1 and L/K satisfies Assumption
5.1.2, then L satisfies Assumption 5.1.1 as well. We have natural injections

2 2 @P"
mK/mK%mL/mL, Qk‘—>Ql .

The last map sends fdzP" € Q to f (dz)P" € Ql®pn, where T is an arbitrary
generator of the extension [/k. Therefore, we obtain a natural injection

SK — SL.

One checks easily that the quotient group Sz, /Sk is killed by p™ = [L : K].
Fix a generator x of L/K. For o € Gal(L/K), o # 1, we define

sk (0) = [dz] — [z —o(z)] € S.

One easily checks that this definition is independent of the choice of z. We
also set
SL/K(]-) = - ZSL/K(O').
o#1

The element sy, (1) € Sz, is also called the different of L/ K, and is denoted
by ®/k. The different is the Swan conductor of the augmentation ideal.

Let H be a normal subgroup of Gal(L/K), and M := L. Then for all
T € Gal(M/K), 7 # 1, we have

suy(t) =Y sy (o), (55)

see [23, Proposition 1.9]. In particular, the right hand side of (55) lies in
Sy C Sp. One easily deduces from (55) the transitivity of the different, i.e.
the formula

Or/xk =DL/m +Dnyk- (56)

Let L/K be a Galois extension satisfying the Assumptions 5.1.1 and
5.1.2. Set G := Gal(L/K). Note that G is a p-group. Let Z denote the ring
of algebraic integers. We fix a pth root of unity ¢ € Z, and define

€(¢) == Z [a] ® ¢* € Sk ®z 7.

aEF;

Note that €(¢?) = [a] + €(¢).
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Definition 5.1.3 Let x : G — Zf be a virtual character. The Swan con-
ductor of x (with respect to ¢ € Z) is the element

swr/k(x) == Z spyx @ x(0) + x(1) - €(¢) € SL®Z.
ceG

Proposition 5.1.4  (a) swp x(x) € Sk-

(b) Let H be a subgroup of G, M := LH | x a virtual character of H and
X the induced virtual character on GG. Then

swr ik (X) = |G/H| - (swpn(x) +x(1) - Dpr/i)-

(c) Let H be a normal subgroup of G, M := L | x a virtual character of
G/H and X' the restriction of x to G. Then

SWL/K(X/) = SWM/K(X)-

Note that (a),(b) and (c) are analogies of well known properties of the
classical Swan conductor, see e.g. [42]. Here (b) and (c) are more or less
formal consequences of (55) and (56), whereas (a) corresponds to the Hasse—
Arf Theorem and is quite deep. For a proof, we refer to [23, Proposition 3.3
and Theorem 3.4].

By Proposition 5.1.4.(a) we can write

swr r(X) = 0(x) - [7x] = [000) ],

with §(x) € Z and 0(x) € Q" n € Z. Following [19], we call §(x) the
depth of x and 6(x) the differential Swan conductor of . The integer ()
is called the discriminant in [40]. Note that 6(x) depends implicitly on the
choice of the prime element 7y,.

Example 5.1.5 Suppose G is cyclic of order p. Suppose, moreover, that K
contains a primitive pth root of unity ¢. In particular, K has characteristic 0.
(We do not distinguish ¢ € K from ( € Z) By Kummer theory, L = K(y),
with  := y? € Oj;, and we have a generator ¢ of G such that o(y) = Cy.
We distinguish two cases. In the first case, we suppose that T & kP.
Then L/K is a p,-torsor and y is a generator of the extension L/K, and we
have
dy
(]

| = [A]=T[a],

SL/K(Ua) =
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for all @ € F;, and with A := ( — 1. Now if x : G — Z is a character with

x(0) = ¢", then

a dy
swi k() = a%;fb_l (171 181) — e+ )
- (121-1a1) - [0
s -at
Hence, the depth of y is
5(x) = 2K

p—1’
where ex := vi(p) is the absolute ramification index of K. Furthermore,

if we choose a suitable root of A as prime element 7, the differential Swan

conductor is 4z
T
0 =b. —.

(x) —

For the second case, we suppose that z is a pth power in k. Then L/K
is an oy,-torsor, and one can show that z = 2P(1 + W];(nu), with z,u € O,
u ¢ kP and 0 <n < eg/(p—1), see for example [19]. Write y = z(1 + 7} w).
Then wP = u, hence w is a generator of L/K. Therefore, we get

sp/i(0”) = [dw] = [Arp "] —[a].
A similar calculation as above yields

swr i (x) = —p- ([dw] = [Ar"]) —[b]

= [NPr P"] — [bda].
Hence, the depth of x is
_b-ex

and the differential Swan conductor is
O(x) ="b-du.

But this implies that 6(x) is just the differential form corresponding to the
torsor L/K ([50, Section 2.2]).

107



5.2 The auxiliary cover In this section we recall Raynaud’s construc-
tion of the auxiliary cover ([41]). This is used in the next section to describe
the Swan conductor of a Hurwitz curve. The following notation is fixed in
this section.

Let R be a complete discrete valuation ring of mixed characteristic p, let
L be its fraction field and [ be its residue field. Let f : Y — P! be a G-Galois
cover branched at four points zg = 0o, z1 = 0,22 = 1,23 = A, defined over
L. After extending L, we may suppose that the stable reduction of f is
defined over L. We suppose that

a) p strictly divides the order of G,

(a)
(b) the ramification indices of f are prime-to-p,
(c) A is transcendental over Qy,

)

(d) f has special reduction (Section 2.2).

As usual, we denote the stable model of f: Y — P! by fr:Yr — Xg
and the stable reduction by f : Y — X. We choose an irreducible component
Y, of Y above the original component X,. Write Gy C G (resp. Ip) for the
decomposition group (resp. inertia group) of Yy and let go : Zg — Xg be the
corresponding Galois cover with Galois group Hy := Go/Ip. We denote by
x : Hy — IF; the character describing the action by conjugation of Hy on
Iy, as in Section 2.2. We fix a lift Hy C Gy. Let w be the differential form
corresponding to Yy — Zy. Then (go,w) is a special deformation datum.
Assumption (c¢) implies that w is a logarithmic differential form (Proposition
2.3.3). We assume furthermore that

(e) @ is nonzero.

(Compare to Assumption 4.2.1.)

We start by recalling the definition of the auxiliary cover of f from [41,
Section 3.2]. As in Section 2.2, we write B = Bpyim U Brew for the set of
tails of X. Let X; be the irreducible component corresponding to i € B.
Recall that X; intersects the original component Xy in a unique point ;.
For i € Bprim, we denote by Z; the specialization of the branch point x; of
f:Y — P! to X;. For i € Byey, we choose a l-rational point z; € X; — {7;}.
We also choose a lift z; of Z; to a L-rational point of X.

It is shown in [41, Section 3.2] that there exists a Gp-Galois cover f2"* :
yaw — X over L with Y™ smooth which is branches at (z;);eg. The
cover fa"* :Y?a™ — X has special stable reduction over L, and its stable
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reduction gives rise to the deformation datum (gg,w). Informally, the stable
reduction f* : Y@ _ X Jooks as follows. The restriction of f®* to the
original component Xy is Yy — Xy. Let Y; be an irreducible component of
Y2 above the tail X;. We fix an intersection point 7; of Y; with Y. The
restriction of f2'X to Y} is a separable Galois cover f; : ¥; — X; branched only
at 7; and x; whose Galois group is the decomposition group in f: Y — X of
n;. The ramification of f; above 7; is “the same” as the ramification of 7; in
the restriction of f to X;. Since we assume that f has special reduction, this
just means that both covers have the same ramification invariant o; ([51,
Lemma 2.12]).

In Section 4.10, we associated to (go : Zy — Xo,w) another deformation
datum (Cjy, 0). We call this the Hurwitz deformation datum. (The relevant
Hurwitz space is defined in Section 5.3.) Recall that it lives on a certain
cover By — IP’%\ in characteristic p. The deformation datum of the Hurwitz
space defines therefore maps

D0—>C()—>Bo—>P}\,

where mg : By — }P’}\ is the accessary parameter cover (Section 3.4), Cy — By
is a cyclic cover of order dividing p — 1 (Section 4.10) and Dy — Cj is the
p,-torsor corresponding to the logarithmic dif_ferential form 6 on Cy. We
denote the function fields of these curves over IF), by

k(Do) O k(Co) S k(Bo) O k().

For the application we have in mind, we are only interested in the wild
ramification of L, therefore it is no restriction to replace k(Cy) (resp. k(Dy))
by the separable closure k(\)*P (resp. k(Dg)*P) in some fixed algebraic
closure of k().

We denote by K () the function field of P} over C, = Q,. Let vy be the
valuation of K()), and write K () for the completion of K (\) with respect
to vg. We denote by K 1(A) the maximal tamely ramified extention of K (N);
its residue field is k(\)%P.

Lemma 5.2.1 The Gg—(}alois cover f*" :Y?®* — X may be deﬁqed over
an extention Ks(\) of Ki(\) of degree p. The residue field of Ks(\) is
kE(Dg)seP.

Proof: Write Zp for the quotient of Y™ by the normal subgroup Iy of Go
and write Z for its special fiber. We denote by Z; the image of ¥; in Z.
For ¢ € B, the induced cover Z; — X; is a Galois cover of degree prime to
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p branched at at most two points, it follows that the genus of Z; is zero.
In other words, the cover g : Z — X has good reduction if we forget the
markings; its reduction is just go : Zg — Xo. It follows that Z may by
defined over Kj(\).

It remains to consider the minimal extention of K 1(A) over which we can
define Y™ — Z. Let Y3'¥ be the (singular) curve obtained by contracting
the tails of Y3"™*. Its special fiber has cusps as singularities ([51, Section
3]), and admits a p,-torsor Y2 — Zy (loc. cit.; the curve Y 2™ was de-
noted by Y5ing in Section 3.4). This p,,-torsor corresponds to the logarithmic
differential form w on Zj.

The differential form w on Zy corresponds to a line bundle £ which
lies in J(Zo)[p](k(Co))y- Recall from Section 3.4 that the set of lifts of £
to an element of J(Z)[p]y is a p,-torsor. This torsor defines an extension

K3(\)/K1()\) of degree p. By construction, the corresponding residue field
extention is exactly k(Dg)P/k(N\)%P. It follows that f**:Y?"™ — X may
be defined over K7(A). This proves the lemma. O

Lemma 5.2.2 The auxiliary cover f&** :Y?"™ — X has stable reduction
over Ks()).

Proof: The proof of this lemma follows from a arguments of Raynaud on
the wild monodromy ([41, Section 4.2]), together with a more precise version
proved in [51, Lemma 2.17].

Let L% be the minimal extension of Kj(\) over which faux ; yaux _,
X acquires stable reduction. Let Ty, = Gal(L%, K()\)). Since K7 is the
maximal tamely ramified extension of K (A), it follows that I'y, is a p-group.
Steps 2 and 3 of the proof of [41, Proposition 4.2.4] directly carry over to
our situation, and show that I',, acts trivially on Yy and the primitive tails
(Xi)ieByum- As in Step 1 of the proof of [41, Proposition 4.2.4]), we deduce
from the fact that o; > (p+1)/(p—1) for i € Byew that Iy, does not permute
the new tails.

Suppose that there exists a tail ¢ € B such that I';, act nontrivially on
Y;. Then [41, Lemme 4.2.6] implies that 'y, N G; # (. Since Iy, is a p-group
and p strictly divides the order of Gy, it follows that I',,NG; = '\, NGy = 1.

Consider tuples (y07y; |4 € B), where 79 € Go and ~; : Y; = Y is an
(outer) automorphism of the tail ¥; which commutes with the action of the
decomposition group G; and fixes 7;. (Recall that 7; is a fixed intersection
point of Y; with Yy.) Denote by AOGO(fa“X) the set of tuples (yo;7i |7 € B)
satisfying the following conditions.

(1) The element vy € Gg centralizes Hy C Gj.
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(2) The equality
Y loaoy =vioaoy !

holds for all o« € G;.

In [51, Section 2;2.4] this set is called the group of automorphisms of the
special Go-map f*™*. Lemma 2.17 of [51] states that we have an inclusion

Ty — Ag, (F*™)/Cay,

where Cg, is the center of Gj.

Let (70;:) be nontrivial such that its class in AOG0 (fa) is contained
in the image of Iy C T'y,. Since Iy C Gp, we may take 7; = 1 for ¢ € B.
Condition (2) implies that Iy C Cg, for all ¢ € B. Since Gy is generated by
(G)ieB, it follows therefore that Iy C Cg,. This implies that o; € Z, for all
1 € B. Since the ramification of f2"* has prime-to-p order, it follows that
0; # 0. But this contradicts the vanishing cycle formula (17). We conclude
that Ty, is trivial, and hence that L% = Ky(\). O

Proppsition 5.2.3 The G-Galois cover f : Y — X = P! may be defined
over Ks(\).

Proof: This follows immediately from Lemma 5.2.2 and the construction
of the auxiliary cover by formal patching ([41, Section 3.2]). Namely, it is
shown in [41, Lemme 3.2.3] that there exists an étale cover X’ — X covering
X, such that

Y xx X' — X')=Ind§ (Y™™ xy X' — X).

The cover fr: Yp — Xpg is obtained from fE™ : YE* — X by patching
Indg0 Y# together with suitable lifts of f;| ¢, . . The restriction of f; to the

complement of 7; in X; is tame for all i € B. Since K 1(A) is the maximally
unramified extention of K (M), this implies that f : Y — X may be defined
over Ks(\). O

5.3 The Swan conductor of a Hurwitz space We use the assump-
tions and notations of Section 5.2.

Let Hg/Qp be the inner Hurwitz space parameterizing G-Galois covers
of P! branched at four ordered points g = oco,z1 = 0,29 = 1,23 = .
There exists a smooth projective variety Hgﬂm containing H¢g as an open
subset. The complement H?fm — Hg parameterizes so-called admissible G-
Galois covers ([49]). Let H = H; be the connected component of HX™
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such that the class of f corresponds to a point of H. Then H is defined
over a finite extention of Q, which we denote by Q,(H). Let 7 : H — P}
be the map which sends the class of a G-Galois cover to the branch point
z3=A Let w:H — }P& be the Galois closure of wo. We denote the Galois
group of w by I' and the Galois group of H/H by I'g. For what follows, it is
more convenient to extend the scalars to C, = Q,. We write K (H) for the
function field of H over C, and K(X) (resp. K(H)) for the corresponding
function field of P} (resp. H).

Let vy be the valuation of K (\) corresponding to Xg. If v is a valuation
of K (H) above vy, we write D,, (resp. I,) for the decomposition group (resp.
the inertia group) of v.

Theorem 5.3.1 (a) For all valuations v of K(H) above vy, the index of
I, NIy in I, is at most p.

(b) There exists a v as in (a) such that the index of I, N Ty in I, is p.

Proof: Proposition 5.2.3 implies that there exists an inclusion K(H) —
Ks(D). Since f : Y — P! cannot be defined over Ki()), it follows that

Ky(\) = Ki(\) - K(H). (57)

It follows that we may choose a valuation v of K (H) above vy such that
K5()) is contained in the completion K (H), of K(H) with respect to wv.
Equation (57) implies that K(H), = K1(\) - K(H). We conclude that

Gal(K (H),, K»(\)) = I, N To.

This implies that the index of I, NIy in I, equals the degree of KQ(A) —
K1()\) which is p. This proves (a).

If v is a valuation of K (H) above vy such that Ky(\) is not contained in
the completion K (H),, then clearly the inertia group I, is contained in T'y.
This proves (b). O

Theorem 5.3.2 Let v be a valuation of K (H) above vy such that the index
of I, NIy in I, is p. There exists a nontrivial virtual character & : I, — 7
with kernel I,, N\T'g such that the differential Swan conductor 6(§) equals the
differential 6.

Proof: Let v be as in the statement of the theorem, and let ¢ : I,/I,NTy —
Z* be a nontrivial virtual character. We denote by 6() the corresponding
differential Swan conductor. Recall from Section 5.1 that 0(&) is a differential
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form on the cover of P} corresponding to the extention of function fields
M, /k(\), where M, is the residue field of K(H)!». The group D, NTo/I, N
Iy leaves the differential form 0(§) invariant, therefore 6(¢) descents to a
differential form on the curve with function field

MDU NCo /IU NCo
v .

But this is just the field k£(Cp). Therefore 0(€) is the differential Swan con-
ductor of the p,-torsor k(Dp)/k(Cp). Example 5.1.5 implies that changing
the character § multiplies 6(§) by a constant b € F\. Therefore for suitable
choice of ¢ we have that 6(¢) = 6. O

6 The existence of covers with special reduction

The goal of this section to give sufficient conditions for the existence of
covers with special reduction, satisfying Assumption 4.2.1.(b). We also give
examples illustrating the results of Section 5. We mainly consider the case
of SLa(p) and PSLy(p)-Galois covers of the projective line branched at four
points. The reason is that for these groups we know the reduction of three-
point-covers ([14]; recalled in Section 6.1). This gives us good control over
the possible signatures of the reduction (Section 6.2).

A remarkable property of SLa(p)-covers f : Y — PL branched at three
points is that they are rigid. This means essentially that there is a unique
cover with fixed ramification, up to isomorphism. In [14] it is shown that
this property implies that if f has bad reduction, then o; = (p+1)/(p — 1)
for all i € Bpew. In other words, in the terminology of Section 3.1 all new tail
are nonsingular. More generally, one can show that the same holds for all
SLs(p)-Galois covers of P with special bad reduction branched at r+1 > 3
points (Proposition 6.2.4). A similar statement for the PSLy(p)-cover f can
be easily deduced from this.

6.1 Reduction of three point covers In this section we recall some re-
sults of [14] on the reduction of SLa(p)-covers of the projective line branched
at three points. We suppose that p > 5. Choose primitive (p — 1)th root of
unity ¢ € [F,, and a primitive (p + 1)th root of unity (e F,2. Define

C(i) = { A € SLa(p) | tr(4) = ¢' + (7'}

and

C(i) = {A € SLa(p) [tr(4) ="+ {7
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These are the conjugacy classes of SLa(p) of elements of order prime to
p. We write pA and pB for the two conjugacy classes of order p. Sup-
pose C = (Cy,C4,...C,) is a tuple of conjugacy classes of SLy(p) and
x = (z9,21,...,2,) is a tuple of pairwise distinct points of ]P’%:. We write
Ni,;+1(C,x) for the set of isomorphism classes of SLy(p)-covers ¥ — PL
branched at x with class vector C. This means that the canonical generator
of inertia of some point of Y above z;, with respect to a chosen compatible
set of roots of unity, is an element of the conjugacy class C;. More concretely,

Nir-‘rl(CJX) = {(g07g17 cee 797“) | PSLQ(p) = <g’b>7 gi S Cia Hgl - 1}/G

Here G acts by uniform conjugation. We call two such covers f; : ¥; — X
isomorphic if there exists an SLy(p)-equivariant automorphism ¢ : Y1 — Y3
such that f; = fy 0 ¢.

Now suppose that r + 1 = 3. It is no restriction to suppose that x =
{00,0,1}. Let C = (Cy,C1,C3) be a triple of conjugacy classes of SLa(p).
Let K/Q, be a finite extension such that the SLy(p)-covers parameterized
by Ni3(C) may be defined over K. Choose a prime p of K above p, and
replace K by its completion with respect to gp. Define

Nib3d(C) = { f € Ni3(C) | f has bad reduction }.
For i = 0,1,2, we define an integer a; by

p—1-2 itC;=c(),
ai=14 p+1-2 ifC=C(),
0 if C; € {pA,pB}.

The following theorem is proved in [14].

Theorem 6.1.1 (a) Suppose that C; € {pA,pB}, for some i = 0,1,2.
Then Ni3*(C) = Ni3(C) and

1 ifag+ar+as<p-—1,
INizg(C)|=<¢ 2 ifag+ a1 +azy=p—1 and C; =C(l) for some i,
0 otherwise

(b) Suppose C; ¢ {pA,pB} fori=0,1,2. Then |Niz(C)| € {0,2} and

2 ifa;+as+asz <p-—1, )
INi5*(C)| =< 2 ifa;+ay+a3=p—1and C;=C(l) for some i,
0 otherwise

114



(c) Suppose that [f] € Nik*(C). Then the deformation datum corre-
sponding to the stable reduction f of f is special and multiplicative.
It has signature (ag/(p — 1),a1/(p — 1),a2/(p — 1)) and all new tails
are nonsingular.

Proof: It follows immediately from the definition that f has bad reduction
if C; € {pA,pB}, for some i. The second part of (a) follows from rigidity
([14, Propostion 3.1.ii]) and the proof of [14, Theorem 5.6]. Part (b) fol-
lows from [14, Proposition 3.1.i] and [14, Theorem 5.6.b]. It is shown in
[14, Corollary 5.4] that the new tails of a deformation datum corresponding
to [f] € Ni22d(C) are nonsingular. (Such deformation data are called hy-
pergeometric in that paper.) The rest of (c) follows from the proof of [14,
Theorem 5.6.b]. O

A consequence of the results of [14] is also a description of the SLa(p)-
covers which may occur above the tails of the stable reduction of an SLa(p)-
cover.

Definition 6.1.2 Let k£ be an algebraically closed field of characteristic
p > 0. Let G be a finite group. A G-tail cover over k is a (not necessarily
connected) cover fi : Yy — IP’,lC such that fi is wildly branched at oo of
order pn with n prime to p and tamely branched at no more than one other
point. We say that fj is a primitive tail cover if it is branched at two points.
Otherwise, we call f a new tail cover.

The ramification invariant, o, of a G-tail cover fj is the ramification
invariant of the unique wildly branched branch point.

Proposition 6.1.3 Let G = SLa(p), with p > 3.

(a) Suppose that fi : Yy — IP’,Ic is a connected, primitive G-tail cover with
0 < o < 1. Then the canonical generator of inertia of some point of
Y, above the tame branch point is contained in C~(l), for some [, and
o= (p+1—2l)/(p—1). These properties determine the tail cover
uniquely, up to isomorphism.

(b) Suppose that f : Yy — IP’,lC is a connected, new G-tail cover with
1<o0 <2 Theno=(p+1)/(p—1) and Y}, is the unique nonsingular
projective curve given by the equation

ayPtt — Py = 1. (58)
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Proof: Part (a) is proved in [14, Proposition 5.5]. Part (b) is proved in [14,
Proposition 5.3]. O

It is possible to give similar equations for the primitive tail covers of
Proposition 6.1.3.(a). A matrix A € SLa(p) acts on the curve defined by

(58) by
x Yy x Yy
< gPtl yptl ) = A( gPtl yptl ) .

It is straightforward to deduce from Theorem 6.1.1 a corresponding result
for PSLy(p)-covers of the projective line branched at three points, since
one can lift every such PSLa(p)-cover to an SLa(p)-cover branched at three
points.

6.2 A criterion for special reduction Suppose that r 4+ 1 = 4 and
p > 3. Let G be a group whose order is strictly divisible by p. Let f :
Y — IP’}( be a GG-Galois cover branched at xyp = co,z1 = 0,29 = 1,23 = A of
order prime to p defined over a complete discrete valued field K of mixed
characteristic p. We suppose that (IP’}(; x;) is generic, i.e. \ is transcendental
over (Q,. The goal of this section is to prove a criterion which ensures that
all cover with bad reduction have special reduction. We prove this only for
G = SLy(p). However the first result (Proposition 6.2.1) holds without this
assumption.

Suppose that f : ¥ — IP’}{ has bad nonspecial reduction, and write
f:Y — X for its reduction, as usual. Choose an irreducible component
Yy of Y above the original component Xg. Let (go,w) be the corresponding
deformation datum.

As in the beginning of Section 3.4, we let B be the set of critical points of
the deformation datum, and write o; = v; +a;/(p— 1) with 0 < a; <p—1.
We denote by Byim = {0,1,2,3} C B the set of primitive critical points
and Byew = B — Bprim the set of new critical points. Since the reduction
f:Y — X is not special, it follows that there is either an i € Bprim such
that v; > 1 or an i € By such that v; > 2. The vanishing cycle formula
(Lemma 2.2.4.(a)) together with the assumption that Byyq = () implies that

d ai=p-1; (59)

therefore there is a unique ¢ € B such that v; = 1 if ¢ € By or v; = 2 if
i € Bhew. Let Bray, = {i € B|a; # 0}.
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Proposition 6.2.1 Let f be as above. Suppose that f:Y — IP’}{ has bad
nonspecial reduction. Then there exists an ¢ € B such that o; € Z.

Proof: We use the notation from Section 3.4.
Lemma 3.4.2 states that the kernel, Def (Ysing, Go)°“™", of the local-
global morphism

Def(Ysing,go) — H Def(ffiago)

iEBram

has dimension zero. Therefore the local-global morphism is an isomorphism.

Let R € € be a local artinian k-algebra of equal characteristic p, and let
Yr be a Gyp-equivariant deformation of YSing. Denote by Zo’ R — X(], r (resp.
wpr) the corresponding Hy-Galois cover (resp. logarithmic differential form).
Let j € Bram, and let z; € Zy be a point above Tj € Xo. We denote by
H; C Hy the decomposition group of z; and let m; = (p —1)/ged(p — 1, a;)
be its order. There exists a local parameter ¢t on ZQR at z; such that
OZ.n.z; = Rl[t]) and h*t = {(h)-t for some character { : H; — R*. Following

[52, Section 5.4], we say that Yg is j-special if
WR = t_1+(aj+p_1)/ng(p_lzaj)(CO _|_ C]_t _|_ . ) dt7

where ¢; € R and ¢g € R*. In other words, the order at z; of wg is equal to
the order of w.
We consider the subfunctor

Def (Y}, Go)sp C Def (Y;,Go)

of j-special local deformations. Lemma 5.13 of [52] implies that if o; & Z
for all j, then a deformation is locally trivial if and only if it is j-special for
all j € Bram. We now give the idea of the proof of this lemma.

It is clear that local triviality implies j-specialty for all j € Byapy,. Let
hj = mjo; the conductor of 7;, and suppose that o; is not an integer. The
,,-cover King — 7y may locally be given by a Kummer equation y? = v,
where

v=1+2" + higher order terms.

Let n’ = ged(hj,m;) and n = m;/n’. Since o; is not an integer it follows
that n # 1. Let o € Hy be an automorphism of order n. We may choose
the parameter z such that o(z) = (,z for some primitive nth root of unity
(n € Fp. This is possible since n|(p —1). Let Yg be an Gp-equivariant
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deformation of King which is j-special, but not locally trivial around z;.
Then the p,-torsor Yg — Zp g is given by an equation y” = vg, where

vR=cHazh +...

for some ¢ € R*, since the deformation is j-special. The fact that o does
not commute with the p,-action, implies that

Vg = v%"wp .
But this implies that c is a pth-power in k& which contradicts the fact that the

deformation not locally trivial. Note however, that the deformation becomes
locally trivial after pull back via a purely inseparable extension. O

In the rest of this section we suppose that G = SLa(p). A similar con-
sideration holds for PSLs(p), and probably for other linear groups as well.
Let f:Y — P}( be a G-Galois cover over K branched at x = 00,0, 1, A with
class vector C = (Cy, Cy,Co,C3), where we suppose that C; # pA, pB for
all 7. As in Section 6.1 we define

ai:{p_l_% %fC’i:(z(l), (60)
p+1—-20 if C; =C(l),
fori=0,1,2,3.

The following proposition is in some sense an analog of Theorem 6.1.1
for G-Galois cover of }P’}{ branched at four points. Since four-point covers
are not rigid, the statement is not as strong as for three-point covers. The
proposition gives a criterion on the class vector C which guarantees that all
G-covers with bad reduction have special reduction.

Proposition 6.2.2 Let f : Y — P}, be an SLy(p)-Galois cover defined over
K with class vector C = (Cy,C4,C2,Cs3). Suppose that f : Y — Pi has
nonspecial bad reduction to characteristic p.

(a) We have
ap +ay +az+az3 <p-—1

Ifag+ a1 +az+az = p—1, there exists an i € Bpyim = {0,1,2,3} such
that C; = C(1).

(b) Moreover, for all i € By im we have 0; = a;/(p — 1). For all i € By
except possibly one, we have o; = (p+1)/(p —1). For the exceptional
i (if it exists) we have o; = 2.
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Proof: Let f : Y — IP’}( be a G-Galois cover with class vector C =
(Co,C1,Co,C3). Suppose that f:Y — }P’}( has nonspecial bad reduction to
characteristic p, and denote the stable reduction by f : Y — X. Proposition
6.2.1 implies that one of the following two cases occurs.

e There exists a unique ¢ € Byim = {0, 1,2, 3} such that o; = 1.
e There exists a unique ¢ € Byeyw such that o; = 2.

Let i € Byew (resp. @ € Byyim). By the above, it follows that o; < 2 (resp.
o; < 1). Therefore there is a unique tail X; of X which intersects Xg in the
critical point 7;.

If ¢ € Bpew, the decomposition group G; C G of an irreducible component
Y; of Y above X; is a quasi-p group, i.e. a group which is generated by its
Sylow p-subgroup. Therefore G; is either the full group SLs(p) or a cyclic
group of order p. Proposition 6.1.3 implies therefore that either o; = 2 and
Gi~Z/poro;,=(p+1)/(p—1) and G; = SLa(p).

If i € Bprim, Proposition 6.1.3 implies that o; = a;/(p — 1), where qa;
is as defined in (60). Moreover, also in this case the tail cover is uniquely
determined up to isomorphism by the conjugacy class C;. This proves (b).
Part (a) now follows from the vanishing cycle formula (59). If ag+ a1 +ag +
az = p— 1, there are no new critical points. The condition on the conjugacy
classes follows from the observation that Y should be connected. O

For completeness, we state the following analog of Proposition 6.2.2 for
covers with special bad reduction.

Lemma 6.2.3 Let f : Y — PL be an SLa(p)-Galois cover branched at
x = 00,0,1,\ with special bad reduction. Then o; = a;/(p — 1) for all
i € Bpyim and 03 = (p+1)/(p — 1) for all i € By .

Proof: This follows immediately from Proposition 6.1.3, since 0 < o; < 1
(resp. 1 < 0; < 2) for all i € Byyim (resp. @ € Byew), by definition of special
reduction. O

Lemma 6.2.3 and Proposition 6.2.2.(b) together with Proposition 2.4.1
imply the following proposition.

Proposition 6.2.4 Let (go,w) be a deformation datum with:
o r+1= |Bprim‘ = 4,

e 0<o0;=uaqa;/(p—1) <1 with a; even for i € Byim = {0,1,2,3},
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e o, €{lp+1)/(p—1),2} fori € Byey-

Then there exists an SLa(p)-cover f : Y — Pi branched at four points
which has bad reduction which gives rise to the deformation datum (gg,w).

Proof: This follows from a standard formal-patching argument, as in the
proof of Corollary 3.4.5. O

6.3 The p-cusps In this section we give a sufficient condition for As-
sumption 4.2.1.(b) to be satisfied. Recall that this condition states that the
dual Hasse invariant ® is nonzero.

Let G be a finite group whose order is strictly divisible by p. Let
H/Qp(H) be a connected component of the inner Hurwitz space parame-
terizing G-Galois covers of P! branched at four points, as in Section 5.3.
Write m : H — P} for the natural map. We call the points 71({0, 1, 00})
the cusps of ‘H. Recall that they parameterize admissible G-covers.

Let K be a complete discrete valuation field of characteristic zero whose
residue field, k, is an algebraically closed field of characteristic p > 0. Let
(Xadm;xo,xl,xg,xg) be a stably marked curve of genus zero. It consist
of two irreducible components X', X which meet in a unique point .
Let fadm . yadm _ yadm 1o an admissible G-Galois cover branched at
xo, T1, T2, 3. Choose a point p € Y24™ above p, and write Y/, Y” for the ir-
reducible components of Y24™ which pass through p, where we suppose that
Y’ (resp. Y”) maps to X’ (resp. X”). Write f': Y’ — X' and f": V" — X"
for the restrictions. Then f’ and f” are branched at at most three points.

Definition 6.3.1 We say that f?(dm is a p-cusps of the Hurwitz space H if

the ramification index of u in f?(dm is equal to p.

Proposition 6.3.2 Let f : Y — Pl be a G-Galois cover branched at four
points xg = 0o, x1 = 0,29 = 1, x3 = X of order prime to p with bad reduction.
Suppose that f specializes in equal characteristic zero to a p-cusp. The
following holds.

(a) The cover f has special reduction to characteristic p.
(b) Assumption 4.2.1.(b) is satisfied.

P_’roiof: Let f:Y— }P’}( be as in the statement of the proposition and write
f:Y — X for its stable reduction. Our assumptions imply in particular that
(PL; x;) is generic, hence (P ; x;) has good reduction. Choose a component
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Yy of Y above the original component X and let (go : Zg — Xo,w) be the
corresponding deformation datum. We write B for the set of critical points
of (go,w).

Let fadm . yadm _ xadm p6 the p-cusp to which f specializes, and write
7Y — X" and f”:Y"” — X" for the associated three point covers. Let
G’ (resp. G”") be the decomposition group of Y’ (resp. Y.

Since f24M is a p-cusp, the covers f’ and f” both have bad reduction.
This follows from Theorem 6.1.1, since p is branched of order p. Denote
the stable reduction of f’ and f” by f' : Y’ — X' and f" : V" — X".
Let (g : 2y — X(,w') (vesp. (35 : 25 — X{,w")) be the deformation
datum of f’ (resp. f”). We write B’ and B” for the set of critical points of
(gy,w') and (gi,w”). Since the ramification index of u is p, we have that
o = o, = 0. Moreover, the point p specializes to a point p' (resp. )
on the original component X{, (resp. X{/). This means that we may define
a G-equivariant map of semistable curve fadm . yadm _, xadm Lo qpjtably
identifying points in the fiber above ' in IndS, Y’ with points in the fiber
above 4" in Ind%, Y”. Comparing the genus of Y2d™ and Y24™ a5 in the
proof of [13, Proposition 2.5.3.(b)], we find that g(Y#m) = g(Y#m) hence
f24m is the reduction of f29™ (compare to [13, Section 2.5]).

Since f specializes to f2d™ it follows that also f specializes to
The proposition will now follow by comparing the genus of Y™ with the
genus of Y. The vanishing formula (Lemma 2.2.4.(a)), together with the
assumption that the ramification indices of f are prime to p, implies that

d ai=p-1, d ai=p-1. (61)

icB’ 1€B”

fadm'

Since g(Y#m) = g(Yadm) = ¢(Y) it follows that no new critical point of
(go,w) specialize to the point p in X2, Therefore a new critical point 7;
of (go,w) specializes either to a new critical point 7; for i € Bl ., UB/
on XM or to one of the points 7o, 71,72, 73 on X [[ XY — {u/,1”"}. Since

ow = o, =0, it follows from (61) that

Zai:Z&H—Z&i:Q(p—l)-

icB i€B/ iEB

This implies that f has special reduction.
To prove (b), we consider the cover g™ : Z3d™ — Xadm Tt is an admis-
sible cover which is the specialization of gy : Zyp — Xo. Its restriction to X
(resp. X)) is induced from g (resp. g). Since the ramification index of p

is p, it follows that the reduction of p1 € Xadm jg unramified in g3im. Equa-
tion (61) implies that dimy H(Z}, 0), = dimy H'(Z{/, 0), = 0. Therefore
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it trivially follows that the Frobenius morphism F is an isomorphism on
HY(Z},0)y and HY(Z],0), = 0. It is well known that this implies that
F: HY (Z§9™ 0), — HY(Z39™m, 0), is an isomorphism as well ([7, Lemma
1.3]). This implies that F : H'(Zy,0), — H(Zy,O), is an isomorphism.
Part (b) follows. O

Corollary 6.3.3 Let f : Y — Pk be a G-Galois cover with bad reduction
which specializes to a p-cusp f2d™ : yadm _, xadm Tot 70 By — IP’}\ be the
accessary-parameter cover defined by the deformation datum of the stable
reduction of f. Then [f2™] corresponds to a point by € 7r0_1({0, 1,00}) C Xg
with logarithmic monodromy.

We refer to Section 4.1 for the definition of logarithmic monodromy.

Proof: Let f and f2I™ be as in the statement of the corollary. Proposition
6.3.2 implies that f has special reduction. Let (£,V) be the flat vector
bundle corresponding to f. The construction of the cover f24™ in the proof
of Proposition 6.3.2 defines a point by € 770_1({0, 1,00} C Xy. Moreover, the
proof implies that ord, (®) = ordy, (Ps) = 0 mod p. Let ay,, By, be the local
exponents of the differential equation corresponding to (£, V). Proposition
4.5.2 implies that op, = By, = 0. Therefore by has logarithmic monodromy.
O

6.4 An example In this section we consider a concrete example of
SLa(p)-covers with bad reduction and discuss what can be said about the
reduction of the corresponding Hurwitz spaces.

Let p > 7 be a prime number and a = (ag, a1, az,a3) := (p—5,p—>5,2,2).
It follows that d =2(p — 1) — (ag + a1 + a2 + a3) = 2.

We start by computing the possible deformation data with signature
o = (0; = a;/(p—1)). We want to find a solution u of degree 2 of the
differential equation

L(u) = Pou" + Piu' + Pou =0, with
Po=z(z—1)(z—2N), P=2>+z(\+1)—4\, Po=—6z+0, (62)
as in Section 3.3. One checks that the accessary parameter 3 should satisfy

(8 + 8A)(148X + 56 + 2 + ) = 0.

If p = 7 we find that 8 equals either 0, —1 or —A. The corresponding
deformation datum is in all three cases essentially the same. If p > 11 the
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polynomial 143X + 56\ + 32 + 3 is irreducible in F,[3, A], and there are two
really different possibilities for the accessary parameter.

From now on we suppose that p > 11, since this is the more interesting
case. Let 73 : B§ — P} be the cover defined by

BB+1)

A= TG Ta

(63)

Note that it is ramified in the points with 3% + 83 +4 = 0, and the genus of
B2 is zero. Then

u(z) = 7(8 +4)%2? — 78(8 + 4)z +28(8 + 1)

is a solution of the differential equation (62). It is the unique such solution,
up to multiplication with an element of k(By).
Let go : Zo — P} be the (p — 1)/2-cyclic cover of smooth projective

curves corresponding to u and a, i.e. Zj is the normalization of a connected
component of the curve given by the Kummer equation

P =29 (1 —1)%2(z — N\

Denote by g = 770_1({0, 1,00}) = {0,—1,-7,—8, —4,00} the set of 8 € By
for which Zo,b is singular. The curve Z; lives over Bg — Xo. Write wy =
zda/z(x — 1)(x — \) € H*(Zy, Q).

Up to multiplying by an element of F;, the Hasse invariant and the dual
Hasse invariant are given by

Y o B(8+8)(* + 83 + 4)y

=G T (61 47 ’

where
¥ = B*+166° + 1418° + 6163 + 3136

is the polynomial whose zeros are the supersingular points. It follows that
assumptions (a)—(e) of Section 5.2 are satisfied for the deformation da-
tum corresponding to (go,wo). Note that 72 : B — P} is unramified at
the supersingular points, therefore the Kodaira—Spencer map is everywhere
nonzero (Theorem 4.7.5). Let (€2, V?) be the corresponding pseudo elliptic
bundle. It follows from Lemma 3.2.1 and Proposition 4.2.2 that X is the
set of singularities of the differential equation corresponding to the pseudo
elliptic bundle (€2, V?).
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Let D = 0/08. One computes that the differential equation satisfied by
wy is given by

V(D)QUJQ + (STV(D)UJQ + (56@00 =0e€ HjR(ZQ, Q)X’

where
5*—i+3+ 1 + 1 + 2
Y7844 8 B4+T B+1 0 B+8
5*_3_ 13 N 13 18 T
07983 T(B+7) T(B+1) (6442 28(3+8)
Let

N 14(8 + 4)°
"TRaAA—1) BB+82(B+ B+

One computes that —Resp(v) = —Res_jv = Res_7v = Res_gv = 3/67228,
and that the residue of v at all other points of Bg is zero. It follows that

o1 3 ( 1 1 1 1 )
v=—— [ = + - -
67228 \ g» ' (B+1)P (B+7)P (B+8)2
3(B% + 83 + 4)P -3 (0NJOB)P

— = = _Wp
480207 (B 4+ 1)P(B+ 8)P(B+ T7)P 67228 AP(A — 1)P
The corresponding deformation datum is given by
1 WP 3 (6% + 83 + 4)Py?
ST T B B (B s (B A
0 =ydg.

The signature of the deformation datum is

2p—1
p—1

S
S

p—1 -1

hS]
hS]

b ‘ 0 ‘—1‘—7‘ —8 ‘ —4‘ 00 ‘52+85+4:0
SE RN

We now compute the other possibility for a special deformation datum
of signature o. Let B& = IP’%\, and 8 = —6A. The corresponding solution of

(62) is u = 22 — 2Dz + X\. We leave it to the reader to compute that this
defines the following deformation datum

b1 (BN =5A41)?
A2\ =12

0 =ydA.
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Note that the singularities are ¥yg = {\ = 0,1, 00} and the supersingular
points are ¥; = {5A2 =5 \+1 = 0}. The signature of the deformation datum
is

oo 1 |

o | |74 |

Our next goal is to show that both special deformation data are induced

by some SLo(p)-covers with bad reduction with a certain class vector C.
Moreover, we show that all SLg(p)-covers with class vector C have special
reduction. Let G = SLy(p). Choose a primitive (p — 1)th root of unity
¢eFX, and let C; = C((p — 3)/2) and Co = C(2) be the conjugacy classes

P Y
of SLa(p) defined in Section 6.1.

Lemma 6.4.1 Let G = SLy(p) and K a complete local field of mixed char-
acteristic p, which we suppose to be sufficiently large.

(a) Let (go,w) be one of the two deformation data we constructed above.
There exists a G-Galois cover f 1Y — }P’}{ over K with class vector
C = (C4,C1, 0y, Cy) branched at four points which has bad reduction.
Moreover, we may choose f such that the corresponding deformation
datum is (go,w).

(b) Let f : Y — PL be a G-Galois cover with class vector C over K.
Suppose that f has bad reduction. Then f has special reduction.

Proof: The class vector C corresponds to the signature og = 01 = (p —
5)/(p—1) and 03 = 03 = 2/(p—1). For i € Byey we have o; = (p+1)/(p—1).
Proposition 6.1.3 implies that for exist tail covers with ramification invariant
o; for all i € B. Proposition 6.2.4 implies now that there exists a G-Galois
cover f:Y — PL with class vector C = (C},Cy,C2,Cs) branched at four
points g, x1, 2, x3 which has bad reduction and whose reduction gives rise
to the deformation datum (go,w). This proves (a).

For (b), suppose that f : Y — PL is any G-Galois cover with class
vector C which has bad reduction. Let (gg,w) be the deformation datum of
its reduction and write (o;) for the signature. Proposition 6.2.2 implies that
o = a;/(p—1) for i € Byim = {0,1,2,3}, where a; are as defined in the
beginning of this section. In particular ag + a1 + a2 +a3=2p—6 > p— 1.
Therefore it follows from Proposition 6.2.2 that f has special reduction.
Lemma 6.2.3 implies that o; = (p+1)/(p — 1) for all i € Byey. This implies
that all G-Galois cover with class vector C have special reduction. O
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Part (b) of Lemma 6.4.1 states that we constructed all possible defor-
mation data corresponding to the reduction of G-Galois covers with class
vector C.

We now describe the cusps with bad reduction, using the notation intro-
duced in Section 6.3. Let H(C)/Q,(C) be the Hurwitz space parameterizing
G-Galois covers of P! branched at four points zg = 00,21 = 0,29 = 1,23 = A
with class vector C. Let fadm . yadm _, xadm he an admissible G-
Galois cover corresponding to a cusp of H(C). As in Section 6.3, we write
f':Y — X" and f” : Y” — X” for the corresponding three-point covers.
Suppose that at least one of f and f” has bad reduction. Let us consider
the cusps above A = 0 and suppose that z1,z3 specialize to X’ and zg, 2o
specialize to X”. Write p for the point of X2d™ where X’ and X" intersect,
and C' = (C4, 0y, C3) for the class vector of both f" and f”. Here Cj is the
conjugacy class corresponding to the ramification of ;1. We use that f24™ is
admissible and g ~ ¢g~! in G. Theorem 6.1.1 implies the following.

Lemma 6.4.2 Let f' : Y — X' be a (possibly disconnected) G-Galois
cover with class vector (Cy,Co,C3). Then f' has bad reduction if and only
if

Cs € {pA,pB,C((p—3)/2),C((p - 1)/2)}

and p divides the order of the decomposition group of a connected component
of Y'.

This gives a concrete way of computing the number of SLy(p)-covers
with bad reduction, similar to the result of [13, Section 5]. In the rest of
this section we sketch the procedure.

Let ‘H be a connected component of H(C) and suppose that g(H) > 1.
Write H for the stable reduction of H. (Contrary to what we did so far,
we do not consider a marking on H.) The cover 7 : H — P} extends to
amap 7 : H — IP’ik, which will not be finite in general. The irreducible
components of H which map surjectively to Pi’k are called the horizontal
components. The irreducible components of H which are mapped to a point
on }P’i’k are called the vertical components. Let f:Y — IP’}( be a G-Galois
cover corresponding to a point of H above the generic point of IP’%\. Suppose
that f has bad reduction, and let H(f) be the corresponding horizontal
component of the reduction. We call such component a bad horizontal
component. The bad degree is the the total degree of all bad components
over P%\} - The deformation datum of f defines an accessary-parameter cover
mo = mo(f) : Bo(f) — IP’%\J{/,. Analogous to [13, Theorem 3.1.2], it may be
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shown that we obtain an isomorphism between By(f) and the underlying
reduced subscheme of H(f). This relies on the deformation theory of My
torsors, as explained in Section 5.2 together with the arguments of Section
5.3. Therefore one may count the number of bad components, by using the
description of the cusps with bad reduction we gave above. It would be
interesting to see how much information this gives on the reduction on the
Galois closure of the Hurwitz space, as in [9].

To make the previous discussion more concrete, suppose that p = 11.
For convenience, we divide out by the center of (G, i.e. we suppose that
G = PSLy(p). Let C = (C1,C4,Cs,C5) be as above, and let H(C) be the
Hurwitz space parameterizing G-Galois covers with class vector C. Using
the computer program GAP, one computes that H(C) has three connected
component which we denote by H1, Ho and Hs. The degree of w; : H; — IP’}\
is 164,110, 328, for ¢ = 1,2,3. The Galois group I'; of the Galois closure of
m; is isomorphic to Sgo, Ass, Ags.

Write

Ni(C) = {(90,91,92,93) | 9: € C; and G =< g; >}/G

for the set of Nielsen classes. Here G acts on the tuples (go,91,92,93) by
uniform conjugacy. By Riemann’s existence theorem, the Nielsen classes
correspond to the G-Galois covers over a fixed marked curve (Pl;z;). In
our special case, we write Ni(C); for the subsets of Ni(C) corresponding to
the connected component H; of H. These are the orbits under the pure Artin
braid group B ([48]). It is well known how to describe the cusps in terms
of the action of the braid group: the cusps above A = 0 (resp. A = 1, resp.
A = o0) correspond to the orbits of Ni(C) under certain concrete elements
bo (resp. by, resp. bs) of the pure Artin braid group, see for example [49].

As an example, we consider the cover 73 : Hy — IP’%\. Table 1 gives a list
of the cusps above A = 0 € P1. Here |G’| (resp. |G”|) is the order of the
decomposition of a connected component of Y/ (resp. Y”) in the notation we
explained above, n is the ramification index of the singular point u, ‘number’
is the number of such cusps and ‘ram’ its ramification index in 73. The last
entry labels the different types of cusps.

The cusps labeled 11A are p-cusps (Section 6.3). They correspond to
admissible covers fadm . yadm _, xadm i characteristic zero; the restric-
tion of f24M to both X’ and X” is a cover with class vector (Cy,Cy, C3),
where C5 € {pA,pB}. In particular, both f’ and f” have bad reduction and
the cusps | fadm] specializes to to a bad horizontal component. Corollary
6.3.3 implies that the reduction of the p-cusp [f adm] corresponds to a loga-
rithmic singularity on a horizontal bad component. We have seen that the
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Table 1: The cusps of g

|G'| | |G"| | n | number | ram | label
5 | 660 | 5 4 1 5A
660 | 5 5 4 1 5B
55 | 660 | 5 16 5 5C
660 | 55 | 5 16 5 5D
60 | 60 | 2 10 2 2A
60 | 660 | 3 8 3 3A
660 | 60 | 3 8 3 3B
660 | 660 | 6 8 6 6A
660 | 660 | 11 4 11 | 11A

underlying reduced subspace of a horizontal bad component is isomorphic
to either BJ or Bg. Since the pseudo elliptic bundle (&1, V1) corresponding
to B} does not have any logarithmic singularities, it follows that a p-cusp
[f adm] specializes to a horizontal bad component whose underlying reduced
subscheme is isomorphic to Bg. In particular, it follows that the number
N of such horizontal bad components, counted with multiplicity, is 4 which
is the number of p-cusps. To compute the multiplicity, one needs a more
precise analyses of the universal deformation rings (cf. [13, Section 3]).

To compute the number N; of horizontal bad components whose under-
lying reduced subscheme is isomorphic to Bé, we need to consider the other
cusps with bad reduction. Lemma 6.4.2 implies that the cusps with labels
2A,3A, 3B have admissible reduction. It remains to consider the cusps with
label 54,5B,5C,5D,6A. A cusp [f2™] is called a bad cusp if either f’ or
f" have bad reduction to characteristic p.

Lemma 6.4.3 (a) All cusps of label 5C' and 5D are bad cusps.
(b) Half of the cusps of label 5A and 5B are bad cusps.

(c) A quarter of the cusps of label 6A are bad cusps.

Proof: Since H3 is the only connected component of H(C) whose degree over
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IP’%\ is 328, it follows that H3 may be defined over Q,. Let fadm . yadm _,
X2dm correspond to a cusp of label 5C, and write f' : Y/ — X' (resp.
f":Y" — X" for the corresponding three-point covers, in the notation of
Section 6.3. The table above states that the decomposition group G’ of Y’
has order 55; it is no restriction to suppose that it is the Borel subgroup
of G consisting of upper triangular matrices. The decomposition group G”
of Y” is the full group G = PSLy(p). By assumption f” : V" — X" is
ramified of order 5 above u. It can be shown that every cusp [f2d™] for
which (|G'],|G"|,n) = (55,660,5) lies on the component Hs. (For example,
this follows from listing all cusps corresponding to the components H; and
Ho.)

To the cusp [f2™] corresponds (noncanonically) a tuple (go, g1, g2, 93) €
Ni(C)3 (more precisely, an orbit under the element by € B®). We may
lift this tuple to a tuple (hg, h1,ho,h3) € C1 x Cp x Cy x Co of elements
in SLo(p), with product hohihohs = £1. Let hs = +hs be such that
hohihohs = 1. We may lift f” to an SLy(p)-Galois cover branched a three
points which is branched at zg,x2, u with class vector C” = (Cq,Co,Cs3)
where C5 = C(l) for | € {1,2,3,4}. This cover corresponds to the Nielsen
class [(ho, hlhzhl_l, hlfzg)]. In fact, a more careful calculation of the cusps
shows that C3 € {C(1),C(4)}. Lemma 6.4.2 states that f” has bad reduction
if and only if C5 = C(4).

We may lift f’ to a P-Galois cover with Nielsen class [(h1, ks, (h1h3) 1)),
where P C SLa(p) has order 55 if hs = hs and order 110 otherwise. Write
C' = (C1, %, Cy) for the class vector of f’. It follows that C] = C(4),C) €
{€(2),C(3)},C5 € {C(1),C(4)} in the notation of Section 6.1. The cover
[P Y — X' factors as Y/ — Z' — X', where Gal(Y',Z’) ~ Z/p and
g : Z' — X' is cyclic of order p —1 =10 or (p — 1)/2 = 5. Renormalizing
the branch points of ¢’ to x = 0,1, co, we may identify Z’ with a connected
component of the smooth projective curve given by the Kummer equation

Pl =%z —1)2, 0<ag,a1,a3<p—1, ag+a;+ay=0modp— 1.
The statement on the class vector of f’ implies that
ap € {1,4,6,9}, a1 €{1,4,6,9}, a9 €{2,3,7,8}.
It follows that the only possibilities are
(ap,a1,a2) € {(1,1,8),(6,1,3)}.

In particular, ag+aj+as = p—1. But this implies that f’ has bad reduction.
This implies that all cusps of label 5C are bad cusps. By symmetry, the
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same follows for the cusps of label 5D. This proves (a). Part (b) follows by
a similar argument.

We conclude that the bad degree d},.q is greater than or equal to 4-11 +
4-142-16-5 = 208. Let B be a bad horizontal component. Theorem 5.3.1
implies that the map B — IP’%\ is inseparable. This implies that p divides the
bad degree. Since 208 < dpaq < 208 + 6 - 8, we conclude that dp.q = 220.
This proves (c). O

It is not so easy to directly count the number of bad cusps of label 6A
as we did for the cusps of label 5%. The reason is that there are cusps of
label 6A which occur in the component Hs, and it is more difficult, though
probably not impossible, to distinguish between the two.

Since the degree of 7r(2) is 2, the number Ny of bad horizontal compo-
nents, counted with multiplicities, whose underlying reduced subscheme is
isomorphic to B} is equal to (220 —4-2-11)/11 = 12.

Denote by w3 : Hy — }P& the Galois closure of m3. As we remarked
before, its Galois group I's is isomorphic to Ags. The calculation of the bad
horizontal components clearly gives some information on the reduction of
w3 : Hy — IP’%\. Since the bad degree is nonzero and strictly less than the
degree of w3, it follows that ws : Hg — Pi has bad reduction. Since the
order of I's is strictly less p?> = 121, the order of the inertia group Iy of an
irreducible component of Hs above the original component is an elementary
abelian p-group. One can limit the possibilities for the order of this inertia
group from the bad degree. It should be possible to get more information by
using a more careful analyses of the universal deformation rings and making
a more systematic study of the Swan conductors of G-Galois covers such
that the Sylow p-subgroup of G is elementary abelian.
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