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Abstract

Analog and mixed-signal circuits are gaining popularity in various applications such as tele-

communication, multimedia, biomedical applications and others. Testing of these circuits has a

major impact on product cost and time-to-market. Furthermore, the trend of integrating com-

plete analog/digital systems on a single chip has resulted in new testing challenges for such

systems.

Testability analysis for analog circuits provides valuable information for designers and test

engineers. Such information includes a number of testable and nontestable elements of a cir-

cuit, ambiguity groups, and nodes to be tested. This information is useful for solving the fault

diagnosis problem.

In order to verify the functionality of analog circuits, a large number of specifications have to

be checked. However, checking all circuit specifications can result in prohibitive testing times

on expensive automated test equipment. Therefore, the test engineer has to select a finite subset

of specifications to be measured. This subset of specifications must result in reducing the test

time and guaranteeing that no faulty chips are shipped.

This research develops a novel methodology for testability analysis of linear analog circuits

based on pole-zero analysis and on pole-zero sensitivity analysis. Based on this methodology, a

new interpretation of ambiguity groups is provided relying on the circuit theory. The testability

analysis methodology can be employed as a guideline for constructing fault diagnosis equa-

tions and for selecting the test nodes.

We have also proposed an algorithm for selecting specifications that need to be measured. The

element testability concept will be introduced. This concept provides the degree of difficulty in

testing circuit elements. The value of the element testability can easily be obtained using the

pole sensitivities. Then, specifications which need to be measured can be selected based on this

concept. Consequently, the selected measurements can be utilized for reducing the test time

without sacrificing the fault coverage and maximizing the information for fault diagnosis.
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Chapter 1

Introduction

1.1. Analog Test Philosophy

Testing of analog and mixed signal circuits has become a challenge and gained more interest

in the last decade for many reasons including increasing the applications of the analog circuits,

integrating the whole system on one chip, and the high cost of analog testing compared with

digital testing counterpart.

The reason for increasing the analog circuit applications is due to signals in real world are ana-

log in nature with a continuous amplitude and time scale. Thus, any electronic system which

interacts with the outer world has to contain some analog interface circuitry. Many domains

such as telecommunications, multimedia, and biomedical applications require such analog

interface circuitry. Analog and mixed-signal circuits such as amplifiers, filters, switches, ana-

log-to-digital, and digital-to-analog converters are required in many end-equipment applica-

tions such as cellular telephones, hard-disk drives, modems, motor controllers, and multimedia

audio and video products. Moreover, the analog circuits provide a good overall performance

for high-performance applications (high frequency and low power applications), low-noise

data-acquisition systems (e.g. in biomedical sensor applications), and parallel analog signal

processing (such as in neural networks with a huge number of neurons). The strategy for test-

ing these analog and mixed signal circuits (interface circuitry) is still needed.

In the past, a chip was just a component of a system; today, a chip is a system in itself. This

integration of a system including analog and digital circuits in a chip (system-on-a-chip SoC)
1



has posed non-trivial problems in design and test areas. There are many factors that cause the

complexity in testing the system-on-a-chip (SoC). Such factors are [Claa03]: the lack of ade-

quate fault models, incapable tools for coping with the complexity of the SoC, lack of accessi-

bility (lack of controllability and observability), lack of an industrial standard analog design

for testability (DfT) methodology, and raising the importance of the timing-related faults.

The test cost of analog and mixed-signal circuits has now increased in comparison with digital

test cost as shown in Figure 1-1 [Robe01]. The high analog test cost results from many factors

such as expensive test equipment, long test development time, and long test production time.

The development and production test time costs constitute a part of the development and pro-

duction costs of the integrated circuits (ICs), respectively. Both the development and produc-

tion test time are related to the time-to-market (TTM) which plays an important role for

competitive semiconductor companies.

The challenge which test engineers are faced with is to develop a test methodology in order to

reduce the test cost and to accelerate the time-to-market without sacrificing IC quality.

Consequently, the generation and evaluation of an effective test methodology is a very impor-

tant issue in the production of an IC that having direct consequences on the price and the qual-

ity of the final product.

Figure 1-1: Electronic Manufacturing/ Test Cost [Robe01]

Digital Test

Analog Test

Manufacturing

(design, assembly & parts)

Analog Test

Manufacturing

(design, assembly & parts)

Digital Test

Relative Product Costs
(Present)

Relative Product Costs
(Future)
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1.2. Motivation and Problem Definition

Testing can be defined as the process of verifying that an IC meets the specifications for what

was designed [Huer93a]. Thus, the primary need for testing is to perform the following two

sequential tasks:

(1) Checking the design characterizations: this task is called prototype testing.

(2) Checking manufacturing defects: this task is called production testing.

The objective of prototype testing is to verify the circuit under test (CUT) characterizations. If

the circuit under test is identified as faulty during design characterization before it is sent to

mass-production, it is desirable to diagnose the cause of the failure. Once faults are identified

and located, a circuit can then be redesigned to enhance the yield of the ICs.

Prior information is required before fault diagnosis can be attempted. Such information

includes optimal test points, optimal measurements, ambiguity groups, testable elements

(which can be isolated), and untestable elements (which are assumed to be nominal). This

information can be obtained by testability analysis of the circuit under test (CUT). The con-

cept of testability analysis is strictly tied to the concept of the element-value solvability prob-

lem, which gives information about the solvability of the test problem for linear analog

circuits. The degree of solvability of the circuit under test can be quantified using testability

measure concept. As a result, the testability measure allows us to know beforehand how many

faulty elements can be identified and how many elements have to be assumed fault-free. The

testability measure is quantitatively given by the rank of the sensitivity matrix (testability

matrix) constructed from the derivation of output parameters with respect to circuit elements.

In low testability circuits, where the testability measure is less than the number of the circuit

elements, the testability analysis is strictly tied to the ambiguity group concept. Ambiguity

groups consist of circuit elements that produce the same values of measurements. Therefore,

the ambiguity groups have to be identified before constructing the fault diagnosis equations.

The ambiguity groups can be determined by finding the null space of the testability matrix, in

other words by finding the linearly dependent columns of the testability matrix. The zero-

value rows of null space matrix correspond to the definitely testable elements and the nonzero-

value rows and not orthogonal correspond to the elements that belong to the same ambiguity

group. The null space of the testability matrix can be computed by QR factorization or by sin-

gular value decomposition (SVD) of the testability matrix.
3



The target of production testing is to detect defects resulting from the imperfections of the

manufacturing process. Production testing is performed to distinguish good circuits from

faulty ones. Testing cost (reflected as test time, throughput, and the cost of automatic test

equipment) is a major concern for production testing. In order to make the decision whether a

circuit is faulty or fault-free, a large number of specifications have to be checked. Thus, it is

not possible to perform an exhaustive test, since it will require an infinite number of measure-

ments and may result in prohibitive testing times on expensive automated test equipment.

Therefore, the test engineer has to select a finite subset of specifications to be measured. This

subset of specifications must result in reducing the test time and guarantee that no faulty chips

are shipped.

Selecting an optimal set of measurements is related to the objective of a test. For example, if

the goal of a test is only to detect faults, the selected measurements have to guarantee high

fault coverage and reduce the test time. On the other hand, if the goal of a test is to locate

faults, the selected measurements have to distinguish faulty elements from good ones taking

into account ambiguity groups.

In this thesis, we will address two problems. The first one is to determine a testability measure

(the number of testable elements) and ambiguity groups. The second one is to select the mini-

mum number of measurements which lead to the reduction of the time cost without sacrificing

fault coverage. Our measurement selection algorithm can also be employed in breaking up

ambiguity groups should the fault diagnosis be the goal of the test.

In the first part of the thesis, we will present a novel methodology for determining the testabil-

ity measure and ambiguity groups based on the poles and zeros of the transfer function which

represents the linear analog circuit. Unlike other methods, which require numerical methods

such as QR or SVD decompositions, our methodology requires only the knowledge based on

the circuit theory. Thus, a new interpretation for the testability measure and ambiguity groups

is presented which depends on the poles and zeros of the linear analog circuit. The proposed

methodology can be employed as a guideline for fault diagnosis and test node selection.

Furthermore, the relationship between the testability measure based on the pole and zero anal-

ysis and controllability/observability concepts from control theory will be discussed. The con-

trollable (or non-controllable) and observable (or non-observable) states in linear analog

circuits can be determined based on pole and zero sensitivity.
4



In the second part of the thesis, the problem of minimizing the cost of production testing is

considered. We will introduce the element testability concept which can be defined as the rela-

tive degree of difficulty in testing circuit elements with respect to circuit specifications under

the parametric faults conditions. The element testability is computed based on the sensitivities

of the poles and zeros of the linear or linearized analog circuit. Thus, our method depends on

the sensitivity analysis which provides the relationship between the circuit elements and per-

formance specifications. This kind of analysis ensures the structural and the functional test; in

other words the circuit elements are tested by verifying circuit functionality. The selected mea-

surements can be utilized for

• obtaining the high fault coverage or evaluating the test vectors in a fault simulator,

• reducing the test cost by reducing the number of tests without affecting the fault coverage,

and

• for breaking up the ambiguity groups if the fault diagnosis is the goal of a test.

1.3. Organization

This thesis is organized as follows:

In Chapter 2, modeling and simulation of analog circuits will be discussed. Circuit modeling is

presented using the levels of abstraction and hierarchy concepts. Furthermore, we will address

simulation techniques used for simulating digital, analog, and mixed-signal circuits. Finally, a

general overview of circuit simulation will be discussed.

In Chapter 3, a general introduction to testing analog and mixed-signal circuits will be

addressed. The complexity of analog circuit testing and design-test flow will be discussed.

Then, the analog testing techniques, namely the specification-driven test and fault-driven test,

will be given. The classification of faults which can occur in analog circuits is discussed.

Finally, we will present the state of the art for analog and mixed-signal circuit testing.

In Chapter 4, a new methodology for testability measure and ambiguity group determination

will be presented. This methodology is based on the well-known pole and zero analysis and on

pole-zero sensitivity. The testability measure at a certain node of a circuit can be computed

from the number of the poles and zero in addition to the DC gain of the transfer function. Also,

the testability measure can be computed from the circuit matrix constituted using the modified

nodal analysis. The ambiguity groups can be determined using the pole and zero sensitivity.
5



Thus, a new interpretation of the ambiguity groups will be given based on the knowledge of

the circuit theory. In this chapter, various simulation examples will be presented in order to

validate our method.

In Chapter 5, we will present an algorithm for measurement selection for linear second-order

circuits. The aim of this algorithm is to maximize the fault coverage and to reduce test cost by

reducing the number of specifications that need to be measured. Also, this algorithm can pro-

vide maximum information about fault identification for fault diagnosis by breaking up the

ambiguity groups. This algorithm is based on the element testability concept which can be

determined based on the sensitivity of the circuit poles. The element testability will provide

the information about the difficulty in testing circuit elements as well as the effect of element

changes on circuit specifications. Parametric faults which are caused by manufacturing pro-

cess variations and do not affect the circuit topology will be considered in this chapter.

In Chapter 6, the element testability and measurement selection algorithm proposed in Chap-

ter 5 is developed to cover higher-order circuits. Higher-order circuits will be approximated by

second ones using moment matching methods such as asymptotic waveform evaluation

(AWE) by which the two complex-conjugate dominant poles of a circuit can be extracted. The

element testability concept can be utilized to select specifications that need to be measured.

Chapter 7 presents the testability analysis of nonlinear analog circuits. A nonlinear analog cir-

cuit is linearized around an operation point and represented by its transfer function in the

Laplace domain. The ambiguity groups can be determined based on the sensitivities of the

poles and zeros of the linearized circuit. The parameter testability concept which gives an

insight into the difficulty of testing the circuit parameters is introduced. Specifications that

need to be measured can be selected relying on this concept. The parameter testability of cir-

cuit parameters with respect to circuit specifications can be obtained based on the pole sensi-

tivities.

The measurement selection algorithm for nonlinear circuits can also be utilized to reduce test

time without sacrificing the fault coverage and to provide maximum information for fault

identification.

Chapter 8 concludes the thesis with a summary and comments concerning future researches.
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Chapter 2

Circuit Modeling and Simulation

2.1. Introduction

Modeling and simulation are the most important parts of system analysis [Law00]. Modeling

is defined as a process by which the physical system can be transformed into an abstract form

called model. Simulation is defined as the process by which a computer is used (numerical

analysis) to evaluate a model and to estimate its important characteristics. From an electronic

circuit point of view, modeling can be employed to transform electrical circuits into a mathe-

matical description called model. The model is described by the internal states and the input/

output relationships such as logic equations for digital circuits or differential and algebraic

equations (DAEs) for analog circuits [Sale94]. Then, an analog simulator such as SPICE is

used to solve the mathematical equations that describe a circuit.

2.2. Circuit Modeling

The levels of abstraction modeling the digital circuits are mature and strictly defined [Ash03].

In contrast, the case of analog circuits is not similar, the levels of abstraction of analog design

are not strictly defined, and there is no general agreement in the analog design community

about the actual abstraction levels to be used in analog design automation [Giel91, Rose98].

The analog circuits may be modeled in different domains, each domain focusing on different

aspects. These domains can be categorized into three perspectives: structure, behavior and
7



geometry, as shown in Figure 2-1 [Ashe03]. Each of these domains can also be divided into

different levels of abstraction. At the upper level, a general overview of these domains is con-

sidered, and at the lowest level the greatest amount of details of the system is provided.

The structure domain describes the analog circuits by a composition of interconnected ele-

ments or subsystems such as resistors, capacitors, transistors, op-amps, filters and others. The

structure domain can be divided into different levels of abstraction: circuit level (also called

element level or transistor level), structural macromodel level (also called functional level) and

system or chip level.

The circuit level is the lowest level of abstraction and the elements at this level are primitives.

At this level, the analog circuits are presented using semiconductor devices (such as BJT and

MOSFET transistors) and passive elements (such as resistors and capacitors). There are sev-

eral commercial circuit simulators such as SPICE and their derivatives which offer very accu-

rate simulation, however, at this level the simulation is a very time-consuming task for large

circuits. Therefore, a trade-off between accuracy and speed is accomplished using higher lev-

els of abstraction.

The structural macro-model level or functional level consists of a collection of primitive ele-

ments such as operation amplifiers and comparators which are designed to achieve a specific

functionality. Models at this level can be simplified to produce other models with the same

Figure 2-1: Analog domain and levels of abstraction [Ashe03]
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function, this technique being known as macromodeling [Mant95]. The model obtained con-

sists of fewer elements than the original model of the circuit level description, an example

being the Boyle op-amp macromodel [Boyl74]. This leads to short computational time and

enables the simulation of larger circuits. The derivation of simplified models can be achieved

by several methods such as circuit simplification, circuit build-up, symbolic macromodeling,

and a combination of these methods [Mant95].

The system level consists of a connection of functional blocks or system transfer functions

such as a modem chip. An example of the structural view is given in Figure 2-2 [Giel91].

The behavior domain describes the system by means of the linear or nonlinear mathematical

equations. The detailed structure of the system is undefined. The behavior domain can also be

divided into different levels of abstraction, nonideal equations, ideal equations, behavioral

macromodel, transfer function, and algorithm [Ashe03].

For analog circuits, the description of the lowest level is provided by differential and algebraic

equations (DAEs) with sets of unknowns that are a function of the time. At the highest level,

the analog circuits can be modeled by using the transfer functions (for example using Laplace

Transform). Hardware description languages such as VHDL-AMS [Ashe03] and MAST

[Anal97] can be used to describe analog circuits using the behavioral description.

It is worthwhile to distinguish between the structural macromodel and the behavioral macro-

model. The structural macromodel described by primitive elements can be simulated using a

circuit simulator like SPICE, and provides more accuracy. In contrast, the behavioral macro-

Figure 2-2: The levels of abstraction for a modem circuit [Giel91]
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model described by means of differential equations can be simulated using a behavioral simu-

lator based on a behavioral modeling language such as VHDL-AMS. The behavioral

macromodeling is still faster than the structural macromodel.

The combination of structural and behavioral modeling can be utilized using different levels of

abstraction; this technique is known as multi-level hierarchical modeling. The circuit models

can be described at different levels of abstraction. The model of interest is simulated at the

lower level with more details (if detailed timing information is desired). The rest of the circuit

models are simulated at the higher level to accelerate the simulation (where the accuracy is not

the critical issue).

Finally, the geometry domain describes how the system is laid out in physical space (layout).

This domain can be also divided into different levels of abstraction [Ashe03].

A progression from the upper level (the system level) to the lowest level (the electrical level)

provides an increase in the accuracy of the simulation at the cost of more CPU-time. In con-

trast, a progression from the circuit level to the highest levels allows for larger and larger cir-

cuits to be simulated for a given amount of CPU-time or requires less and less CPU-time to

simulate a given circuit. Multiple levels of abstraction are commonly used in top-down design

or bottom-up verification. In both cases, the entire design at any given point in time may be

represented at a number of different levels of abstraction [Sale94]. Therefore, mixing different

domains and multiple levels would provide an effective balance between simulation speed and

accuracy.

2.3. Simulation Techniques

System simulation methods can be classified as event-driven simulation, time-continuous and

combined methods, depending on whether the system states are changed continuously or

instantaneously [Law00]. In most simulation methods, the major independent variable is time.

2.3.1. Event-Driven Simulation

In event-driven simulation, the signals of interest consist of events which are changed instanta-

neously at separated points of time. The events contain the functional and the time information

of a system. The event-driven simulation is widely employed in modeling digital hardware and

communication systems.
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In a digital system, the state variables take certain values called logic levels (e.g. high, low, and

unknown). An event is a change in state variables of some circuit nodes that may affect other

nodes in the circuit. The effect of an event is to cause all fan-out nodes to be processed and

possible new events to be scheduled if changes in their output nodes occur.

Digital signals change their state values instantaneously (at discrete time points). Therefore, a

digital simulator only needs to keep track of the timing of these changes (referred to as events)

and the value held by a node between events. In order to accomplish this most efficiently, dig-

ital simulators employ what is known as an event queue. An event queue is an list ordered

according to the occurrence time. “Digital time” progresses by taking each event in order,

placing the changed state on a variable, and activating the models that are listed for such an

event [Mant95].

2.3.2. Time-Continuous Simulation

In time-continuous simulation, the state variables, which represent the system models, are

changed continuously with respect to time. The system can be modeled by ordinary differen-

tial equations (ODEs). Thus, a time-continuous simulator is a differential equations solver.

Normally, an analytical solution for the models which are represented by means of the nonlin-

ear differential equations is not possible in most cases, therefore, numerical integration meth-

ods are used. Continuous-time models can usually be used for analog circuits, physical

processes, sensors and actuators.

In analog circuits, Kirchhoff’s Voltage Law (KVL), Kirchhoff’s Current Law (KCL) and

branch constitutive equations are used to obtain the differential equations. Then, a time-con-

tinuous simulator such as SPICE can be used to solve these equations numerically via numeri-

cal integration methods. It is also possible in analog circuits to represent the state-variables as

a function of frequency instead of time.

As a result, a simulator for continuous analog systems is a solver of simultaneous differential

equations while an event-driven simulator is an event manager that activates selected parts of

the system sequentially.

2.3.3. Mixed-Mode Simulation

In combined methods, the event-driven methods interact with time-continuous methods to

simulate mixed-signal circuits. Such simulation methods that combine event-driven and time
11



continuous simulations are referred to as mixed-mode simulation. In practice, the implementa-

tion of the mixed-mode simulation can be classified as native mode, glued mode or fully inte-

grated mode approaches [Sale94].

The native approach (or core modification approach) is implemented by extending an existing

analog or digital simulator to comprehend the levels that are missing. Both, analog and digital

algorithms are merged into a single simulator architecture and operate under a single event

scheduler. Typically, an analog simulator is extended to incorporate the digital one, since the

opposite extension is difficult without major modifications to the original digital simulator.

The glued approach actually is implemented using two existing simulators (analog and digi-

tal). Such approach must define an interface protocol so that both simulators can communicate

with each other effectively. The communication protocol may tend to reduce the speed, and

sometimes the accuracy, of the complete simulator. The glued simulator permits using both

simulators without any modifications in contrast to the native mode which needs to achieve

some modification of the original simulator.

The fully integrated approach is implemented using various simulation algorithms which are

connected via well-defined data-transfer/synchronization mechanism called backplane. In this

approach, single engine and unified data structure for both analog and digital components are

used. The main drawback of this approach is the long development time.

2.4. Circuit Simulation

Circuit simulation is used in circuit design to verify circuit functionality and to obtain detailed

timing information before the expensive and time-consuming fabrication process is performed

[Bane94].

Circuit simulators provide very accurate electrical waveform information, however, it is

impractical and extremely time-consuming for complex analog and mixed-signal VLSI cir-

cuits. In fact, a circuit simulator is the only tool which provides enough detail to ensure that a

circuit will meet specifications over a wide range of circuit parameters and operation condi-

tions [Sale94, Horn99].

2.4.1. Circuit Topology

An analog circuit can be described using the graph theory where the circuit elements are repre-

sented by the edges of a graph and circuits nodes are represented by the nodes of a graph. The
12



direction of current flowing through the branches can be assumed from the positive to the neg-

ative nodes. An example of the circuit and its associated graph is shown in Figure 2-3 [Vlac94]

There are three matrices associated with a direct graph: incidence matrix A, cutset matrix Q,

and loop matrix B as shown in Figure 2-4.

Incidence matrix A is a n x b matrix where n is the number of ungrounded nodes and b the

number of edges in the graph. The rank of matrix A is equal to n (Rank(A) = n). The KCL and

KVL can be represented using the incidence matrix as Ai = 0 and vb= Atvn respectively, where

i is the current of branches, vn is node voltages and vb is branch voltages.

A tree of a graph is defined as the edges containing all the nodes of the original network which

do not form a closed path. The remaining edges form a cotree. A cut through an edge of the

tree and many edges in the cotree form a cutset. Since there are n edges in a tree, there will be

n basis cuts.

The cutset matrix Q (n x b) can be constructed using a set of cuts Qi = 0 and can be written as

Q = [Qt Qc] or [1 Qc] where Qc and Qt corresponds to the cotree edges and tree edges respec-

tively.

The loop matrix B (n x b) is formed using the fundamental loops in the graph that contain only

one cotree edge and many tree edges where Bv = 0. The loop matrix can be partitioned into

two matrices B = [Bt Bc] or [Bt 1] where Bc and Bt corresponds to the cotree edges and tree

edges respectively. The cutset matrix and loop matrix are orthogonal BQt = 0 or QBt = 0.

Thus, the loop matrix can be obtained from the cutset matrix and vice versa.

Figure 2-3: An example of analog circuit and its associated graph [Vlac94]
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The graph representation of the analog circuits is employed in many applications such as for-

mulation of circuit equations and formulation of state-variable equations [Vlac94].

2.4.2. Circuit Equations Formulation and Solution

There are mainly three formulation methods of circuit equations, namely nodal analysis, mod-

ified nodal analysis, and Sparse Tableau analysis [Vlac94].

Classical nodal analysis depends on the KCL for each node to formulate the circuit equations

and is given in matrix form as follows:

where Yn is the admittance matrix, V is the node voltages, and J is the independent current

sources. However, nodal analysis cannot represent the dependent sources such as current con-

trolled voltage source (CCVS), voltage controlled voltage source (VCVS), and current con-

trolled current source (CCCS). Hence, the modified nodal analysis is used to add the ability to

present such circuit elements. The modified nodal analysis is now the most common method

used in circuit simulators. The underlying idea of modified nodal analysis is to add the current

Figure 2-4: The fundamental matrices and their associated graphs
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of elements which do not have an admittance description. The matrix form of modified nodal

analysis is given:

where Yn is the admittance matrix, B, C, and D are matrices which are resulted from the new

equations that describe the non-conductive elements (contain only -1, 1, and 0), V is the node

voltages and I is the branch currents of the non-conductive elements, J and E are the indepen-

dent current and voltage sources respectively. Also, the system equations can be expressed as

Yx = b, where Y is the system matrix created by modified nodal analysis, x is the solution vec-

tor which can be composed of currents and voltages and b is the source vector.

The third method of circuit equation formulation is Sparse Tableau in which all branch cur-

rents, all branch voltages, and all nodal voltages are retained as unknown variables of a circuit.

The matrix form of Sparse Tableau is given by Eq. (2-3)

where 1 is the identity matrix, A is the incidence matrix, Yb and Zb are the admittance and

impedance matrices respectively, Vb is the branch voltages, Ib is the branch currents, Vn is the

branch voltages, and Wb is the independent current and voltage sources. The size of the matrix

T is (n+b+b) x (b+b+n) where n is the number of the circuit nodes and b is the number of the

circuit branches.

The solution of the linear system described by the last equations (2-1), (2-2), and (2-3) is per-

formed by either direct methods or iterative methods. Direct methods are used to solve the lin-

ear equations in a fixed and finite number of steps while iterative methods need to converge to

the exact solution by presumed error. Many important factors are contributed to assess the

desired method such as complexity of computation, accuracy, and the ease of implementation.

The most direct methods used to solve linear system are the Gaussian elimination and the LU

decomposition with pivoting strategy to avoid the ill-conditioning problem. These algorithms

are employed to perform DC, AC, and transient analysis. Iterative methods such as Gauss-

Jacobi, Gauss-Seidel, and relaxation methods are normally used to perform the transient anal-

ysis. These methods are faster than the direct methods and provide more information such as

latency (certain circuit signal values do not change appreciably with time) and multirate

Yn B
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E
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behavior (signal values in different portions of circuits change at different rates requiring dif-

ferent time steps). Furthermore, they are suited for parallel computing [Bane94].

A nonlinear system is described by nonlinear equations. These nonlinear equations are usually

solved by means of the Newton-Raphson algorithm. The Newton-Raphson algorithm can be

used to perform nonlinear the DC analysis and can be combined with other algorithms like the

LU decomposition to perform the nonlinear transient analysis.

2.4.3. Analog Circuit Analyses

2.4.3.1. DC Analysis

The DC analysis of linear circuits is achieved with shortened inductors and opened capacitors.

Also, all time-dependent sources and time-varying parameters and their derivatives are set to

zero. The goal of the DC analysis is to determine the DC operating point of the circuit. The

operating point defines the steady state of the circuit at time = 0. The DC analysis is automati-

cally performed prior to a transient analysis to determine the initial values of the differential

equations and prior to the AC small-signal analysis to evaluate the parameters of the linearized

small-signal models for nonlinear semiconductor devices. Moreover, the DC analysis can be

used to perform the DC transfer (sweep) analysis. The independent source is stepped over a

user-specified range, and the DC operation point for a specific output is computed for each DC

step.

For nonlinear circuits, the DC operating points are evaluated using iterative methods such as

the Newton-Raphson algorithm. The nonlinear elements are linearized around a presumed

operation point, and the nodal equations that characterize the linearized circuit are formulated.

The linearization about the operating point can be achieved by replacing the nonlinear devices

by linear models such as companion model for a diode [Pill95]. Then, the parameters of the

linearized model are computed at each iteration. After an initial guess is assumed, the nodal

equations are solved at the presumed operation point. Finally, the convergence criteria are

checked. If these criteria are fulfilled, the iteration is terminated. Otherwise, the solution is

assumed as a new operating point, and the algorithm is again repeated as shown in Figure 2-5

[Pill95]. All problems derived from the iterative algorithms such as iteration step and conver-

gence problem (overflow) must be taken into consideration while solving of the nonlinear

equations.
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2.4.3.2. AC Small Signal Analysis

In the AC small-signal analysis, the DC analysis is required to determine the parameters of the

small-signal model for nonlinear elements. In other words, the nonlinear elements are linear-

ized around their operating points and assumed to be operated at the linear region of the input/

output characterization (for example the forward-active region in BJT transistors). Energy

storage elements such as capacitors and inductors are modeled in the frequency domain (or

Laplace domain) in terms of complex admittances Y (capacitor admittance = jωC or sC,

inductor admittance = 1/jωL or 1 / sL). The linear equations that describe the circuit are for-

mulated. The AC output variables (voltages or currents) are computed by solving the linear

equations over a user-specified range of frequencies. The problem which is created by per-

forming the AC small-signal analysis at the extreme values of frequency such as ω = 0 (in

which the capacitors become open circuit and the inductors become short circuit), ω --> infin-

ity (in which the capacitors become short circuit and the inductors become open circuit), or

frequencies that cause the ill-conditioning problem must be avoided. In the AC small-signal

analysis, the behavior of the circuit is evaluated as a function of frequency. The AC small-sig-

nal analysis can be used to determine the frequency response of the circuit using Bode plot in

Figure 2-5: Newton-Raphson iteration for nonlinear DC analysis
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which the amplitude and the phase of the output variable are evaluated over a range of fre-

quencies as shown in Figure 2-6 [Pill95]. Furthermore, the AC small-signal analysis can be

utilized to perform the pole-zero analysis, the AC sensitivity analysis, and the noise analysis.

2.4.3.3. Transient Analysis

The transient analysis is used to describe the circuit behavior as a function of time. The electri-

cal circuits are represented by differential equations which are formed by means of the Kirch-

hoff’s Voltage Law (KVL) or Kirchhoff’s Current Law (KCL) and the constitutive equations.

The DC analysis is usually required to determine the initial conditions of the differential equa-

tions. There are two approaches to solve the circuit simulation problem: the direct methods

and the relaxation-based methods.

In direct methods, the differential equations are converted into linear or nonlinear algebraic

equations by means of integration methods such as forward Euler, backward Euler and Trape-

zoidal methods. In this step, the time is discretized by a prescribed time step ∆t and the energy

storage elements such as capacitors and inductors are replaced by their time-dependent com-

panion models [Pill95]. The next step of direct methods depends on whether a circuit is linear

or nonlinear. In linear circuits, the integration methods provide directly linear algebraic equa-

Figure 2-6: Small signal AC analysis
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tions, whose solution is obtained by Gaussian elimination or LU decomposition at each time

point. In nonlinear circuits, the Newton-Raphson algorithm is used for solving the nonlinear

equations.

The accuracy plays an important role in transient analysis since the integration methods are an

approximation that depends on the selection of time step ∆t. Other problems such as conver-

gence speed, initial conditions, stiffness and stability have to be considered.

The main disadvantages of the direct methods of the transient analysis are [Ban94]: (1) The

excessive computational time needed to compute the response over a long time interval. Two

time-consuming processes have to be executed, the Newton-Raphson iteration and solving lin-

ear equations (factorization of the Jacobian matrix) at each time point, as shown in Figure 2-7

[Pill95]. (2) The waveform properties such as latency (certain circuit signal values do not

change appreciably with time) and multirate behavior (signal values in different portions of

circuits change at different rates requiring different time steps) are difficult to exploit. Such

properties are often encountered in MOS circuits. Hence, the relaxation-based methods are

proposed for solving circuit simulation problems.

The relaxation-based approaches can be divided into three approaches, according to the kind

of equations that describe the system [Newt84]. Then, it can be applied for solving linear

equations (linear relaxation methods), nonlinear equations (nonlinear relaxation methods), and

differential equations (waveform relaxation methods).

The linear relaxation methods are used for solving the linear circuit equations by means of

iterative methods such as the Gauss-Jacobi or Gauss-Seidel methods. In these methods, the

linear equations are solved for one unknown variable at a time and the other unknown vari-

ables are fixed. After iterative solving for unknowns, the final result is convergent to the exact

solution. The nonlinear relaxation methods exploit the nonlinear Gauss-Jacobi or nonlinear

Gauss-Seidel algorithms combined with the Newton-Raphson algorithm to solve a set of non-

linear equations. There are many forms of nonlinear relaxation methods such as timing analy-

sis, iterated timing analysis, and one-step relaxation. Partitioning of the large circuit can be

achieved and, by exploiting the parallelism, the nonlinear equations can be solved to acceler-

ate the computation [Bane94]. The last kind of relaxation methods is the waveform relaxation

method which exploit the Gauss-Seidel procedure for solving the ordinary differential equa-

tions.
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The state-variable equations given in Eq (2-4) can be utilized to perform the transient analysis

for linear analog systems. The system with r input sources and m outputs can be described by

first-order differential equations as in following:

where, x(t) is the n x 1 state vector, u(t) is the r x 1 input vector, y(t) is the m x 1 output vector,

and matrices A, B, C, D are n x n, n x r, m x n, and m x r, respectively. The state-variable equa-

tions can be formulated via network topology based on the direct graph (cutset and loop equa-

Figure 2-7: Transient analysis
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tions) associated to the circuit [Chao95a]. The total response of the circuit can be divided into

two responses: zero-state and zero-input responses. The solution of the state-variable (total

response) can be obtained via the state transition matrix approach or via the inverse Laplace

transform approach.

2.4.3.4. Sensitivity Analysis

The sensitivity analysis is employed in most commercial circuit simulators such as PSpice and

Saber. The effect of parameter changes on performance specifications caused by the deviation

of the manufacturing process can be determined by using the sensitivity analysis. In other

words, the sensitivity analysis based on a first-order approximation provides the variation of a

circuit’s response with respect to parameter variations. The performance sensitivity is mathe-

matically defined as the derivation of the performance Tj (j=1,2,..., n, where n is the number of

circuit performance specifications) with respect to the circuit element hi (i= 1,2,...,k, where k

in the number of the circuit elements). The derivatives are computed at the nominal values of

the circuit elements. There are two forms of sensitivity, according to the amount of parameter

variation. The normalized differential sensitivity (called also small-change sensitivity) is valid

only for small deviations (infinitesimal changes) of the element hi (Eq. (2-5)). The normalized

incremental sensitivity (also called large-change sensitivity) is used for small and large devia-

tions (Eq. (2-7)).

In the case of variation of many output parameters caused by the variation of many elements,

the Eq. (2-5) can be expressed in matrix form as follows:

The incremental sensitivity can be expressed as follows:

where ∆Tj is the change in performance Tj resulting from an incremental change ∆hi of the ele-

ment hi. If the circuit performance can be written in rational form as T(s,x) = N(s,x) / D(s,x)

(where s is the complex frequency), then the incremental sensitivity can be computed as a

function of the differential sensitivity [Fidl84]:
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where Shi
D is the differential sensitivity of the denominator D of the performance Tj. The

incremental sensitivity can be generalized for the deviation in many elements. In the case of

the deviation of k elements {h1, h2,..., hk} and one output parameter T, the relative deviation of

output parameter ∆T/T can be given by Eq (2-9)

There are two methods for sensitivity computation, namely the direct method and the adjoint

method [Dire69] (based on Tellegen’s theorem [Penf70]). In the direct method, the sensitivity

of all outputs with respect to one element is needed while in the adjoint method the sensitivity

of one output with respect to many parameters is needed. Usually, the sensitivities of all out-

puts are not required, or only a single output is available; therefore, the adjoint method is pre-

ferred for computing the sensitivity of the output associated with all circuit elements (cf.

Appendix A). For the system represented by the modified nodal analysis Yx = b. The adjoint

system is represented by Ytxa = - d, where xa is the solution of the adjoint system and d is the

linear combination of the variables x. The output of interest φ(x) can be expressed as φ = dtx.

The sensitivity of the output φ associated to the element h can be given:

The cost for the sensitivity adjoint method is equal to that of the two circuit simulations, once

for the original circuit and once for the adjoint circuit. The computation of the sensitivities is a

time-consuming task, because the sensitivity must be evaluated at each frequency point.

Therefore, pole and zero sensitivity provide an alternative for determining the effect of the ele-

ment variation on circuit performance, independent of the frequency.

The applications of the sensitivity analysis for analog testing such as fault diagnosis, test sig-

nal generation, and test measurement selection will be discussed in Chapter 3, and the applica-

tions of the pole and zero sensitivity for the testability analysis and the test measurement

selection will be discussed in chapters 4, 5, 6, and 7.
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2.4.4. Symbolic Modeling

Symbolic modeling of analog circuits is usually achieved at the circuit level of abstraction to

generate a closed-form analytical expression for circuit characteristics as a function of inde-

pendent variables (time or frequency) with a part or all of circuit’s elements represented by a

symbol [Giel94]. This allows for understanding the circuit behavior more effectively than the

numerical analysis. The symbolic analysis can be employed for various applications for ana-

log integrated circuits such as circuit analysis, circuit behavioral modeling, automatic circuit

sizing, circuit optimization, and analog testing [Somm99].

Normally, the symbolic analysis is used to analyze linear circuits in the frequency domain.

The transfer function (the ratio of the desired output to the input of a circuit) is generated in

rational form as a function of the complex frequency s. The coefficients ai and bi of the numer-

ator and denominator polynomials are a function of the circuit elements.

where m and n is the degree of the numerator and denominator polynomials, respectively.

The small-signal models of the nonlinear elements such as diodes and transistors are generated

(linearization about the DC operating point). The symbolic analysis is performed to extract the

symbolic transfer function. There are three classes of symbolic analysis [Hass98]: (1) alge-

braic methods such as interpolation method and parameter extraction method, (2) graph-based

methods such as tree enumeration and signal flow graph, and (3) matrix-based methods such

as determinant-based solutions and parameter reduction solutions.

In algebraic methods, the circuit is represented by a set of equations; then, algebraic opera-

tions on this set of equations are achieved to obtain the symbolic network function. In graph-

based methods, the circuit is represented in a graph with symbolic branch weights. The net-

work function is computed by finding all paths and loop in this graph. Matrix-based methods

generate the fully symbolic circuit equations directly from the circuit description and then put-

ting them into a linear matrix form (the equations (2-1), (2-2),and (2-3) [Anal01].

Since the generated expression is large and difficult to interpret, approximation (simplifica-

tion) is required to reduce the expression complexity by the sacrificing its accuracy. The sim-
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plification methods can be divided into three groups according to whether the simplification of

the network function is achieved after, during or before generation [Half03].

The simplification after generation (SAG) methods simplify the network function after obtain-

ing their exact solution, hence called solution-based method. The simplification during gener-

ation methods (SDG) apply simplification during the process of the transfer function

calculation. Simplification after generation methods (SAG) such as equation-base approxima-

tion or matrix approximation simplify the transfer function directly based on the numerical

reference called design point. The symbolic analysis is usually completed by the extraction of

the poles and zeros of the analog circuits and sensitivity analysis in symbolic form. The sym-

bolic analysis can be summarized as shown in Figure 2-8.

The main disadvantage of the symbolic analysis is the limit for small analog circuits since the

exponential grows of the number of terms with the circuit size. Therefore, many developments

in symbolic analysis are proposed for the reduction of the complexity of the symbolic analysis

for large circuits. Some of these developments are: hierarchical methods based on the

sequence of expressions [Giel94], determinant decision diagram (DDD) [Shi00], and semi-

symbolic analysis (combining symbolic and numerical analysis) [Somm99, Biol01, Somm03].

Figure 2-8: Symbolic analysis steps
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Chapter 3

An Introduction to Testing of Analog Circuits

Analog and mixed-signal circuits are gaining popularity in various applications such as tele-

communications, multimedia, biomedical applications and others. The trend of integrating

complete analog/digital systems on a single chip has resulted in new challenges in testing such

systems. The analog test cost compared to its digital counterpart is very high. Furthermore,

analog testing is still quite immature in both methodologies and tools. Therefore, the need for

developing new test methodologies is still insisted upon.

In this Chapter, a general introduction to testing analog and mixed-signal circuits will be pre-

sented. In section 3.1, the difficulties result in a very complicated task for developing and auto-

mating methodologies for testing analog circuits are given. In section 3.2, the analog test flow

and its relationship to analog design will be discussed. In section 3.3, the analog testing tech-

niques -specification-driven test and fault-driven test- are addressed. The fault classification

for analog circuits is given in Section 3.4. The current state of the art of testing analog and

mixed-signal circuits is presented in Section 3.5.

3.1. Difficulties with Testing Analog Circuits

The natural properties of analog signals and analog test complexities can be summarized as

follows [Huer93a, Sach95, Spaa96,Vinn98, Bush00]:

1) Analog signals are time and amplitude continuous in nature. Unlike digital signals, which

are represented only by two values (low and high), analog signals are represented in prin-

ciple by an infinite number of signal values which present signal information. Analog sig-
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nals are very sensitive waveforms, even a small disturbance of signal magnitudes may

cause a serious degradation in signal quality.

2) Analog circuits are inherently nonlinear systems. The user assumes that the nonlinear cir-

cuit operates as linear within a region of its input space. In addition, the nonlinear input-

output characteristics of analog circuits need sophisticated techniques to solve the nonlin-

ear equations that describe circuit behavior (e.g. iterative methods to solve the nonlinear

equations of transient analysis in analog circuits).

3) The relationship between input and output in analog circuits is very complicated in com-

parison to digital circuits which can be described by the truth table or boolean equations

and are thus precise and easy to model.

4) Analog circuits can be described in several domains such as frequency and time domains.

Each of these domains has its own specifications and methodologies for describing analog

circuits.

5) In digital circuits, only a few specifications have to be measured (rise time, fall time, delay

time, logic threshold voltage, and so on). These specifications are usually the same for all

digital circuits and independent of applications. In contrast, analog and mixed-signal cir-

cuits include several kinds of classes or models e.g. filters, operation amplifiers, A/D and

D/A converters, phase-locked loops, and so on. Each circuit class has a separate set of

specifications that is different from other classes. Furthermore, these specifications depend

on a particular application even for the same circuit. Thus, checking the parameters related

to these specifications can generally be costly and time-consuming.

6) Circuit element values vary widely which so caused by manufacturing process variations.

Therefore, the circuit functionality depends on process variations, and the analog circuit is

designed to depend on the range of element values rather than individual component val-

ues. The acceptable range of element values and circuit functionality (tolerance) depends

on several factors such as intended applications, simulation inaccuracies and measurement

errors.

7) The fault model complexity in analog and mixed-signal circuits is different from that in

digital circuits. In digital circuits, the stuck-at fault model is widely used at gate level

[Abra91]. In contrast, in analog circuits accurate analog fault models are not always avail-

able. Also, describing the good and faulty circuit for all types of faults at higher levels such

as the behavior or the macro-model level is a very complicated task and still remains a

challenge in analog circuit testing. Several fault models at different abstraction levels are
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proposed. Furthermore, probability methods are often not efficient because the statistical

distributions of analog faults, generally, are not known with enough precision to accurately

predict the fault coverage of a test set.

8) As the technology is shrunk down and analog and digital circuits coexist on a single chip

(System-on-a-chip), the accessibility to circuit nodes from IC pins is reduced. Therefore,

the controllability and observability of circuit nodes are reduced. This growth of integra-

tion demands techniques for modifying the design such as design for testability (DfT) and

built-in self-test (BIST) to ensure a higher testability of analog circuits.

9) Standard mixed-signal DfT and ATPG methodologies are not available. Each company has

its own methods for test node access and test signal generation. The lack of standards leads

to a long design cycle, long test development time, and increasing time to market.

10) There is no general agreement in the analog design community about the actual abstraction

levels and hierarchy to be used in analog design automation.

11) In addition to the above-mentioned problems, there are further problems in testing of ana-

log and mixed-signal circuits such as measurement errors, random noise effects, the effect

of the load of the measurements probe, and environmental conditions like temperature.

The significance of these difficulties is not the same. The diversity of the specifications for

characterizing an analog circuit and the lack of fault models are considered the most critical

issues.

All of these difficulties make the automation of the analog test process to be a very compli-

cated task. It also explains why nowadays analog testing is far behind its digital counterpart.

Also, these difficulties lead to the need for producing very expensive analog test equipment to

obtain precise signal measurements.

3.2. Test Flow

Test can be carried out during different phases of integrated circuit (IC) design. According to

Figure 3-1 [Engi00, Huer93a], the first step in test flow is the IC specifications. At this step,

specifications are usually given in terms of transient and steady-state performances. A circuit

is designed so that its specifications fulfill the requirements specified by the user.

The second step is the design and its validation. The goal of this step is to ensure that the

design obtained as an outcome of the design process is correct.
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The third step of the test flow is prototype manufacturing and testing. Prototype testing is pri-

marily aimed at verifying the circuit under test (CUT) characterizations and to certify that

CUT can be sent to mass production, where an exhaustive test must be applied to identify any

fault or any disparity with the required specifications. Therefore, prototype testing is focused

on design mistakes rather than on manufacturing defects. Prototype testing consists of two

stages: design debug and design evaluation. The design debug ensures that the circuit under

test (CUT) performs its intended functions correctly using measurement instruments such as

waveform generators and oscilloscopes. For example, in order to ensure that the filter behaves

as designed, its frequency response and some transient characteristics such as settling time and

rise time need to be tested. The design evaluation is performed by measuring specified perfor-

mance specifications under many different conditions such as a range of temperatures and

input voltages to evaluate worst-case conditions.

In prototype testing, the main specifications of a CUT are checked. If it does not operate as

expected, a diagnostics technique is employed to detect and locate faults responsible for the

malfunctioning and to decide whether a circuit requires modifications in circuit design in order

to enhance the yield of the IC. As prototype testing is performed on only a small number of

ICs, the test time is not a primary limitation. However, the most important factor is the accu-

racy of the measurements which requires very expensive automatic test equipment.

After a design is manufactured, the fourth step of test flow, which called production testing, is

performed. The target of the production testing is to detect the defects resulting from the

imperfections of the manufacturing process. Production testing is performed to make a fail/

pass decision, or to distinguish good circuits from faulty ones. Testing cost (reflected as test

time, throughput and the cost of automatic test equipment) is a major concern of production

testing. Since packaging and final test are more expensive than all other manufacturing steps,

an additional testing stage called wafer test is added before packaging. At the wafer test stage,

simple parametric tests e.g. DC and low-frequency AC signals are carried out to detect faulty

chips. Faulty naked dies are rejected and fault-free dies are packaged. Then, the final step of

CUT testing called the final test is achieved on packaged dies. In the final test, high frequency

tests can be applied and a subset of specifications is carefully chosen for measurement. This

subset of specifications must guarantee that no faulty chips are shipped. The time spent on

production testing can be very long, therefore, the number of applied test stimuli and measure-

ments must to be minimized.
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After achieving the final test step, the chips are ready for shipping to the end-equipment man-

ufacturer.

After shipping the chips, the board where the chip is embedded needs to be tested. Further-

more, the chip is tested during the operation in the field. Many faults may occur due to aging

or environment conditions. In this case, a fault diagnosis is needed to segregate the faulty

chips from the good ones.

Figure 3-1: A general overview of the design and test flow for analog circuits
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As a rule of thumb, the incremental cost of detecting, locating and repairing a fault through

each successive phase of IC development is around ten times higher than the previous phase,

as shown in Figure 3-2 [Robe01].

3.3. Fault Classification

Any deviation in the electrical or geometrical properties of the manufactured IC from the val-

ues given by the IC layout beyond the expected process variation is called a defect [Engi00].

The effect of a defect on the electrical characteristics of the IC deviating from the specified

behavior is called a fault [Engi00].

In other words, a fault is the consequence of a defect, but it is also possible that a circuit with a

defect electrically has no fault at all.

In this section, fault classification of analog circuit faults is given based on [Huer93a, Milo98,

Engi00]. The sources of faults in analog circuits (process disturbance) are either global or

local defects. Global defects include imperfect parametric control in IC manufacturing, insta-

bilities in process conditions, material instabilities, substrate inhomogeneities and mask mis-

alignments. Such defects affect all chips on a wafer in approximately the same way. On the

other hand, local defects (such as spot defects, oxide pinholes, missing contact, etc.) are usu-

ally originated from particles in the fabrication process and affect individual devices or a very

small region on a chip.

Figure 3-5: Classification of analog faults
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Local and global process disturbances can result in structural and parametric faults (see Fig-

ure 3-5). The structural faults include open nodes, shorts between nodes, and other topological

changes in a circuit. The structural faults can be categorized according to the effect of a fault

on circuit specifications. A fault that causes circuit specifications to fail completely is called

catastrophic fault. Typically, a simple DC test can detect this kind of fault. A fault that causes

circuit specifications to operate out of their specified specification range (out of region of

acceptability) is called non-catastrophic faults.

Parametric faults indicate faults that do not change the circuit topology and only have an

impact on parameter values (for example, cause a deviation in a resistance or capacitor value

of 20%). Such faults result from local or global defects. Global parametric faults are due to

imperfect process control in IC manufacturing. Such variations affect all transistors and capac-

itors on a die. Global parametric faults may or may not cause a circuit to fail specifications,

depending on how this variation of a particular parameter changes the IC specifications. Local

parametric faults are due to a local defect mechanism, like particles which enlarge a transis-

tor’s channel length [Milo98]. Parametric faults like the non-catastrophic faults cause the IC to

operate outside of its expected specification range (see Figure 3-6).

3.4. Testing Techniques

Analog and mixed-signal testing techniques can be classified as either specification-driven or

fault-driven test.

3.4.1. Specification-Driven Test

Specifications in analog circuits are often formulated as constraints on continuous functions of

some independent variables [Huer93a]. The methodology which examines the performance of

Figure 3-6: Specifications related to fault classes
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the DUT and classify the DUT as fault-free (passed) or faulty (failed) according to the satis-

faction/violation of their specifications is called specification-driven test. Such examinations

can be carried out directly by applying a set of tests and measuring a set of output parameters

and checking the measured parameters against an associated tolerance range.

The specification-driven test can be performed at different levels of the test flow. It could be

applied at the prototype test stages (design debug and design evaluation) to ensure that the IC

performs as specified, and at the chip level (production testing) to make a pass/fail decision. It

is worth mentioning that today the specification-based testing methodologies dominate in ana-

log testing because there is no general acceptance of analog fault models [Huer93a, Engi00].

Specifications can be defined in the multi-dimensional space called the performance space

spanned by the parameter space. The parameter space is a n-dimensional space defined by cir-

cuit parameters, where n is the number of the circuit parameters. Every point in the parameter

space represents a circuit. All these circuits have the same structure but different parameter

values. In this space, a tolerance region RT can be defined as shown in Figure 3-3(a). On the

other hand, the customer’s specifications are expressed in the performance space. If the

bounds of the desired specifications are given, the region of acceptability RA can be deter-

mined. The term region of acceptability RA is used in order to indicate that all circuits within

the performance tolerances given above are acceptable from the customer’s point of view

[Lito97].

An example for the two dimensions of the parameter space and the performance space is given

in Figure 3-3 [Huer93a].

Figure 3-3: (a) The parameter space, (b) The performance space
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The relation between specifications and the region of acceptability is better understood in the

parameter space, hence it is desirable to present both the tolerance region and the region of

acceptability in the parameter space as shown in figure 3-4. In this case, the specification-

based test would simply be the verification of whether the measured specifications are lying

within the RA in the performance space or not.

As a result of mapping the region of acceptability from the performance space into the param-

eter space, both regions will overlap. In this case, the yield, which is defined as the number of

the of IC’s that pass the test divided by the total number of IC’s tested, can be determined by

the number of fabricated circuits lying within RA. Furthermore, design centering is the process

which can be utilized to maximize the overlapping between RT and RA to enhance the IC yield

[Spen88].

The specification-based test offers several advantages [Vinn98]. A circuit which passes the test

process will meet a user’s needs. Test generation is straightforward since tests can be gener-

ated directly from the specifications. Such an approach can adapt easily to the different types

of circuits.

Unfortunately, evaluating all detailed specifications in analog circuits is not possible because it

takes a considerable amount of time. For this reason, only a subset of specifications is chosen.

3.4.2. Fault-Driven Test

The fault-driven technique is used to detect a specific fault in an analog circuit, thus, a fault

model must be available. In this sense, the fault-driven test is very similar to the digital testing

techniques. A fault list is first constructed based on fault models. For each fault, a test signal is

Figure 3-4: (a) The specification-driven test. (b) Overlapped the RA and RT in the parameter space
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generated, and the expected output is then measured. A judicious comparison is carried out

between the actual circuit output according to a set of test signals and a pre-simulated output

in order to estimate whether a probable fault exists or not. Fault-driven testing is concerned

with the detection of a modeled physical defect (i.e. a fault), regardless of the satisfaction/vio-

lation of the specifications of the DUT.

The fault-driven test allows for the quantification of the effectiveness of any set of test signals

in terms of fault coverage. Fault coverage is defined as the percentage of faults that can be

detected divided by the total number of faults that are taken into consideration.

The main drawback of the usage of fault coverage as a degree of test effectiveness is the large

amount of CPU time using standard analog circuit simulators such as SPICE. Furthermore, the

fault-driven techniques for parametric faults are very limited in their ability.

3.5. Analog Test Issues

In this section, a general introduction of analog test issues will be presented based on the cur-

rent state of the art of testing analog and mixed-signal circuits.

3.5.1. Analog Fault modeling

An effective fault model must be considered at each level of abstraction. Then the desired level

is selected to simulate a faulty circuit based on the trade-off between the accuracy and the sim-

ulation speed.

The stuck-at fault model has been successfully used in digital circuits at the logical level (the

gate level) [Abra90]. This fault model has led to effective digital testing issues such as fault

simulation, test pattern generation, BIST and DfT. On the contrary, analog fault models are

still a challenge in the analog test area.

As mentioned in Section 2.2, analog circuits can be modeled in three domains: structure,

behavior, and geometry. Based on these domains, the techniques for analog fault modeling can

be classified into three categories: structure-based, behavior-based, and geometry-based or

layout-based.

• Geometry-based approach

The geometry-based approach depends on the technique of the inductive fault analysis (IFA)

in which faults are derived from mapping defects (such as spot defects and variation in param-
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eters) onto the circuit layout. This technique is known as defect-oriented testing [Meix91,

Harv94, Sach95, Sebe95, Kuij95, Ohle96a, Ohle96b, Olbr96, Sach98, Vinn98, Prie98,

Xing98, Engi00].

The defect analysis of a layout is carried out using defect simulators such as VLASIC

[Walk86] and FABRICS II [Nass84]. The input of the defect simulator is the defect in the

semicoductor process, information about process disturbance characteristics, a circuit layout, a

nominal device models. The defect simulator employs this information to insert a defect into

the circuit layout and to describe whether a defect causes a change in the circuit behavior. The

output of the defect simulator is a list of circuit level faults caused by manufacturing defects.

Faults in the fault list are ordered according to their probability of occurrence. The probabili-

ties of occurrence of a fault are calculated using stochastic simulation methods such as the

Monte Carlo simulation. The most likely faults to occur (high probability) are extracted from

the fault list, this step is called fault extraction. Furthermore, many defects can be collapsed

into a unique fault class. The fault list may contain structural faults (open nodes and short

between nodes) and parametric faults (parameter variation) in active and passive elements, and

may contain multiple faults as well.

• Structure-based approach

The structure-based faults can be modeled at different levels of abstraction of the structural

domain. At the circuit level, the fault list is constructed directly relying on the schematic of the

circuit without any knowledge about the physical layout and process information [Caun96].

Mostly, the fault list includes open and short faults modeled by high-value and low-value

resistors, respectively. The fault list can be constructed either manually or automatically.

The main disadvantage of this approach is the high cost of simulation due to redundant, unre-

alistic and unlikely faults. Due to the long simulation time, it is therefore impractical to simu-

late a large circuit at the circuit level.

In order to alleviate the computational complexity at the circuit level, it is feasible to model the

faults at higher levels of abstraction. However, this improvement in simulation speed will sac-

rifice accuracy. A macro-based fault model was proposed to model a fault at the structural

marcomodel level of abstraction [Nagi92, Pan94, Naig96, Pan96, Pan97a, Pan97c]. The first

step of the this approach is to construct the fault list containing structural and parametric faults

at the circuit level. Circuit simulation is performed for each fault in the fault list. The faulty

behavior of a circuit is modeled at the structural macromodel level based on the functional

error characterization of the constituent primitive elements.
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• Behavior-based approach

Although, the structural fault macromodel reduces the simulation complexity using less ele-

ments than the original circuit, the behavioral fault models reduce the complexity one step fur-

ther [Soma96a]. The reduction of complexity stems from the possibility of using behavioral

simulators based on hardware description languages such as VHDL-AMS, and the circuit

under test is considered a black box. There are various techniques to model analog faults at the

behavioral level such as regression analysis, radial basis function, and asymptotic waveform

evaluation (AWE) [Nagi92, Nagi96, Perk98]. Once behavioral fault models are developed,

they can be used to inject behavior-based faults on the behavioral macromodel level.

3.5.2. Analog Fault Simulation

Once the fault list is constructed, fault simulation is executed to evaluate fault coverage. A

fault from the fault list is injected into a circuit under test. Test stimuli are applied at controlled

nodes (mostly the input nodes) of the circuit. The simulation is running in order to determine

the detectability of faults and to obtain the fault coverage. The fault coverage is defined as the

number of detected faults divided by the number of total faults in a fault list. The detectability

of faults is determined by a comparison of the good and the faulty responses of a circuit.

Analog fault simulation is traditionally carried out at the circuit level of abstraction. Many

tools have been implemented at this level based on SPICE-like circuit simulators such as

aFSIM [Stra00b] and AnaFAULT [Sebe96]. However, analog fault simulation for medium and

large analog circuits is a very expensive task in terms of CPU time.

Several techniques are proposed to alleviate the complexity of analog fault simulation and to

reduce the computational time. These techniques can be summarized as following:

a) Defect-oriented test techniques for fault modeling [Harv94, Sach95, Sebe95, Kuij95,

Olbr96, Sebe96, Nagi96, Ohle96a, Ohle96b] are used to reduce the computational time by

reducing the number of faults in a fault list. The reduction is achieved by:

(1) modeling only realistic faults in contrast to constructing the fault list at the transistor

level relying on the circuit schematic which contains unrealistic and unlikely faults,

(2) truncating the fault list by considering the most likely faults to occur by weighing the

faults. It is also possible to collapse the equivalent faults.

b) Several levels of abstraction in the behavioral view are used to accelerate the analog fault

simulation [Nagi93, Bali96a, Vari97, Perk98, Stra01]]. Analog fault simulators such as
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DRAFT [Nagi93a] and FLYER [Vari97] have been implemented at the equations level

based on state-variable equations. The behavioral macromodel level is also used to acceler-

ate the fault simulation one step further over the structural macromodel [Nagi96]. Tradi-

tional analog fault simulators such as aFSIM can be combined with a hardware description

language such as VHDL-AMS to simulate the circuit under test in multi-level hierarchical

manner [Stra01]. However, some problems may be encountered through hierarchical ana-

log fault simulation [Stra97, Perk98].

c) The fault simulation can be accelerated by employing specific features of the fault analog

simulator itself [Vinn98]. For examples:

1. Complementary pivot method is used for DC fault simulation of nonlinear circuits

[Vinn98, Bush00].

2. One-step relaxation and fault ordering methods are used for nonlinear DC fault simula-

tion [Tian98], and for nonlinear transient fault simulation [Engi00, Engi03].

3. The concurrent analog fault simulation method is used for nonlinear DC and transient

fault simulation [Zwol97, Yang99]. The reduction in CPU time is reported in [Yang99]

to be 56% for DC analysis and 61% for transient analysis over traditional analog fault

simulators at the transistor level.

d) Distributed platforms are used in [Holu96] to speed up the analog fault simulation based on

the concept of fault groups. Several different networks connected in parallel are simulated

with the same input stimuli. The fault list is divided into several fault groups related to the

number of available workstations.

Specifications selected to be measured play a great role in maximizing fault coverage in fault

simulation. In this thesis, we will propose a measurement selection algorithm that reduces the

test cost without sacrificing fault coverage.

3.5.3. Test Signal Generation

Test signal generation is required for deriving input signals which maximize the difference

between the good response and the faulty response of a circuit. The shape of the input signals

can be beforehand assumed such as DC, sinusiodal waveform, step, ramp, etc. Thus, the goal

of the test generation algorithm is to find some properties of the input signal such as the fre-

quency of the sinusiodal waveform.
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Fault models can be either parametric faults or structural faults. Hence, test signal generation

approaches can be divided into two classes, the first class of test signals is used to detect para-

metric faults and the second class to detect structural faults.

• Test signals for detecting parametric faults

Many test signal generation approaches for parametric faults are suggested in the test literature

[Soma96b]. The test signal generation approach for linear analog circuits based on signal flow

graphs (SFG) and reverse simulation is proposed in [Rama99]. A circuit is represented by its

transfer function and corresponding signal flow graph. Reverse simulation is used to invert the

signal flow graph. Analog backtrace technique (backward from the primary output to the pri-

mary input) is used to generate the input signal and to compute the tolerance of the circuit ele-

ments.

The test signal generation task can be formulated as an optimization problem such as a qua-

dratic programming problem [Tias91] and minmax optimization problem [Abde96].

The sensitivity analysis is employed for generating test vectors [Saab96, Hami96, Vari00]. In

this approach, the differential sensitivity is computed using the adjoint network method. Then,

the faulty element’s relative deviation is computed using the output performance and the fault-

free elements. A set of test vectors is generated which maximizes the observability of the

faulty element on the output performance. The differential sensitivity is accurate for modeling

small deviation faults, but it becomes inaccurate for modeling large-deviation faults. Hence,

the incremental sensitivity has to be used to generate test vectors for large deviation faults

[Slam95].

The sensitivity analysis can be used with nonlinear programming [Burd01] or with statistical

methods [Saab00, Chan02] to generate test vectors for testing parametric faults.

A test signal generation algorithm based on search-based heuristic is proposed in [Bali96b,

Bali96c] for testing parametric faults in linear analog circuits. The good and the faulty circuits

are represented by their transfer function in the pole residue form. The golden-search and the

false-position technique are employed to search for a frequency that maximizes the steady-

state response’s amplitude or phase error.

Test signal generation based on pseudorandom testing which is similar to the digital linear

feedback shift register (LFSR) is proposed in [Pan97b, Pan99]. The linear analog circuit is

embedded between a digital-to-analog converter (DAC) and an analog-to-digital converter

(ADC). Pseudorandom test patterns are applied to DAC which converts the digital signal into

the analog one applied to the circuit under test. The circuit is simulated for each pattern, and
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the signature of the circuit is labeled as passed/failed. The cross-correlation is chosen as a sig-

nature in [Pan97b] which can be calculated using digital signal processing (DSP).

The test generation task can be formulated as a linear discrimination problem [Pan99]. The

region of acceptability of circuit specifications is defined by a set of hyperplanes in a multidi-

mensional space formed by a set of parameters of the circuit under test. The pattern classifica-

tion algorithm employs test patterns to classify the hyperplanes and to determine whether the

CUT is with the region of acceptability or not.

• Test signals for detecting structural faults

If the structural faults result in the complete absence of the desired function, DC testing, in the

most cases, is effective in detecting such faults. In [Deva94], The DC test generation problem

is formulated as a minmax optimization problem. This algorithm is developed in [Deva95] for

the dynamic case. In [Stra02, Stra03], the DC test generation technique based on nullators and

nurators for linear and nonlinear circuits is proposed.

The test signal generation based on the testability analysis is proposed in [Huyn99, Soma01,

Stan02]. The testability for the good and the faulty circuit is determined, then the difference

between the testability of the good and the faulty one is evaluated in the frequency domain.

The Inverse Fourier Transform is employed to obtain the test signals in the time domain.

3.5.4. DSP-Based Testing

The functional DSP-based testing technique is the method which is often used in production

environments for testing analog and mixed-signal circuits. DSP-based testing enables the test

engineer to manipulate the test of analog and mixed-signal circuits using applications of high-

speed D/A and A/D converters and a very fast DSP-processor.

In DSP-based testing, the function of analog hardware instruments is replaced by computer

software, this process is referred to as “emulation”. In the DSP-based system, the currents or

voltages are represented by numerical vectors that can easily be analyzed, transferred and

saved by DSP instruments [Maho87, Bush00].

The structure of the DSP-based system is shown in Figure 3-7. The test engineer creates the

test stimuli described as a vector (block of patterns). The synthesizer feeds the patterns to the

D/A converter through the RAM memory. For periodic waveforms, the patterns are usually fed

in a continuous loop. If a transient waveform is desired, the vector is converted only once, and

the loop is terminated. The D/A output is de-glitched to remove hazards and passed through a
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reconstruction filter to obtain the continuous, band-limited waveforms. The resulting analog

signal is then applied to the circuit under test (CUT) which generates the output response in

analog form. The digitizer digitizes the analog response using a high-speed A/D converter and

passes it on to the DSP instruments for further processing. The RAM in digitizer waveform

collects the samples until the desired measurement is terminated.

When the output of the CUT produces digital waveform (mixed-signal circuits case), the out-

put patterns are collected by a temporary RAM called the “received memory” and is then sent

as vector to the processor. Similarly, when the input of the CUT is in digital waveform instead

of analog, the test stimulus vector is transmitted by a RAM called “send memory”. The vectors

are transmitted in the DSP-based system in a burst mode. The burst mode allows the transmis-

sion of a large number of vectors accompanied by the start address and information about the

vector length. Synchronization is required to keep clocking everything together and gives the

DSP system a coherence property in which all frequency and time functions are programma-

ble related in exact whole-number ratios.

DSP-based testing is a powerful methodology that offers several advantages in comparison to

traditional analog test and measurement techniques [Maho87, Bush00].

DSP-based ATE is more accurate than a pure analog test instrument, since the measurement

and noise effects are reduced by digitizing the analog waveform at the earliest opportunity.

The DSP-based testing is more time-efficient than analog instruments since many measure-

ments can be parallel carried out. Furthermore, in DSP-based testing very fast analysis tech-

niques are used to perform the measurements such as Discrete Fourier Transform (DFT) and

Figure 3-7: DSP-based testing structure [Mah87]
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Fast Fourier Transform (FFT). DSP-based testing can speed up the production test and

increase the test throughput. Moreover, DSP-based ATE are flexible and repeatable instru-

ments since the instruments are digital, rather than analog.

In contrast, DSP-based testing has also several liabilities such as being expensive, flexibility

can be lost by unskilled engineers, and the test engineer needs to understand the theory of the

instruments and to know the physical and mathematical principles of the measurements.

3.5.5. Design for Testability (DfT)

Test nodes play a great role for testing analog and mixed-signal circuits. Test nodes may be

required for several purposes:

1) to excite the test signals (stimuli) at controllable nodes into embedded modules,

2) to perform measurements at observable nodes to obtain the circuit responses, and

3) to isolate the faults in fault diagnosis approaches.

Due to accessibility limitations resulting from increasing the integrity of the ICs, DfT method-

ologies are required to improve the circuit testability in terms of improving controllability and

observability of internal nodes. As a result, DfT techniques are aimed at accessing the internal

nodes for testing purposes by adding an additional hardware in order to support high fault

detectability and reduce the total test costs of ICs by reducing testing time.

DfT techniques can be divided into two categories: reconfiguration-based DfT and accessibil-

ity-based DfT [Chat97].

3.5.5.1. Reconfiguration-Based DfT

Reconfiguration-based DfT techniques rely on a reconfiguration of the circuit under test to

improve their testability. These techniques were developed to improve the controllability and

observability of internal nodes for specific classes of circuits such as active filter with cas-

caded stages [Soma90], switched-capacitor filters [Soma94, Huer93b], operation amplifier

[Brat95, Reno98].

3.5.5.2. Accessibility-Based DfT

Accessibility-based DfT techniques are used to improve controllability and observability for

analog and mixed-signal circuits by extending the digital DfT techniques such as scan chain,

boundary scan, and test bus to test analog and mixed-signal circuits.
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• Scan Chain Technique

In scan chain techniques (see Figure 3-8) [Kerk94], there are two modes, one for tests and the

other for normal operations. The nodes of interest are connected to an analog shift register

through switches and buffers. The switches are used to isolate the analog shift register from

the circuit during normal operation. The buffers are used to minimize the influence of the test

hardware on the measured nodes.

In the first step of the test mode, the test data are sampled at measured nodes and stored in

capacitors by closing the switches to the circuit under test and opening the switches of the ana-

log shift register. In the second step of the test mode, the connecting switches are open and

switches of analog shift register are closed. In this way the stored information in the capacitors

can be shifted by a simple digital shift register to a scanning output. This technique is referred

to as Bucket-Brigade-Like Devices.

An improvement to this technique can be carried out using the Charge-Coupled Device (CCD)

to implement the analog shift register. The principle of this technique is similar to the Bucket-

Brigade-Like Devices technique except that the discrete analog information is handled in the

form of charges. The conversion of input voltages and currents into charges is carried out by

charge converters (CC). At the output the charges are converted back into voltages and cur-

rents.

• Boundary Scan

Boundary scan techniques utilize ADC and DAC converters which are existed in many mixed-

signal circuits. ADC and DAC converters are used to digitize the analog outputs before storing

them in the scan cell registers and shifting them to external pins, and to convert digitized ana-

log inputs to be shifted into the scan path to primary output as shown in Figure 3-9 [Milo98].

Figure 3-8: Scanning Techniques [Kerk94]
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The analog inputs can be controlled by primary inputs, and the analog outputs can be observed

by primary outputs of the analog part.

In this technique, the analog tests are separated from digital ones, furthermore, the analog

parts of a complex mixed-signal circuit should be divided into analog blocks i.e. filters, opera-

tion amplifiers, ADCs, DACs, phase-locked loops and others to enhance their ability of identi-

fying the faulty blocks. The identification of the faulty blocks can be achieved using analog

shift registers and storage elements similar to the scan chain techniques.

• Analog Test Bus

The analog test bus is widely used to access the internal nodes of a mixed-signal circuit where

the nodes of interest are provided for controlling the input stimuli (analog test bus AT1) and

observing the associated response (analog test bus AT2) as shown in Figure 3-10 [Robe97].

Figure 3-9: Boundary Scan Techniques [Milo98]

Figure 3-10: An analog test bus configuration [Robe97]
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Recently, a standard analog test bus for mixed-signal circuits called IEEE P1149.4 was

defined. The IEEE P1149.4 is extending to IEEE 1149.1 for digital circuits [Soma96c, Sunt96,

Sunt99, Osse99, Kac03]. The IEEE 1149.4 standard analog test bus can detect open and short

faults in a board’s wiring interconnection which consist of 80%-90% of all board failures.

The standard is aimed at board level, thus the other analog test problems at other IC test levels

(cf. Section 3.2) are not solved using this standard.

In summary, the IC developers are often not very willing to insert DfT structures into their

analog circuitry because of the risk of degrading the performance, especially for high fre-

quency and high performance circuitry. Moreover, the DfT approaches require additional cir-

cuitry which increase the chip area. The additional circuitry increases the die manufacturing

costs and the probability of faults in the chip.

3.5.6. Built-In Self-Test (BIST)

The idea of BIST is to build some parts of the test circuitry (i.e. test generators and response

analyzers) on the same die as the desired circuit [Sunt96]. Such structures can provide many

advantages for testing analog and mixed-signal circuits [Robe97]:

(1) facilitation of design for test,

(2) a hierarchical test solution for all test levels (wafer, package, board and system),

(3) a reduction in interconnection length and device loading effects, and

(4) standardization which simplifies the automation and the integration of test into present

day CAD facilities.

BIST methodologies are often aimed at specific analog and mixed signal circuits such as

ADC/DAC converters and filters. In this section, we will discuss the relevant BIST schemes

reported in the test literature.

• BIST for mixed-signal circuits

The hybrid Built-In Self-Test (HBIST) [Ohle91, Ohle96] is used to test mixed-signal circuits

which include a complex digital kernel system and peripheral analog sub-circuits at the input

and the output (A-D-A structure). Multiplexers implemented by CMOS transmission gates are

used to isolate the circuit under test from the environment and place it in the test mode. The

test process is performed in two sequential steps, the first step for testing the digital kernel sys-

tem and the second for testing the analog sub-circuit. In this structure, shift registers such as
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“BILBO” or “LFSR” registers and the multiple input signature register (MISR) are used to

achieve the test pattern generation and the signature analysis on the chip.

The mixed Analog Digital Built-In Self-Test (MADBIST) [Tone93, Robe97] is based on the A-

D-A structure and employed for mixed-signal telecommunication ICs such as MODEM and

CODEC for the signal-to noise ratio (SNR) test. The digital kernel system of this structure is a

DSP. The test stimuli is generated relying on the oversampling sigma-delta modulators

[Veil95, Robe95, Huar98, Dufo99, Dufo00]. The single tone signal such as sine wave or multi-

tone test signals [Lu94] can be generated using the sigma-delta modulator. The evaluation of

on-chip measurements such as the SNR can be carried out using a kernel DSP.

The Histrogram-based Analog Built-In Self-Test (HABIST) [Fris97] assumes the CUT is

embedded between D/A and A/D. The histrogram of the CUT is used as a signature. The test

stimulus vector can be generated from an external generator or a built-in generator. An access

method to each test point is provided, and the histrogram of the signal at each test point is gen-

erated. Finally, the signature of the CUT is obtained by comparing the histrogram of the CUT

with the one expected.

The oscillation Built-In Self-Test (OBIST) [Arab97] is based on an oscillation-test strategy

which converts the circuit under test into an oscillator in the test mode. The oscillation fre-

quency of the circuit under test is evaluated on-chip by a digital circuitry and compared with a

fault-free one to decide whether the CUT is faulty or not. The main advantage of this structure

is that it does not require test vector generators.

• BIST for analog circuits

BIST techniques for analog circuits are proposed for specific classes of circuits. A BIST

approach for switched-capacitor filters is proposed in [Huer93b]. This approach exploits the

fault tolerance technique (hardware redundancy) using partial replication of the circuit under

test. The resulting continuous signals can be compared in the time domain via a circuit voter.

Also the authors in [Chat93] utilize the hardware redundancy to develop a BIST (concurrent

error detection) scheme based on the continuous checksum for linear analog circuits repre-

sented by state variable equations.

In [Chao95], the authors suggest BIST and fault diagnosis techniques for analog circuits in the

frequency domain. This scheme exploits the following circuits: (1) the white noise generator

as a test generator, (2) the programmable window filter to select the frequency range of inter-

est, and (3) the peak detector to detect the peak response at a certain frequency point or in a

frequency range.
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In [Mir97], a BIST methodology was developed for sigma-delta modulators based on a circuit

reconfiguration and comparison. In this methodology, a test stimuli generator is assumed to be

available on-chip to generate single or multi-tone test signals. This structure is used for the

production test due to the short time testing as well as not needing any digital signal process-

ing capabilities. In [Mir96b], unified BIST approach is suggested for fully differential analog

circuits based on boundary scan techniques. In [Chat96], a low cost DC BIST technique is

developed for linear circuits. A simple DC generator and error checking circuitry are imple-

mented on-chip.

In [Vari00], the authors propose a BIST structure to improve the fault detectability in the time

domain. Pulse trains with a varying pulse width are generated using a digital LFSR serving as

transient test stimuli for the CUT. The signature is a sequence of digital bits resulting from the

comparator with a reference voltage. Traditional scan techniques can be used to analyze the

obtained signature.

The main shortcoming of the BIST technique is the need for extra on-chip hardware which

may cause the degradation of the system performance and leads to an increase of the chip area

overhead.

3.5.7. Fault Diagnosis

The analog fault diagnosis [Band85, Liu91, Huer93a] is usually required at the earliest stages

in the test flow like e.g. the design characterization stage. Since the fault diagnosis becomes a

very expensive task at higher levels of the test flow, it is in some cases not possible to repair or

replace faulty components at the board level. The fault diagnosis is utilized (a) to determine

the cause of the failure for analysis and correction purposes, and (b) to modify the circuit to be

less sensitive to the faults.

The fault diagnosis concentrates on the following processes: fault detection, fault location and

fault identification. The fault location problem intends to locate faulty elements, whilst the

fault identification problem concentrates on the computation of actual element values from

measurements.

The fault diagnosis methods can be generally divided into simulation before test (SBT) and

simulation after test (SAT). Simulation before test techniques [Cate96, Fann99, Liu99,

Yoon99, Amin00, Raja00, Amin01] are normally used to locate and identify structural and

local parametric faults, while simulation after test techniques [Wey87, Liu91, Slam92,

Huan98, Cher99, Wors00, Cher01, Star01, Liu02] are employed for global parametric faults.
46



Simulation before test (SBT) consists of three tasks: (1) fault dictionary construction, (2) opti-

mum test stimuli generation and measurement selection, and (3) fault identification.

The fault dictionary can usually be built up using fault simulation. The fault-free circuit is first

simulated, then the faulty circuits are simulated. The good and the faulty responses are col-

lected and stored in a look-up table called fault dictionary. The stored circuit responses in the

fault dictionary may be DC, AC and time-domain signals. Therefore, the approaches to con-

struct the fault dictionary can be classified according to the kind of circuit analysis, DC, fre-

quency-domain and time-domain approaches [Band85].

Optimum measurement selection is aimed at reducing the number of measurements without

affecting the diagnosibility of a circuit, in other words to ensure that all faults in circuit ele-

ments can be identified. On the other hand, the input stimuli are carefully selected to excite the

CUT so that the effect of a fault can be propagated to an observable node.

Some faults have the same effect on the circuit response. Such faults should be aggregated in

groups called ambiguity groups [Sten89]. Consequently, it is desirable to determine ambiguity

groups before performing the fault location process.

The actual values of measurements are compared with measurements which are stored in the

fault dictionary in order to identify the faults. Hence, the fault identification process can be

considered as a pattern recognition problem. The techniques that are used in pattern recogni-

tion such as maximum likelihood measures, fuzzy distance, matching methods and neural net-

works can be applied for fault diagnosis of analog circuits.

The main shortcomings of SBT techniques are: (1) They rely on the fault model. (2) It is time-

consuming since each fault in the fault list should be simulated. (3) The size of the dictionary

may cause a storage problem.

Simulation after test employs the circuit topology and a set of measurements to solve a set of

independent equations in order to estimate the element values of a circuit. If the number of

independent measurements is large enough, in this case all circuits elements can be identified.

In contrast, if a limited number of measurements are avaliable, thus, a few faulty elements can

be identified. In this case, the circuits elements are partitioned into two groups, a fault-free

group and a faulty group [Band85]. The deviation of the elements in the faulty group can be

determined by using the measured data and nominal values of circuit elements in the fault-free

group. The deviation of the circuit elements is obtain by solving fault diagnosis equations. If

the element values are outside of the tolerance range, the elements are regarded as faulty.
47



3.5.8. Testability Analysis

The testability analysis concept has been described in several ways [Huer93a]. Coming from

fault diagnosis, testability is strictly tied to the concept of the element-value solvability prob-

lem, which gives information about the solvability of the analog test problem [Mane98]. The

testability analysis provides prior information as to whether the problem is uniquely solvable

or not. This information includes optimal test points, optimal measurements, ambiguity

groups, testable elements (which are can be isolated) and untestable elements (which are

assumed to be nominal).

The testability measure is given quantitatively by the rank of the sensitivity matrix constructed

from the derivatives of output performances with respect to circuit elements.

On the other hand, the testability analysis as coming from the digital test is based on the com-

bination of the controllability and observability of a circuit node.

The testability analysis can be also defined as the relative degree of difficulty in testing of cir-

cuit nodes, elements, or key parameters for particular fault models and given test signals

[Prie81, Beck94, Beck95, Kerk94].

The testability analysis algorithm can be used as a guideline for test signal generation, design

for testability, measurement selection, and fault diagnosis.

The testability analysis of analog circuits is achieved in many previous works based on the

sensitivity analysis. The sensitivity-based testability analysis starts with calculating the circuit

transfer function of a circuit. The sensitivity matrix (Jacobian Matrix) is constructed by differ-

entiating the transfer function with respect to the circuit elements in the frequency domain

[Iucu86]. The testability measure is evaluated mathematically by the maximum number of lin-

early independent columns (column-rank of the Jacobian matrix) [Sen79]. If the rank of the

Jacobian matrix is equal to the number of circuit elements, this indicates that all faults in cir-

cuit elements can be identified. Otherwise, additional test nodes must be added or the number

of testable elements must be reduced to be equal to the rank of the testability matrix.

The similar algorithm can be utilized in the time domain for testing of nonlinear circuits

[Beck94, Beck95]. The testability matrix (sensitivity matrix) is constructed as a function of

the time. The testability measure is equal to the rank of the testability matrix.

In [Hemi90], rank-based approaches are combined with statistical methods in order to test

nonlinear circuits. After dependencies among the circuit parameters are detected, the depen-

dent elements are removed from the sensitivity matrix. Furthermore, the approach selects an
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optimal set of measurements taking the measurement errors into account to compute the deter-

mination accuracy of the circuit elements.

An improvement of the testability analysis in the frequency domain is proposed by construct-

ing the testability matrix as polynomial matrix P(s) which is represented by a linear combina-

tion of suitable orthogonal polynomials [Cate87]. The testability measure T coincides with

number of linearly independent columns of the proposed polynomial matrix T = rank(C)

where C is the matrix composed of the coefficients obtained by expanding the polynomials

P(s) into a series of orthogonal polynomials.

A similar algorithm is proposed in [Liu96] for small linear circuits, however, the Jacobian

matrix is constructed using the coefficients of the input impedance, the output impedance and

the transfer function which are called the basic functions.

The above mentioned algorithms have several limitations:

• They suffer from numerical errors, thus the rank of the Jacobian matrix is considered an esti-

mate of the true testability.

• The computational time is very long because it depends on the complex frequency s or time

samples.

• The computation of the coefficients of the polynomial matrix and their sensitivities for large

circuits is very high.

As a result, the testability analysis based on the symbolic analysis is a natural choice for over-

coming these limitations.

In [Carm91], the polynomial matrix P(s) is generated from symbolic sensitivity functions in

symbolic form. The numerical testability matrix B is constituted by the coefficients of polyno-

mial functions of P(s). The entries of the testability matrix are independent of the complex fre-

quency s. The testability measure T is determined by evaluating the rank of the numerical

matrix B. A further improvement for simplifying the symbolic computation was proposed by

[Mane98, Fedi98a. Fedi98b, Fedi99]. The transfer function is expressed as a rational function

and the numerator and the denominator of the transfer function are expressed as a polynomial.

The Jacobian matrix Bc is constructed in symbolic form by the derivation of the coefficients of

the numerator and the denominator with respect to the circuit elements. The testability mea-

sure is determined by evaluating the rank of the matrix Bc. The derivatives of the numerator

and the denominator with respect to the circuit elements can be calculated using the symbolic

analysis of analog circuits such as Determinant-Decision-Diagrams [Shi00, Pi02].
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In low testability circuits, where the rank of the testability matrix is less than the number of the

circuit elements, the testability analysis is strictly tied to the ambiguity group concept

[Sten89]. An ambiguity group consists of the elements that produce the same values of mea-

surements. Therefore, it is desirable to determine the ambiguity groups before constructing the

fault diagnosis equations.

Several methods are proposed for identifying the ambiguity groups such as using QR factor-

ization [Sten89]. The ambiguity groups can be determined by finding the null space of the test-

ability matrix, in other words finding the linearly dependent columns of the testability matrix.

The zero-value rows of null space matrix correspond to the definitely testable elements, and

the nonzero-value rows and the not orthogonal rows correspond to the elements that belong to

the same ambiguity group. The null space of the testability matrix can be computed by QR

factorization [Star00, Pang01, Liu02] or by singular value decomposition (SVD) [Liu94,

Mane03] of the testability matrix.

The testability analysis approach based on the testability transfer factor (TTF) is proposed in

[Huyn98, Huyn99]. This algorithm is similar to the digital testability analysis techniques

[John89] which combine the controllability and observability concepts of circuit nodes

[John89, Abra90]. The testability transfer factors for fundamental analog circuit elements such

as resistors, capacitors, diods, transistors, and others are calculated. The circuit is modeled

using a signal flow graph (SFG) which represents the propagation of the test information from

primary input to primary output. The TTF represents the weight of the SFG. The controllabil-

ity and the observability of circuits nodes are calculated based on the TTFs of circuit elements.

Then, they are combined to compute the testability for each node of a circuit. This algorithm

can be used for test signal generation and for test node insertion [Zhan99].

There are some limitations to this algorithm: (1) it is very time consuming, and (2) TTF gives

the low sensitivity of the parametric faults. Hence, hierarchical techniques can be utilized to

speed up the computational time [Soma01]. In [Stan02], a new definition for the testability

transfer factor is proposed to improve the low sensitivity of the parametric faults. However,

solving the new nonlinear equations of the controllability and the observability is a very time-

consuming task.

The testability analysis based on the component connection model (CCM) is proposed in

[Chen79, Sen79, Wey87]. The circuit under test is represented by its component connection

model (CCM) which can be described by these equations:
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where u and y represent the column vectors of accessible test inputs and outputs, a and b

denote the input and output column vectors, and Lij are the connection matrices generated

from the circuit topology. The global column rank of the matrix L21 determines the testability.

In [Huan98a, Huan98b], an algorithm is developed to generate the matrix L21 which provides

the maximum testability. This approach can be employed for the self-testing fault diagnosis

[Wey87]. The elements of a circuit are divided into two groups, the first group contains the

known good elements, and the second group contains unknown elements. The elements in the

second group can be estimated based on the known elements, inputs u, and outputs y.

The self-testing approach is extended by [Ho01] for the hierarchical fault diagnosis of analog

integrated circuits. Further applications for this approach are to develop a test program genera-

tor for the fault diagnosis of analog/mixed-signal circuits [Huan97], and to select test points to

maximize the testability of the analog circuits [Huan98c].

In this thesis, a new testability analysis algorithm will be presented. This algorithm is based on

the well-known pole and zero analysis. The analog circuit is represented by their transfer func-

tion in the pole-zero form. The testability measure can be easily computed depending on the

number of the poles and zeros of the transfer function. The ambiguity groups can also be eas-

ily determined depending on the pole and zero sensitivities. Unlike the previous methods,

which interpret the ambiguity group as the linearly dependent columns of the testability

matrix, our method will provide a new interpretation of the ambiguity groups based on circuit

theory.

3.5.9. Test and Measurement Selection

Selecting an optimal set of measurements to detect or locate faults is an essential problem; it is

related to test point selection and ambiguity sets determination. Measurement selection can be

used to (1) reduce the testing time cost, (2) maximize the fault coverage, (3) maximize the

fault identification in the fault diagnosis problem.

The analog and mixed-signal circuits have a large number of specifications. Checking all spec-

ifications can result in prohibitive testing times. For this reason many approaches are proposed

a L11b L12u+=

y L21b L22u+=
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for selecting the relevant specifications to reduce the cost of the production test without affect-

ing the quality of the test in terms of fault coverage.

In [Milo89], the authors propose a methodology for selecting an optimal set of DC tests for

wafer test to detect catastrophic faults. This algorithm is extended in [Milo90, Milo94,

Chao97] for detecting parametric faults and for reducing the production test time. The para-

metric fault coverage and the average test time for each specification test set are computed.

Tests that have very low fault coverage are eliminated from the test set, and the remaining tests

are optimally ordered to optimize the testing time.

In [Huss91] an algorithm based on the graph technique is proposed. The test selection problem

is transformed into a direct graph problem. Each node in a graph represents a test set, and each

branch represents the test cost. Dijkstra’s algorithm is then employed to find the shortest path

that represents the best choice of a test set in terms of the shortest test time.

Several algorithms based on the sensitivity analysis are proposed for the selection test points

[Sten87, Soun90, Dai90, Sten91, Lu93, Spaa95, Spaa96a, Spaa96b, Hami93, Lind95, Lind97,

Lind99, Pron00]. In [Sten87, Soud90, Sten91], the analog circuit is represented by linear

model Ax = b, where A is the sensitivity matrix, x is the deviation of circuit elements, and b is

the deviation of the output response. QR factorization is used to decompose the sensitivity

matrix, then, selecting the test points is equivalent to selecting independent columns of the

sensitivity matrix.

A similar algorithm is proposed in [Spaa95, Spaa96a, Dai90] for selecting the test points. The

singular value decomposition (SVD) is utilized instead of the QR decomposition to factorize

the sensitivity matrix in [Spaa95, Spaa96a]. The sensitivity matrix in [Dai90] is a function of

time instead of frequency.

In [Hami93], the authors propose a measurement selection approach based on differential and

incremental sensitivity. The circuit graph is used to represent the relationship between circuit

elements and output performances. An optimization algorithm is used to determine which per-

formances should be measured to guarantee maximum fault coverage.

In [Slam94], analog fault observability based on the sensitivity analysis is introduced. The

objective of this method is to select the adequate frequencies and test nodes that improve the

detectability of the fault. A similar algorithm is proposed in [Mir96a] based on the diag-

nosibility region.

In [Lind95, Lind99], a novel approach for the measurement selection algorithm called charac-

teristic observation inference is proposed. A new parametric fault model is introduced based
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on individual specification. In this approach, a universal set of specifications is given. From

this universal set, a minimal number of measurements is selected that represent a set of obser-

vations characterizing the state of the circuit under test with respect to parametric faults. For

each given circuit specification, a corresponding test inference criterion is computed based on

the logistic discrimination analysis. The satisfaction/violation of the circuit specifications can

be inferred from the observations of the circuit under test. In [Pron00], the measurement selec-

tion approach based on the sensitivity analysis and the Wavelet transform is proposed for test-

ing parametric faults.

In this thesis, an algorithm for measurement selection is proposed. The concept of the element

testability will be introduced. This concept is defined as the difficulty in testing the circuit ele-

ments with respect to circuit specifications which are related to the poles and zeros of a circuit.

The element testability of the circuit elements is computed based on the sensitivities of the

poles and the zeros of the circuit. The selected specifications that have to be measures guaran-

tee the high fault coverage and reduce the test time by avoiding redundant measurements to be

performed. Also, the selected measurements can be employed to break up the ambiguity

groups if the goal of the test is fault diagnosis.
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Chapter 4

Testability Analysis for Analog Circuits

4.1. Introduction

The testability analysis concept is related to the concept of the element-value solvability prob-

lem, which gives information about the solvability of the analog test problem (cf. Section

3.5.8). The testability information includes the number of testable elements that can be identi-

fied, the number of untestable elements that cannot uniquely be identified, the ambiguity

groups, and the optimal nodes to be tested. In other words, the testability analysis provides the

information which has to be available before the formulation of the network equations for the

fault diagnosis problem. Furthermore, the testability information can be used as a guideline for

design for testability (DfT), measurement selection, and test signal generation.

As mentioned in Section 3.5.8, the testability of analog circuits can be achieved using numeri-

cal methods or symbolic methods. However, both methods suffer from some shortcomings.

Numerical methods such as QR factorization [Sten89] or SVD decomposition [Liu94] suffer

from numerical errors. In this case, the rank of the Jacobian matrix is considered an estimate.

Furthermore, the computational time is very long because it depends on the complex fre-

quency s or time samples. On the other hand, symbolic methods [Fedi99, Star00, Pang01,

Mane03] can be employed only for small circuits. Moreover, the cost of coefficient sensitivi-

ties is very high. In this chapter, we will propose a new testability analysis method which can

overcome the disadvantages of the previous works.
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This chapter presents a novel methodology for the testability analysis for linear time-invariant

analog circuits based on the well-known pole and zero analysis and on the pole and zero sensi-

tivity analysis.

This methodology provides information which includes the number of testable and untestable

elements, the ambiguity groups, and the optimal nodes to be tested. Such information is essen-

tial for designers to make nodes accessible for testing and for test engineers to plan tests and to

provide prior information about the uniquely identified elements by these tests.

The pole and zero analysis provides valuable information for the circuit designers in many

domains:

1) In the control system analysis, the location of poles determines the stability of a system

[Koa95].

2) For amplifier circuits, the location of the poles and zeros of the forward amplifier gives

insight into the performance and the stability of the closed-loop feedback amplifier. More-

over, it provides the information for the compensation circuits to keep the stability of the

amplifier circuits [Sedr98].

3) In filter design, the poles and zeros determine filter characteristics [Herp86].

4) In symbolic analysis, the poles and zeros are utilized for the simplification of the symbolic

transfer function [Anal01, Half03].

5) If the poles and zeros are available, determining the time and frequency responses of the

system can be a simple task [Lee92].

6) The pole and zero analysis can be also employed for model order reduction [Pill95].

On the other hand, pole and zero sensitivity analysis is interesting in a wide range of problems,

for example:

1) Pole sensitivity provides fundamental information about system stability and design opti-

mization [Koa95].

2) Pole and zero sensitivity enables designers to follow the direction and magnitude changes

caused by element changes [Herp86].

3) Pole and zero sensitivity is used to extract a behavioral model for the analog circuits

[Mant93, Chr01, Huan03].

4) If the pole and zero sensitivities are provided, transient and AC sensitivities can easily be

computed [Lee92].
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Parametric faults caused by manufacturing process variations are usually modeled by small

deviations of the circuit elements. The detection of parametric faults is regarded as a much

more difficult problem than the detection of structural faults i.e. catastrophic faults (cf. Section

3.5). The normalized differential sensitivity given in Eq. (2-5) can simply model parametric

faults based on the first-order approximation [Slam92]. Hence, parametric faults, which are

modeled using the normalized differential sensitivity, will be employed in our testability anal-

ysis methodology.

4.2. Methodology

The general overview of the testability analysis algorithm is depicted in Figure 4-1.

In the first step, the linear time invariant (LTI) analog circuit is represented in the Laplace

domain by its transfer function which can be obtained by exploiting the modified nodal analy-

sis or by exploiting the state-variable equations. Furthermore, controllability and observability

concepts are introduced from the control theory. We will show that both concepts are strictly

related to the testability analysis.

In step 3, the locations of the poles and zeros of the transfer function are determined. A pole

and zero problem is transformed into an eigenvalue problem which can be solved by utilizing

the QZ algorithm.

Figure 4-1: Testability Analysis flowchart
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The pole and zero sensitivities with respect to the circuit elements are computed in step 3 by

exploiting the adjoint method.

In step 4, the testability measure of the circuit is computed based on the number of poles and

zeros in addition to the DC gain of the transfer function.

In step 5, the ambiguity groups are determined based on the pole and zero sensitivities.

As a result, the pole and zero sensitivity analysis is employed for the first time to our knowl-

edge in order to compute the testability measure and to determine the ambiguity groups in ana-

log circuits. The testability measure is related to the number of the poles and zeros of a linear

circuit in addition to the DC gain. A new interpretation of the ambiguity groups is given based

on the circuit theory rather than the mathematical interpretation given by linearly dependent

columns of the testability matrix. The relationship between the testability measure and the

controllability/observability from control theory will also be discussed.

Furthermore, the pole and zero analysis and pole and zero sensitivity analysis can be

employed for further test methodologies such as element testability and measurement selec-

tion as will be discussed in Chapters 5, 6, and 7.

The details of the above testability analysis algorithm will be discussed in the following sec-

tions.

4.2.1. Circuit Modeling

A linear time-invariant system can be described in the Laplace domain using the transfer func-

tion which can be obtained using the modified nodal analysis or the state-variable equations.

In this section, the generation of the transfer function using the modified nodal analysis and

the state-variable equations is presented. Furthermore, the controllability and observability

concepts are introduced from the control theory.

4.2.1.1. Modified Nodal Analysis

The modified nodal analysis of the analog circuits is given by Eq. (4-1) (cf. Section 2.4.2)

where Y is the system matrix constituted by the modified nodal analysis, x is the solution vec-

tor which can be composed of currents and voltages and b is the source vector. The system

Y[ ] x[ ] b[ ]= (4-1)
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matrix Y can be expressed as Y = G + sC, where G is the conductance matrix, C is the capaci-

tance matrix, and s is the complex frequency variable.

According to Cramer’s rule, the transfer function can be expressed as the ratio of the determi-

nant ∆(s) and cofactors ∆ij(s) of the modified nodal matrix Y as given in the Eq. (4-2).

Many numerical algorithms can be used to generate the transfer function of the system

described by Eq. (4-2) directly from the modified nodal matrix such as the interpolation

method [Liu91, Vlac94] and matrix-based methods [Hass98]. The interpolation method relies

on the Discrete Fourier Transform (DFT) that can generate the transfer function in one symbol

namely the complex frequency variable s. The matrix-based methods rely on the modified

nodal matrix and Cramer’s rule to generate the full symbolic transfer function directly from

the circuit description. In this thesis, the matrix-based methods (modified nodal analysis) are

utilized to generate the transfer function using the AnalogInsydes software [Anal01] based on

the Mathematica environment [Wolf99].

4.2.1.2. State-Variable Equations

A linear invariant-time system with r input sources and m outputs can be described by a cou-

pled set of n first order linear differential equations. These equations are called state-variable

equations and are given by Eq. (4-3).

where, x(t) is the n x 1 state vector, x’(t) is the derivative of the state vector with respect to the

time, u(t) is the r x 1 input vector, y(t) is the m x 1 output vector, and matrices A, B, C, D,

which are determined by the given network, are n x n, n x r, m x n, and m x r, respectively. The

state vector x(to) at time to consisting of linearly independent state variables is defined as the

minimal amount of information at time instant to. If the state vector x(to) is known, the state

vector x(t) at every future time instant t > to is uniquely determined by the Eq. (4-3) which

describes the linear system.

H s( ) ∆ij s( )
∆ s( )

-------------- a0 a1 s a2 s
2 … am s

m+ + + +

b0 b1 s b2 s
2 … bn sn+ + + +

---------------------------------------------------------------------

ai s
i

i 0=

m

∑

bi s
i

i 0=

n

∑
------------------ N s( )

D s( )
------------==== m n< (4-2)

x ′ t( ) A x t( ) B u t( )⋅+⋅=

y t( ) C x t( ) D u t( )⋅+⋅=
(4-3)
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The Laplace transform of the state-variable equations can be described in vector form as fol-

lows:

where x(0) is the initial conditions of the state-variable vector at time 0. By solving Eq. (4-4)

yields

where I is the identity matrix. The output response Y(s) is divided into two responses, the zero-

state response the and zero-input response. The output response Y(s) is equal to the zero-state

response by setting the initial conditions to zero and equal to the zero-input response by set-

ting the input U(s) to zero. The transfer function of the system is equal to H(s) = Y(s) / U(s)

with x(0) = 0, and is given (considering only the single input and single output, SISO system)

where adj denotes to the adjoint of the matrix (sI - A) and det denotes to the determinant of the

matrix (sI - A). The state-variable equations can be set up using the circuit topology (the Pot-

tle-Dervisoglu algorithm) [Schw89]. Then the Souriau-Fram algorithm can be used to set up

the transfer function H(s) from the state-variable equations [Liu91].

Equation D(s) = 0 from Eq. (4-2) or equation det(sI-A) = 0 from Eq. (4-6) is called the charac-

teristic equation. The roots of the D(s) = 0 (identical to determinant of the modified nodal

matrix det(Y) = 0) are called the poles of the circuit, at which the transfer function is equal to

infinity. The roots of det(sI - A) = 0 are called the eigenvalues of the state matrix A which are

the same as the poles of the transfer function. The poles of a circuit are independent of the

input signal or where the signal is applied, therefore, they are called natural frequencies of the

circuit [Vlac03]. The order of the network is equal to the number of the poles or the number of

the eigenvalues of the system (eigenvalues of the state matrix A).

sX s( ) x 0( )– AX s( ) BU s( )+=

Y s( ) CX s( ) DU s( )+=
(4-4)

X s( ) sI A–( ) 1–
BU s( ) sI A–( ) 1–

x 0( )+=

             

Y s( ) C sI A–( ) 1–
B D+[ ]U s( ) C sI A–( ) 1–

x 0( )+=

                 

zero-state response zero-input response

zero-state response zero-input response

(4-5)

H s( ) C sI A–( ) 1–
B D+

C adj sI A–[ ] B D det sI A–( )+
det sI A–( )

----------------------------------------------------------------------------- N s( )
D s( )
------------=== (4-6)
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The network is said to be completely controllable at time instant t = to if there exists an input

u(t) that can bring the state variables from the initial conditions x(to) to any final state x(t).

Thus, the controllability depends on the matrices A and B. When a natural frequency of the

network cannot be excited from an input, it is said to be non-controllable at this input. Non-

controllable natural frequencies may cause a state variable to be unstable, independent of the

input excitation [Schw89].

Theorem 1: If a network of order n has r inputs, a necessary and sufficient condition for all nat-

ural frequencies to be controllable from all r inputs is that the controllability matrix has a rank

of n [Schw89].

A network is said to be completely observable if every state variable of the system affects

some of the outputs. Thus, the observability concept is related to the state variable of the sys-

tem output, in other word the observability is related to the matrices A and C. If the state vari-

ables cannot be observed by measurement of the system outputs, the state variable is said to be

non-observable.

Theorem 2: If a network of order n has m outputs, a necessary and sufficient condition for all

natural frequencies to be observable at the m outputs is that the observability matrix has a rank

of n [Schw89].

where T denotes to the transpose of the matrix.

4.2.2. Pole-Zero Analysis

It is often convenient to factorize the numerator and denominator polynomials of the transfer

function (the Eq. (4-2)) and to write the transfer function in terms of those factors:

Q A AB A2 B … A
n 1–

B= (4-7)

P C
T
A
T
C
T
A

2[ ]
T
C
T … A

T[ ]
n 1–

C
T= (4-8)

H s( ) N s( )
D s( )
------------ Km

s z1–( ) s z2–( )… s zm–( )
s p1–( ) s p2–( )… s pn–( )

----------------------------------------------------------------- Km

s zi–( )
i 1=

m

∏

s pi–( )
i 1=

n

∏
----------------------------== = (4-9)

H s( ) N s( )
D s( )
------------=

k1

s p1–( )
-------------------

k2

s p2–( )
------------------- …

kn
s pn–( )

-------------------
ki

s pi–( )
------------------

i 1=

n

∑=+ + += (4-10)

or
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or

where Km = am / bn, K0 = a0 / b0 (K0 is the DC gain), ki is the residue that corresponds to the

pole pi, and s is the complex frequency s = σ + jω. The roots zi of the numerator polynomial

N(s) (N(s) = 0) are called zeros of the transfer function and the roots of the denominator poly-

nomial D(s) (D(s) = 0) are called poles of the transfer function; m and n are the number of the

zeros and poles, respectively. The coefficients of the numerator and denominator polynomials

are real, therefore the poles and zeros must be either real or appear in complex conjugate pairs.

The poles of the network depend only on the network structure and are independent of the

input excitation. In contrast, the zeros of the network depend on the place to which the source

is applied and also depend on the point where the output is measured.

The poles and the zeros of a linear circuit together with the real constant Km or K0 completely

determine the transfer function as a function of the complex frequency s. The transfer function

is normally represented by the pole and zero diagram on the complex s-plane, whose axes rep-

resent the real and imaginary parts of the complex variable s as shown in Figure 4-2.

The poles and zeros of the transfer function can effectively define the system response. Partic-

ularly, the poles of the transfer function directly define the components of the homogenous

Figure 4-2: Pole and zero representation in s-plane
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response. This response is called the natural response that depends only on the system struc-

ture.

where the constants Ci are determined from the given initial conditions, and the exponents λi

are the roots of the characteristic equation (e.g. the poles of the transfer function or the eigen-

values of the state matrix A). The locations of the poles in the complex s-plane determine the

stability of the system. If the poles are located in the left-half plan, this means that the compo-

nents of the system response are decayed, hence the system is stable. On the other hand, if the

poles are located in the right-half plane that corresponds to an exponentially increasing com-

ponents Cept, the system is defined as unstable.

The complete system response is divided into two responses, the natural and the forced

response. The natural response results from the initial conditions of the storage elements e.g.

capacitors or inductors. The forced response results from the input excitations. The complete

system response can be directly obtained from Eq. (4-10) using the inverse Laplace transform.

Also, the response of the system in the frequency domain can be obtained using the poles and

zeros of the transfer function by substituting jω for s directly into the factorized form of the

transfer function.

The magnitude and phase angle of the complete response can be written in terms of the magni-

tudes and angles of the poles and zeros

As a result, if the poles and zeros can be determined, the time response (Eq. (4-12) and the fre-

quency response (Eq. (4-14) of the system can easily be obtained.

y t( ) Cie
λ it Cie

pit

i 1=

n

∑=
i 1=

n

∑= (4-12)

H jω( )
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H jω( )∠ jω zi–( ) jω pi–( )∠
i 1=

n

∑–∠
i 1=

m

∑=

(4-14)
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The poles and zeros of the system can usually be computed by two methods. The first method

calculates the poles and zeros from the transfer function which are expressed in the numerator

and the denominator form. Thus, calculating the poles and zeros is transformed into finding

the roots of the polynomial. The Newton-Raphson algorithm is an algorithm which can be

used to calculate the roots of the polynomial [Vlac94]. In the second method, calculating the

poles and zeros is transformed into the generalized eigenvalue problem. Thus, the poles and

zeros can be calculated directly from the system matrix. Many iterative methods are used to

calculate the eigenvalues of the system matrix such as the QR algorithm and the QZ algorithm

[Golu96]. Since the QZ algorithm is used in this thesis to estimate the poles and zeros of the

system, it is useful for explain how the QZ algorithm is used for computing the poles and zeros

of the transfer function (based on [Vlac94]).

The generalized eigenvalue problem has the following form [Anal01]:

where A and B are real valued matrices, λ is the eigenvalue vector of the matrix pencil (A,B),

and z and zT are the right and left eigenvectors corresponding to λ (zT denotes to the Hermitian

conjugate of z).

The system matrix constructed by modified nodal analysis can be written as Y = G + sC,

where G and C are real matrices and s is the complex frequency variable, thus the generalized

eigenvalue problem can be expressed in following form:

where αi are complex and βi are real. Either αi or βi may be zero. The matrices C and G need

not have any special form and may be singular. The natural frequencies fi are the ratios:

If βi becomes too small (based on a tolerance) this is detected and the natural frequency is

defined to exist to infinity and not calculated [Mant90]. The denominator of the transfer func-

tion is now known. Next, the numerator is obtained by determining another matrix closely

related to the modified nodal matrix Y. Rewrite the system equations and equation for the out-

put as:

A λB–( )z 0= z
T
A λB–( ) 0= (4-15)

det sC G+[ ] α i βis+( )
i

∏= (4-16)

f i
α i
βi
-----= (4-17)

Yx b= F d
t
x– 0= (4-18)
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where F is the network function taken as a linear combination of the solution vector x. Eq. (4-

18) can be written as a single matrix equation:

The output of interest F can result from Cramer’s rule:

The desired numerator is the determinant of the matrix Ya and the zeros of the numerator can

be obtained by the QZ algorithm.

Consequently, the poles and zeros of the transfer function can be estimated by invoking the QZ

algorithm twice, once for the poles with C and G, and once for the zeros with Ca and Ga.

4.2.3. Pole-Zero Sensitivity

The general sensitivity formula of the eigenvalue with respect to the parameter h is given

[Hale88]:

where H is the system matrix, λk is the eigenvalue of the matrix H, z and zT are the right and

left eigenvectors corresponding to λ. If the matrix H can be expressed in terms of the state

variable matrix A (H = A- sI where s = λ), the Eq. (4-22) can be reduced to the well-known

perturbation formula [Gol96]
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The pole and zero sensitivity can be computed relying on the adjoint method [Vlac94], and the

resulted formula is the same as the Eq. (4-22). The network function φ related to the complex

frequency s and parameter h is equal to zero at the network zeros zi:

The parameter h is considered as the independent variable and zi as the dependent variable. By

differentiating Eq. (4-24) based on the chain rule yields

and zero sensitivity is given

where X and (Xa)t are the solution of the direct and adjoint system which are computed by

replacing the s by zi, C is the capacitance matrix. It is clear that Eq. (4-26) is identical to Eq.

(4-22) with H = Y = G + sC, and the derivative of the function φwith respect the element h is

computed by the adjoint methods and is given (cf. Appendix A)

The pole sensitivity cannot be computed as the zero sensitivity, since the system matrix Y

becomes singular at the pole pi. Thus, the solution Xa and X of the adjoint and direct system

cannot be obtained. Therefore, the system matrix Y is decomposed into lower and upper trian-

gular matrices Y = LU. The differentiate with respect to the parameter h yields

By pre- and postmultiply Eq. (4-28) by two (so far unknown) vectors (Xa)t and X respectively,

to get the scalar equation:
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The vectors are now defined as the solutions of

where en is the nth unit vector and lnn is the (n, n) entry of the matrix L. As Y is singular,

lnn = 0 (partial or full pivoting may be required to ensure the lnn = 0) and the right-hand side of

the Eq. (4-30b) is, in fact, a zero vector. Thus, Xa
n can be arbitrarily chosen (normally, Xa

n =

1). Substituting Eq. (4-30) into Eq. (4-29) yields

Since L is a lower triangular matrix, the product ((δL / δh)en) is reduced to a vector in which

all entire are zero except the last one which is δlnn/δh, that is, (δL/δh)en = (δlnn/δh)en. This

vector is per multiplied by (Xa)t and only its last entry, xa
n = 1, appears in the product. More-

over, en δU/δh will be a zero vector, as U is the upper triangular with unn = 1. These steps

reduce Eq. (4-31) to

which is the basic equation for computing pole sensitivity. At this point it is noted that at a

pole the relation lnn(s,h) = 0 can be used in place of the φ(s,h) = 0, the relation required for the

zero sensitivity. Applying Eq. (4-32) in the zero sensitivity (Eq. (4-26), the pole sensitivity for

pi becomes

where i = 1,..., n.

Like the zero sensitivity formula, the pole sensitivity formula (Eq. (4-33)) is the same as the

Eq. (4-22).

Partial or full pivoting may be required for the term lnn to become zero. In such cases, the LU

decomposition is modified to Π1T Π2 = LU and Eq. (4-32) becomes

where Π1 and Π2 are permutation matrices. Eq. (4-33) is also modified in a similar way.
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Normally, the pole and zero sensitivity is expressed in normalized form

If the pole is given by the real and the imaginary parts p = σ + jω, the normalized sensitivity

becomes (the same formula is valid for a zero sensitivity)

Based on the pole and zero sensitivity, the Q-factor and pole frequency sensitivities can be also

computed [Vlac94] as we will see in the next chapter.

4.2.4. Testability Measure

A testability measure provides quantitative information about the degree of solvability of the

circuit under test starting from the circuit topology and given test points (cf. Section 3.5.9).

The analog circuits are considered a low testability if all circuit elements cannot be identified.

In this case, the testability measure shows how many faulty elements can be identified and

how many elements must be assumed to be nominal with a given test point set.

The transfer function of the circuit under test obtained in factorized form can be written

where the DC gain K0, poles pj and zeros zl of the transfer function are a function of the circuit

elements hi (where i = 1,2,..., k; k is the number of circuit elements). We assume the poles and

zeros of the transfer function are distinct (they are all different), but the general case is dis-

cussed in Section 4.4.

The testability measure based on Eq. (4-37) is separated into three parts. The first part depends

only on the poles of the transfer function. In other words, the first part of testability measure

depends only on the circuit topology and is independent of the input signals and circuits

nodes. We will refer to the first part of the testability measure as Tp (where T denotes to the

testability and p denotes to the poles of the circuit). The testability Tp is given by Eq. (4-38)

where n is the number of the poles of the transfer function given by Eq. (4-34).
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As a result, since this part depends only on the circuit structure, the number of the poles of the

transfer function is the same as the order of the circuits given by Eq. (4-39).

where n is the circuit order (or circuit complexity), nLC, is the total number of energy storage

elements, nC, is the total number of independent capacitive loops, and nL, is the total number

of independent inductive cutsets (cf. Section 2.4.1).

The second part of the testability measure relies on the zeros of the transfer function. We refer

to the second part of the testability measure as Tz (where T denotes to the testability and z

denotes to the zeros of the transfer function) and is given by the following equation

where m is the number of the zeros.

The third part of the testability measure depends on the DC gain K0 = a0 / b0 (s --> 0) and is

referred to as TK0.

where c = 1 if the DC gain is a function of the circuit elements, otherwise c = 0. The value of

c can be computed using DC sensitivity. If DC sensitivity at a certain circuit node is different

from 0, this leads to c = 1, otherwise c = 0.

The total testability measure Tt of the circuit under test is equal to the sum of the three parts of

the testability measure at a circuit node

Consequently, the testability measure of the circuit under test at a certain node depends on the

number of the poles, the number of the zeros, and DC gain K0 at that node. This result can

simply be deduced by relying on Eq. (4-37). The following equations can be constructed based

on Eq. (4-37): pj = f(hi) (where j = 1,2,..., n and i = 1, 2,..., k), zl = f(hi) (where l = 1, 2,..., m

and i = 1, 2,..., k), and K0 = f(hi). Thus, the testability measure is the same as the number of

the pole, zero and DC gain equations which are a function of the circuit elements.

Eq. (4-42) can be expressed based on the circuit matrix Y using the Eq. (4-19):

n nLC nL– nC–= (4-39)

T z m= (4-40)

TK 0
c= (4-41)

T t T p T z T K 0
+ + n m c+ += = (4-42)

T t rank Ya( ) rank Y( ) c+ += (4-43)
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The rank of the matrices Ya and Y represent the number of the zeros and poles, respectively.

Thus, the testability measure can be obtained directly from the circuit matrix.

If more than one test node is considered, the testability measure is given

where n in the number of the poles and m1, m2,..., ml are the number of the zeros at nodes 1,

2,..., l respectively, the c1, c2,..., cl are the DC gain at nodes 1, 2,..., l respectively, and l is the

number of circuit nodes. For example, if two nodes in the circuit are considered to be accessi-

ble, the testability measure is given Tt = n + m1 + m2 + c1 + c2, where n is the poles and m1,

m2 are the number of the zeros at node 1 and node 2, respectively, and the c1, c2 are the DC

gain at nodes 1, and 2,respectively.

If the circuit has e elements and the testability measure at node i is Tt = r (where r < e), thus

only r elements can be identified and (e - r) elements must be assumed as not faulty (low-test-

ability circuits [Pang01]). Consequently, the testability can be used as a guide for test node

selection. It is worthwhile to note that the minimum number of the testable elements is the

same as the number of the poles of the transfer function.

If the number of the circuit elements are equal to the number of the poles and the number of

the zeros at circuit node plus 1, the maximum testability is obtained (all circuit elements can

be identified).

If the transfer function has poles and zeros in the same position, (the poles and zeros result

from the same circuit elements), these zeros cause the pole cancellation case. In this case, the

natural frequency of the system will be different from the system poles. The testability mea-

sure in pole-zero cancellation case is given

where npz is the number of the cancelled poles and zeros.

In order to illustrate the testability measure based on the pole and zero analysis, we will give

the 3-RC ladder circuit as an example, as shown in Figure 4-3

where Ya
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69



.

Based on the modified nodal analysis the system equations of the circuit can be written as

The transfer functions at node 4, node 3 and node 2 of the circuit are given (V1 = Vin and V4 =

Vout)

The poles and zeros of the transfer functions computed by the QZ algorithm and the testability

measure are given in Table 1.

In 3-RC ladder circuit, the DC gain K0 is independent of the circuit elements (K0 = 1 at any

node), thus c = 0.

Figure 4-3: The 3-RC ladder circuit
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All circuit elements can be identified using nodes (3, 2) or (4, 3, 2), otherwise the circuit is in

low testability case (i.e. the testability measure is less than the number of the circuit elements).

This result obtained by our algorithm are identical to the results that were obtained by the rank

of the testability matrix (linearly independent columns) constructed either by the sensitivity

matrix (the matrix entries are a function of the frequency) [Sen79, Dai90, Liu94, Beck94,

Pang01] or by the coefficient sensitivity matrix (the matrix entries are independent of the fre-

quency) [Mane98, Fedi99, Liu96, Pi02, Mane03].

4.2.5. Ambiguity Group Analysis

Generally, the value of the testability measure of an analog circuit is less than the number of its

elements. This leads to a low testability of the circuit under test, therefore, the ambiguity

group concept will now be introduced.

An ambiguity group is a set of elements where the faulty elements cannot uniquely be identi-

fied from each others. In other words, the faults in the ambiguity group elements produce the

same value of measurements, taking into consideration element tolerances and measurement

errors. Mathematically, the ambiguity group is defined as the dependent columns of the test-

ability matrix which correspond to the circuit elements.

In this section, we will introduce a new algorithm for the determination of the ambiguity

groups based on pole and zero sensitivity. Moreover, the algorithm provides a new interpreta-

tion of the ambiguity groups based on the circuit theory, unlike the other algorithms which

only give a mathematical interpretation according to the linearly dependent columns of the

testability matrix.

Table 1: Pole and zero analysis of the 3-RC ladder circuit and the testability measure

Poles Zeros at node 4 Zeros at node 3 Zeros at node 2

-198.062 No zeros -1000 -381.966

-1554.96 -2618

-3246.98

Tp = 3 Tzm1 = 0 Tzm2 = 1 Tzm3 = 2

Testability measure Tt at node 4 = 3 Tt at node 3 = 4 Tt at node 2 = 5

Tt at node 4 and 3 = 4 and Tt at node 3 and 2 = 6

Tt at node 4 and 2 = 5 and Tt at node 4, 3, and 2 = 6
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The poles and zeros of the transfer function determine the characteristic of the frequency and

time response. Therefore, the deviation of the pole and zero locations under a fault from the

original positions will affect the circuit specifications either in time or in frequency domains.

The ambiguity group can be divided into two classes, pole ambiguity group and zero ambigu-

ity group. The pole ambiguity groups, like testability measure Tp, depend on the poles of the

transfer function. The pole ambiguity groups are determined as follows:

If the pole sensitivity with respect to the elements h1, h2,..., hi (i <= k number of the circuit ele-

ments) is the same, this leads the elements h1, h2,..., hi belong to the same pole ambiguity

group.

In other words, if two poles have the same sensitivity with respect to the elements h1 and h2

(the same deviation caused by the elements h1 and h2), their effects on the time or frequency

responses are also the same. Therefore, the measurements cannot distinguish faulty element h1

from faulty element h2.

From the 3-RC ladder circuit, the pole sensitivities are given in Table 2.

Thus, the ambiguity groups are given in Table 3.

On the other hand, the zero ambiguity groups are determined as follows:

If two elements have the same zero sensitivities, they belong to the same zero ambiguity

groups.

Table 2: Pole Sensitivity with respect to the circuit elements

h Sp1
h Sp2

h Sp3
h

R1 -0.54313 -0.10757 -0.34929

R2 -0.34929 -0.54313 -0.10757

R3 -0.10757 -0.34929 -0.54313

C1 -0.10757 -0.34929 -0.54313

C2 -0.34929 -0.54313 -0.10757

C3 -0.54313 -0.10757 -0.34929

Table 3: Ambiguity groups at node 4

Groups 1 2 3

Elements R1, C3 R2, C2 R3, C1
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For example the 3-RC ladder circuit, the zero sensitivities at node 3 and node 2 are given in

Table 4.

The total ambiguity groups at a given circuit node is constructed mathematically by intersec-

tion of the pole ambiguity groups and the zero ambiguity groups. This means that the zero

ambiguity groups obtained by zero sensitivities break up the pole ambiguity groups obtained

by pole sensitivities. In this case, the two elements, which have different pole and zero sensi-

tivities, affect the pole and zero location in a different manner, which means that they also

affect the circuit response in different manner. For the 3-RC example, the zeros at node 3

breaks up the ambiguity groups {R1, C3} and {R3, C3} and the zeros at node 2 lead to break

up all ambiguity groups in the 3-RC ladder circuits.

In summary, the total ambiguity group can be determined as follows:

The element h1 and the element h2 belong to the same ambiguity group, if the pole and zero

sensitivities associated to the element h1 are the same as the pole and zero sensitivities associ-

ated to the element h2.

As a result, the ambiguity group can be interpreted as a group of circuit elements which affect

the poles and zeros of a circuit in the same way.

4.2.6. Testability Analysis and Controllability/Observability

The system is said to be controllable if the rank of the controllability matrix Q is equal to the

number of the system state variables (cf. Eq. (4-7)). On the other hand, the system is said to be

Table 4: Zero sensitivities at node 2 and 3

Elements
h

 Zero sensitivity at node 3  Zero sensitivity at node 2

Sz
h Sz1

h Sz2
h

R1 0 0 0

R2 0 -0.27639 -0.7236

R3 -1 -0.7236 -0.27639

C1 0 0 0

C2 0 -0.7236 -0.27639

C3 -1 -0.27639 -0.7236
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observable if the rank of the observability matrix P is equal to the number of the system state

variables (cf. Eq. (4-8)).

In electrical circuits, the state of the circuit at t0 represents the condition of the circuit at t = t0,

and related to the energy storage of the circuit, or the voltage (or electric charge) across the

capacitor and currents (or magnetic fluxes) through the inductors. For t > t0 the behavior of the

circuit is completely characterized by these variables [Chao95a]. The number of the circuit

states is the same as the order of the circuit which is also the same as the number of the eigen-

values of the state matrix A or the number of the poles of the transfer function.

If the transfer function has no pole-zero cancellation, the rank of the matrix (sI - A) is the same

as the order of the circuit n [Koa95]. This leads to that the controllability and observability

matrices have the rank equal to n. It is sufficient to check the rank of the matrix (sI - A) to

determine whether the system is completely controllable (observable) or not, without the need

to the matrix B or C. Since the rank of the matrix (sI - A) is the same as the number of the

eigenvalues of the state matrix A or the number of the poles, leading the testability measure Tp

to be the same as the rank of the controllability or observability matrices.

In pole-zero cancellation, the testability measure will be decreased by the same number of the

cancelled poles and zeros. Also, the testability measure is equal to the minimum value of the

rank of the controllability and observability matrices: Tp = mim(rank(P), rank(Q)).

The state-variables of a circuit, which are selected as the independent capacitor voltages or

independent inductor currents, do not belong to the same ambiguity group.

In the 3-RC ladder circuit, the capacitors C1, C2, and C3, whose voltages represent the state-

variables, belong to the different ambiguity groups. Furthermore, the voltages across these

capacitors are controllable and observable in terms of the controllable or observable states.

Furthermore, based on the pole and zero sensitivities the nonobservable states of the linear

analog circuit can be determined. If the pole sensitivity with respect to the capacitor is equal to

the zero sensitivity with respect to the same capacitor, leading the state, which is represented

by the voltage of this capacitor, is not observable.
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4.3. Simulation Examples

Before introducing the simulation examples, we will summarize the ambiguity group algo-

rithm proposed in [Liu94, Mane03] for comparison purpose. The algorithm steps

I) construct the sensitivity matrix (Jacobian matrix) B (m x n) as a function of the frequency

[Liu94]. The Jacobian matrix can also be constructed by taking coefficient sensitivities

with respect to the circuit elements [Man03].

II) perform the Singular Value Decomposition (SVD) of the sensitivity matrix B = U W VT.

The matrices U (m x m) and V (n x n) are unitary matrices and W is a diagonal matrix W =

diag{σ1, σ2,..., σp}, where p = min(m, n) and σi are called singular values of matrix B.

The singular values appear in this order σ1 >= σ2>=..., σp>=0.

III) find the null space N of the matrix B using unitary matrix U or V according to min(n, m).

IV) element i and j are in the same ambiguity group iff rows i and j of N are-non-zero and not

orthogonal to each other.

In this section we will present some examples based on the AnalogInsydes software in Mathe-

matica environment. The first and second example are taken from [Liu94] and [Mane03] for

comparison purpose. The fourth example is introduced to explain the pole-zero cancellation.

In order to validate our results, we will perform some measurements on some circuit perfor-

mances (specifications) in the time and frequency domain using the Saber simulator [Anal97].

4.3.1. The 7-RC Ladder Circuit

The 7-RC ladder circuit is shown in Figure 4-4.

Figure 4-4: The 7-RC ladder Circuit
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The poles of the circuit are given in Table 5.

Since there is no zero at node 8 (the output node), and DC gain is independent of the circuit

elements (K0 =1 at all circuit nodes, thus c = 0), the testability measure is equal to the number

of the poles (Tt = 7). This is the same as the rank of the observability matrix Q.

In order to determine the ambiguity groups, the pole sensitivities are given in Table 6.

The ambiguity groups are given in Table 7.

Table 5: The poles of the 7-RC ladder circuit

P1 P2 P3 P4 P5 P6 P7

-1.913 109 -1.669 109 -1.309 109 -8.954 108 -5 108 -1.909 108 -2.1852 107

Table 6: Pole sensitivities of the 7-RC ladder circuit

h Sp1
h Sp2

h Sp3
h Sp4

h Sp5
h Sp6

h Sp7
h

R1 -0.011527 -0.044115 -0.092131 -0.14727 -0.2 -0.241202 -0.263753

R2 -0.092131 -0.241202 -0.241202 -0.092131 0 -0.092131 -0.241202

R3 -0.2 -0.2 0 -0.2 -0.2 0 -0.2

R4 -0.263753 -0.011527 -0.241202 -0.044115 -0.2 -0.092131 -0.14727

R5 -0.241202 -0.092131 -0.092131 -0.241202 0 -0.241202 -0.092131

R6 -0.14727 -0.263753 -0.092131 -0.011527 -0.2 -0.241202 -0.044115

R7 -0.044115 -0.14727 -0.241202 -0.263753 -0.2 -0.092131 -0.011527

C1 -0.044115 -0.14727 -0.241202 -0.263753 -0.2 -0.092131 -0.011527

C2 -0.14727 -0.263753 -0.092131 -0.011527 -0.2 -0.241202 -0.044115

C3 -0.241202 -0.092131 -0.092131 -0.241202 0 -0.241202 -0.092131

C4 -0.263753 -0.011527 -0.241202 -0.044115 -0.2 -0.092131 -0.14727

C5 -0.2 -0.2 0 -0.2 -0.2 0 -0.2

C6 -0.092131 -0.241202 -0.241202 -0.092131 0 -0.092131 -0.241202

C7 -0.011527 -0.044115 -0.092131 -0.14727 -0.2 -0.241202 -0.263753

Table 7: The ambiguity groups at node 8 (the output)

Groups 1 2 3 4 5 6 7

Elements R1, C7 R2, C6 R3, C5 R4, C4 R5, C3 R6, C2 R7, C1
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Note that the capacitors do not belong to the same ambiguity groups because their voltages

present the state variables of the circuit.

The normalized sensitivity (cf. Section 2.4.3.4, also cf. Appendix A) of low-pass frequency

computed using Saber simulator to validate the above results are given in Table 8:

This result is identical to the reported one in [Liu94]. Furthermore, we will compute the test-

ability measure and determine the ambiguity groups at another node for example at node 4.

The testability measure at node 4 is equal to Tt = 7 + 4 = 11 (7 poles, 4 zeros, and c = 0). The

zeros at node 4 are given in Table 9:

The zero sensitivities w.r.t. the elements of the 7-RC lader circuit are given in Table 10:

Table 8: The normalized sensitivity of low-pass frequency

Elements R1, C7 R2, C6 R3, C5 R4, C4 R5, C3 R6, C2 R7, C1

Sensitivities -0.262 -0.236 -0.195 -0.146 -0.0956 -0.0496 -0.0147

Table 9: The zeros of the circuit at node 4

Z2 Z3 Z4 Z5

-1.766 109 -1.17365 109 -5 108 -6.03073792 107

Table 10: Zero sensitivities

h Sz1
h Sz2

h Sz3
h Sz4

h

R1 0 0 0 0

R2 0 0 0 0

R3 0 0 0 0

R4 -0.0519901 -0.183634 -0.333333 -0.431043

R5 -0.333333 -0.333333 0 -0.333333

R6 -0.431043 -0.0519901 -0.333333 -0.183634

R7 -0.183634 -0.431043 -0.333333 -0.0519901

C1 0 0 0 0

C2 0 0 0 0

C3 0 0 0 0

C4 -0.183634 -0.431043 -0.333333 -0.0519901

C5 -0.431043 -0.0519901 -0.333333 -0.183634
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The zero ambiguity groups at node 4 are {R4, C7}, {R5, C6}, {R6, C5}, and {R7, C4} and the

other elements are definitely testable. Thus, there are no more ambiguity groups because all

pole ambiguity groups are broken up by the zero ambiguity groups.

4.3.2. Continuous-Time State-Variable Filter

The continuous-time state-variable circuit shown in Figure 4-5 provides low-pass, high-pass,

and band-pass filters [Kami97].

The poles of the state-variable filter are given in Table 11.

The zeros of the state-variable filter at nodes, LPO, BPO, and HPO are given in Table 12.

C6 -0.333333 -0.333333 0 -0.333333

C7 -0.0519901 -0.183634 -0.333333 -0.431043

Figure 4-5: The schematic of the continuous-time state-variable circuit

Table 11: The Poles of the state-variable filter

P1 P2

 2250. + 4465.13 i -2250. - 4465.13 i

Table 12: The circuit zeros at node HPO, BPO, and LPO

LPO no zeros

BPO Z2 = - 1 ⁄ 1000001 C2 R4 = -0.005

HPO Z1 = - 1⁄1000001 C1R3 = -0.005 Z2 = - 1⁄1000001 C2 R4 = -0.005

Table 10: Zero sensitivities
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The DC gain is a function of the circuit elements (c =1), thus the testability measure is given

in Table 13.

The pole sensitivities are given in Table 14.

The ambiguity groups for low-pass filter are given in Table 15.

Thus, the elements R1, R2, R5, R6, and R7 are testable elements while the elements R3, C1

belong to the same ambiguity group. Therefore, either R3 or C1 must be assumed to be nomi-

nal. The elements R4, C2 also belong to the same ambiguity group, therefore either R4 or C2

must be assumed to be nominal.

The zero sensitivities at node BPO and HPO are given in Table 16.

Table 13: Testability measure

Tt (LPO) Tt (BPO) Tt (HPO)

3 4 5

Table 14: Pole Sensitivities

h Sp1
h Sp2

h

R1 3.5. 10-7 + 0.167967 i 3.5. 10-7 - 0.167967 i

R2 0.5 - 0.083982 i 0.5 + 0.083982 i

R3 - 0.5 + 0.251951 i - 0.5 - 0.251951 i

R4 - 0.5 - 0.251951 i - 0.5 + 0.251951 i

R5 - 0.5 - 0.08398 i - 0.5 + 0.08398 i

R6 3.15 10-7 - 0.35273 i 3.15 10-7 +0.35273 i

R7 - 3.15 10-7 + 0.35273 i - 3.15 10-7 - 0.35273 i

C1 - 0.5+ 0.251951 i - 0.5 - 0.251951 i

C2 - 0.5 - 0.251951 i - 0.5 + 0.251951 i

Table 15: Ambiguity groups at LPO

Groups 1 2 3 4 5 6 7

Elements R1 R2 R5 R6 R7 R3, C1 R4, C2
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The zero ambiguity group is the same as the pole ambiguity group, hence the zeros cannot

break up the ambiguity groups. The ambiguity groups at the nodes LPO, BPO, and HPO of the

filter are the same.

Table 16: Zero Sensitivities at nodes BPO and HPO

h Sz
h (BPO) Sz

h (HPO)

R1 0 0 0

R2 0 0 0

R3 0 -1 0

R4 -1 0 -1

R5 0 0 0

R6 0 0 0

R7 0 0 0

C1 0 -1 0

C2 -1 0 -1

Figure 4-6: Step response of the state-variable filter (Vin=-1 v)
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In order to validate our results, we will take an example of some measurements of the time

domain specifications. The time step response of the state-variable filter at the output LPO is

produced using Saber simulator as shown in Figure 4-6 (Vin = -1 volt). We will select three

time domain specifications namely rise time, settling time and maximum overshoot. The nom-

inal values of these specifications as well as the faulty specifications caused by +20% devia-

tion of each element in the circuit is given in Table 17 by assuming that a single fault may

occur. The measured specifications caused by the deviation of elements R3 and C1 or R4 and

C2 can not be distinguished.

Low-cutoff frequency, bandwidth, and high-cutoff frequency are selected as examples for fre-

quency domain specifications to be measured. These specifications are given in Table 18.

Table 17: Rise time, settling time, and maximum overshoot specifications

h rise time (µsec) settling time (sec) maximum overshoot (v)

nominal 314.64 0.0015689 0.19899

R1 +20% 300.95 0.0015003 0.19736

R2 +20% 287.5 0.00097944 0.19754

R3 +20% 331.91 0.001816 0.23017

R4 +20% 360.41 0.0011584 0.16855

R5 +20% 350.08 0.0015816 0.22673

R6 +20% 334.3 0.0010622 0.15694

R7 +20% 290.72 0.0015562 0.27061

C1 +20% 332.12 0.001813 0.23144

C2 +20% 360.1 0.0011587 0.16861

Table 18: The low-cutoff frequency, bandwidth, and high-cutoff frequency specifications

h Low-cutoff frequency
(Hz)

bandwidth (Hz) high-cutoff frequency
(Hz)

nominal 1057.3 725.07 603.97

R1 +10% 1064.6 707.7 599.29

R2 +10% 1100.3 788.87 637.49

R3 +10% 1024.7 650.61 566.2

R4 +10% 986.76 714.62 586.83
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The ambiguity group algorithm proposed in [Liu94, Mane03] depends on the selected specifi-

cation. In other words, the ambiguity groups are different from one specification to another i.e.

the ambiguity groups in the time domain are different from the ambiguity groups in the fre-

quency domain. Even for the same domain they may be different i.e. in the frequency domain

the ambiguity groups related to the amplitude may be different from the ambiguity groups

related to the phase. In contrast, our algorithm is independent of specifications because the

algorithm is based on the pole and zero sensitivities. As previously mentioned, the poles and

zeros can characterize the time and frequency specifications.

The ambiguity groups for the time-continuos state-variable filter in [Mane03] are given in

Table 19.

The fault in element R1 can be distinguished from the faults in element R2, R5 (cf. the mea-

sured specifications Table 17 and Table 18). Hence, the element R1 cannot belong to the ambi-

guity group of the elements R2 and R5. Furthermore, the absolute value of the difference

between the nominal and the actual value of the elements R2 and R5 is approximately equal

(i.e. 1057.3 - 1031.7 = 26.6 and 1057.3 - 1079.2 = - 21.9), hence they belong to the same

ambiguity group (the magnitude of the performance is taken into account). The same can be

said for elements R6 and R7. Thus, only the absolute value of the difference between the nom-

inal and the actual value are taken into account. The direction of the variation is not consid-

ered. In our algorithm, this result can easily be obtained by comparing the absolute value of

R5 +10% 997.09 693.34 581.09

R6 +10% 1031.7 770.91 618.09

R7 +10% 1079.2 679.78 590.92

C1 +10% 1024.7 650.51 566.2

C2 +10% 986.76 714.62 586.83

Table 19: The ambiguity groups at node LPO, BPO, and HPO

Group 1 2 3 4

Elements R6, R7 R1, R2, R5 C2, R4 C1, R3

Table 18: The low-cutoff frequency, bandwidth, and high-cutoff frequency specifications

h Low-cutoff frequency
(Hz)

bandwidth (Hz) high-cutoff frequency
(Hz)
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the pole sensitivities associated to the elements R6 and R7 or R2 and R5. As a result, the ambi-

guity groups related to the magnitude or phase of the transfer function can be obtained from

the pole sensitivities.

In summary, the ambiguity groups are related to the measurements which in turn rely on the

pole and zero location. The relationship between the ambiguity groups (or pole and zero sensi-

tivities) and time and frequency domain specifications will be discussed in more detail in

Chapter 5.

4.3.3. Leapfrog Filter

The schematic of the leapfrog is shown in Figure 4-7 [Kami97]

The poles of the filter are given in Table 20.

The testability measure at the output is Tt = 5 (c = 1).

The pole sensitivities are given in Table 21.

Figure 4-7: The schematic of the leapfrog

Table 20: The poles of the leapfrog filter

P1 P2 P3 P4

-5000.01 - 4999.97 i -5000.01 + 4999.97 i -5000.01 - 4999.98 i -5000.01 + 4999.98 i

Table 21: Pole sensitivities

h Sp1
h Sp2

h Sp3
h Sp4

h

R1 - 10-6 i - 10-6 i 0 0

R2 -5 10-7 + i -5 10-7 - i 0 0

R3 -0.5 - 0.5 i -0.5 + 0.5 i 0 0

R4 -0.5 - 0.5 i -0.5 + 0.5 i 0 0
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The ambiguity groups are given in Table 22.

In order to validate the ambiguity groups, the normalized sensitivities of low-pass frequency

(frequency domain specification) and rise time (time domain specification) with respect to the

filter elements are computed using the Saber simulator and are given in Table 23 (cf. Appendix

A).

R5 0.5 + 0.5 i 0.5 - 0.5 i 0 0

R6 -0.5 - 0.5 i -0.5 + 0.5 i 0 0

R7 0 0 - 5 10-7 - 5 10-7

R8 0 0 -0.5 - 0.5 i -0.5 + 0.5 i

R9 0 0 0.5 + 0.5 i 0.5 - 0.5 i

R10 0 0 - 10-6 + i - 10-6 + i

R11 0 0 -0.5 - 0.5 i -0.5 + 0.5 i

R12 0 0 -0.5 - 0.5 i -0.5 + 0.5 i

C1 -0.5 + 0.5 i -0.5 - 0.5 i 0 0

C2 -0.5 - 0.5 i -0.5 + 0.5 i 0 0

C3 0 0 -0.5 - 0.5 i -0.5 + 0.5 i

C4 0 0 -0.5 + 0.5i -0.5 - 0.5i

Table 22: Ambiguity groups at the output node

Groups 1 2 3 4 5 6 7 8 9

Elements R3, R4, R6, C2 R8, R11, R12, C3 R1, R7 R2 C4 R9 C1 R5 R10

Table 23: Normalized sensitivities of the low-pass frequency and rise time

Normalized sensitivity of low-pass frequency with respect of the filter elements

R3, R4,

R6, C2

R8, R11,

R12, C3

R1, R7 R2 C4 R9 C1 R5 R10

-0.379 -0.591 -6. 10-6 0.379 -0.15 0.59 -0.00649 0.229 0.411

Normalized sensitivity of rise time with respect of the filter elements

R3, R4,

R6, C2

R8, R11,

R12, C3

R1, R7 R2 C4 R9 C1 R5 R10

0.484 0.592 -0.0074 -0.649 0.125 -0.555 -0.21 -0.44 -0.428

Table 21: Pole sensitivities
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The zero at node 10 is equal to z |10 = -10000 and zero sensitivities is given in Table 24.

Node 10 does not give more information about the ambiguity groups. Thus, the zero cannot

break up the above ambiguity groups.

4.3.4. The 5-Pole (100Hz) low-pass filter

This example is selected from [Pan97c] to show the pole and zero cancellation effect on the

testability measure and ambiguity groups. The schematic of the filter is shown in Figure 4-8.

The poles and zeros of the filter are given in Table 25.

Table 24: Zero sensitivities at node 10

Zero sensitivities with respect to the circuit elements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 C1 C2 C3 C4

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1

Figure 4-8: The schematic of the 5-pole low pass filter

Table 25: The poles and zeros of the filter

Poles zeros at node 4 zeros at node 5 zeros at node 8 zeros at
node 9

-160.463-115.709 i -160.463-115.709 i

-160.463+115.709 i -160.463+115.709 i

-96.75 - 69.7658 i -96.75 - 69.7658 i -96.75 + 69.7658 i -96.75 + 69.7658 i

-96.75 + 69.7658 i -96.75 + 69.7658 i -96.75 - 69.7658 i -96.75 - 69.7658 i

-628.931 -243.902 -147.059
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The testability measure at the output is Tt = 6, (no zeros and c = 1). The pole sensitivities are

given in Table 26.

The ambiguity groups are given in Table 27.

The other elements are definitely testable. The low-pass frequency sensitivities are computed

using the Saber simulator in order to validate the above results and are given in Table 28.

Table 26: Pole sensitivities

h Sp1
h Sp2

h Sp3
h Sp4

h Sp5
h

Ra1 -1 0 0 0 0

Ra2 0 0 0 0 0

Ra3 0 0 0 0 0

Rb1 0 -0.5 -5.3 10-6 i -0.5 +5.3 10-6 i 0 0

Rb2 0 -0.5 +5.3 10-6 i -0.5 -5.3 10-6 i 0 0

Rb3 0 0 0 0 0

Rc1 0 0 0 -0.5 -5.3 10-6 i -0.5 +5.3 10-6 i

Rc2 0 0 0 -0.5 +5.3 10-6 i -0.5 -5.3 10-6 i

Rc3 0 0 0 0 0

Ca1 -1 0 0 0 0

Cb1 0 -0.5 - 0.693 i -0.5 + 0.693 i -0 0

Cb2 0 -0.5 + 0.693 i -0.5 - 0.693 i 0

Cc1 0 0 0 -0.5 - 0.693 i -0.5 + 0.693 i

Cc2 0 0 0 -0.5 + 0.693 i -0.5 - 0.693 i

Table 27: Ambiguity groups at the output

Group 1 2 3 4

Elements Ra1, Ca1 Ra2,Ra3,Rb3,Rc3 Rb1, Rb2 Rc1, Rc2

Table 28: The low-pass frequency sensitivities (nominal value = 16.703 Hz)

1 2 3 4 5 6 7 8

Cc1 Rc1, Rc2 Cb1 Rb1, Rb2 Cc2 Cb2 Ca1, Ra1 Ra2, Rb3, Ra3, Rc3

-0.425 -0.251 -0.245 -0.088 -0.074 -0.069 -0.016 0
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In pole-zero cancellation, the testability measure at nodes 4,5,8, and 9 is given in Table 29.

Node 9 provides the best testability information in terms of the number of testable elements.

The ambiguity groups at node 8 are given in Table 30.

The low-pass frequency sensitivities at node 8 are computed using the Saber simulator and are

given in Table 31.

It is worthwhile indicating that the state variables which are represented by the voltage across

the capacitors Cc1 and Cc2 are not observable, because the pole sensitivities and zero sensitivi-

ties with respect to these capacitors are equal (cf. Section 4.2.6).

4.4. Generalization of the Testability Analysis Algorithm

In the previous examples, only AC ambiguity groups are considered. However, it is simply to

combine DC ambiguity groups and AC ambiguity groups. From Eq (4-37) the K0 is the DC

gain and is a function of the circuit elements. The DC sensitivity is computed by the derivative

of the K0 with respect to the circuit elements (the capacitors and inductors are not considered).

Furthermore, the poles and zeros are assumed to be distinct. If we consider, both, DC and

pole-zeros sensitivities as well as the cases of repeated poles and pole-zero cancellation, the

testability measure and ambiguity groups can be determined by the following matrix.

Table 29: Testability measures of 5-pole filter at nodes 4, 5, 8, and 9

Tt at node 4 Tt at node 5 Tt at node 8 Tt at node 9

2 5 4 7

Table 30: Ambiguity groups at node 8

Groups 1 2 3 4 5

Elements Cb1 Rb1, Rb2 Ca1, Ra1 Cb2 Ra2, Rb3, Ra3, Rc3, Rc1, Rc2, Cc1, Cc2

Table 31: Ambiguity groups at node 8

Groups Cb1 Rb1, Rb2 Ca1, Ra1 Cb2 Ra2, Rb3, Ra3, Rc3, Rc1, Rc2, Cc1, Cc2

Sens. -0.99 -0.458 -0.0884 0.138 0
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The testability measure can be computed by the rank of the matrix Tmatrix

The ambiguity groups are determined by the linearly dependent rows of the testability matrix.

For example, for the leapfrog filter, the DC sensitivity at the output is given in Table 32.

The DC ambiguity groups are given in Table 33.

The ambiguity groups resulting from pole-zero and DC sensitivities are given in Table 34.

Consequently, the combination of the DC and AC analysis provides the maximum information

about ambiguity groups.

Table 32: DC sensitivities

DC sensitivities with respect to the circuit elements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

-1 10-6 1 -10-6 10-6 0 -1 -2 10-6 2 10-6 2 10-6 -2 10-6 1

Table 33: DC ambiguity groups

Groups 1 2 3 4 5 6

Elements R1, R7 R2, R5 R4, R8, R11 R3, R12 R9, R10 R6

Table 34: Total ambiguity groups

Groups 1 2 3 4 5 6 7 8 9 10 11 12

Elements R1,R7 R6,C2 R8, R11,C3 R2 R3 R4 R5 R9 R10 R12 C1 C4
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Moreover, the DC and pole-zero sensitivities can be used to compute the differential sensitiv-

ity of the transfer function by the derivation of Eq. (4-37) with respect to the circuit element.

The resulting equation is given in Eq. (4-47)

The incremental sensitivity given by Eq. (2-8) can also compute the DC and pole-zero sensi-

tivities. The sensitivity of the denominator can be computed as follows

Thus, the pole-zero sensitivity can be utilized for sensitivity analysis applications in analog

testing such as fault diagnosis [Slam92, Liu94, Pang01], test signal generation [Slam95,

Saab96, Hami96], and test measurement selection [Sten87,Hami93, Spaa96b].

4.5. Summary

In this chapter, a new methodology for the testability measure and ambiguity group determina-

tion was presented based on the well-known pole and zero analysis and on pole-zero sensitiv-

ity. Testability measure at a certain node of a circuit can be computed from the number of the

poles and zero in addition to the DC gain of the transfer function. Also, the testability measure

can be computed directly from the circuit matrix as given in Eq. (4-43). The ambiguity groups

can be determined using the pole and zero sensitivity. Thus, the ambiguity group can be inter-

preted as a group of circuit elements which affect the poles and zeros (and the DC gain if the

DC sensitivities are taken into account) of a circuit in the same way.

The main advantages of this methodology can be summarized as follows:

1) Our methodology is based on the pole-zero analysis and on the pole-zero sensitivity which

can be employed in many applications such as stability of the control system, design and

optimization of filters, compensation circuits in feedback amplifiers, simplification of the

symbolic transfer function, behavioral modeling, and model order reduction.

2) The proposed methodology is independent of the frequency, unlike the sensitivity analysis

where the sensitivity must be evaluated at each frequency point for the arbitrary range of

the frequency. Furthermore, the normalized sensitivity is undefined at the zeros of the

transfer function (the zero frequencies), and is equal to zero at the poles of the transfer
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function (the pole frequencies), thus no information is provided at these frequency points

(cf. Eq. 2-5).

3) This methodology provides a new interpretation of the ambiguity groups based on the cir-

cuit theory, unlike the matrix manipulation techniques which provide the mathematical

interpretation given by the linearly dependent columns of the testability matrix.

4) The proposed method provides the relationship between the concept of the controllability

and observability and testability measure. The controllability and observability essentially

govers the existence of a solution to control problem, this is similar to the testability which

also govers the solution of the diagnosis problem of the analog circuits.

5) The ambiguity groups, which are determined using numerical methods, depend on circuit

specifications. Thus, the ambiguity groups are different from one specification to another.

In contrast, our methodology provides the ambiguity groups which are the same for all cir-

cuit specifications in the time domain or in the frequency domain.

6) The sensitivity analysis can be achieved based on the pole-zero sensitivity analysis (cf. Eq

(4-47) and Eq. (4-48)). Thus, the applications of the sensitivity analysis in an analog test

such as fault diagnosis, and test signal generation can also be achieved based on the pole-

zero sensitivity analysis.

The analog and mixed-signal circuits have a large number of specifications. Checking all spec-

ifications is a very time-consuming task. For this reason, an algorithm for selecting relevant

specifications is required in order to reduce the test cost without affecting the quality of the

test in terms of fault coverage.

In the following chapters, we will address the measurement selection problem based on the

pole-zero analysis. The selection of specifications that have to be measured depends on the

element testability concept which can be obtained based on the pole sensitivity.
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Chapter 5

Element Testability and Measurement Selection for
Second-Order Circuits

5.1. Introduction

Analog and mixed-signal circuits have large numbers of specifications. Checking all these

specifications can result in prohibitive testing times. Therefore, minimizing the specifications

that need to be measured is required to reduce the test cost. The reduction of the test cost can

be performed by ordering the tests to achieve high fault coverage or by dropping some specifi-

cations to reduce test time [Milo98]. The shortcoming of these algorithms is that they do not

provide the complete link between the circuit elements and circuit specifications.

Selecting a subset of specifications that have to be measured can be performed using the sensi-

tivity analysis which provides the relation between the circuit elements and the performances.

This relationship can be obtained by the ratio of the relative deviation of the circuit perfor-

mance to the relative deviation of the circuit elements as a function of the frequency [Slam96]

or the time [Dai90]. The sensitivity analysis ensures both the structural and functional test,

where the circuit elements are tested by verifying the circuit functionality.

The measurement selection methods based on the sensitivity analysis are proposed in several

previous works such as in [Sten87, Sten89, Dai90, Hami93, Slam96, Spaa96b]. However,

since the sensitivity analysis is dependent on the frequency or the time, there is a need for han-

dling a large matrix which is constructed by circuit sensitivities. The objective of the measure-
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ment selection based on the sensitivity analysis is to improve the fault coverage, but the

reduction of the test cost is not considered.

In order to overcome the shortcomings of the above-mentioned methods, we will present an

algorithm for measurement selection which is independent of the frequency or the time. The

aim of this algorithm is to reduce test cost by reducing the number of specifications that need

to be measured. The selected specifications can serve as a signature in fault simulators to

improve the fault coverage and to evaluate the test vectors applied at the inputs of the circuit

under test. Also, this algorithm provides maximum information about the fault identification

for fault diagnosis by breaking up the ambiguity groups.

The proposed measurement selection algorithm is based on the element testability concept

which can be computed based on the sensitivity of the circuit poles. The element testability

will provide the information about the difficulty in testing the circuit elements as well as the

effect of the changes of the circuit elements on the circuit specifications.

We will devote this chapter to the discussion of the element testability and measurement selec-

tion for second-order circuits. Higher-order circuits will be addressed in Chapter 6.

The algorithm is valid for parametric faults which caused by manufacturing process variations

and do not affect the circuit topology. This algorithm can be classified under the specification-

based test.

5.2. The Algorithm

The second-order system plays an important role in understanding the analysis and the design

of higher-order systems. In filter design, second-order filters can be cascaded to realize a

higher-order filter. Cascade design is employed for the design of active filters which are

designed by op-amps and RC circuits. A higher transfer function of the cascade is constructed

by the product of the transfer function of the second-order blocks, without changing the trans-

fer functions of the individual blocks [Sed98]. Furthermore, several higher-order systems can

be approximated by second-order systems [Kou95].

The element testability and measurement selection algorithm for a prototype of a second-order

circuit is given as follows:
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Step 1. Represent a second-order circuit by the transfer function form in the Laplace domain

which can be generated using the circuit matrix or the state-variable equations.

Step 2. Compute the poles of the transfer function by utilizing the QZ algorithm.

Step 3. Compute the natural response specifications (ζ, Q-factor, ωn) based on the location of

the circuit poles.

Step 4. Select the desired specifications (in time and frequency domains) which can be com-

puted based on the natural response specifications. Such specifications are rise time,

settling time, low-cutoff frequency, bandwidth etc.

Step 5. Compute the pole sensitivities using the adjoint methods as discussed in Section

(4.2.3).

Step 6. Compute the element testability of the circuit elements with respect to the selected

specifications.

Step 7. Select the specifications that have to be measured to test the circuit elements corre-

sponding to the maximum element testability. The goal of the measurement selection is

to obtain a high fault coverage for parametric faults.

Step 8. In order to reduce the test cost, drop the specifications which do not affect fault cover-

age.

Step 9. For the fault diagnosis, select the specifications which provide maximum information

about the fault identification (i.e. select the specifications which break up the ambigu-

ity groups).

In the next section, we will discuss the measurement selection algorithm for prototype second-

order circuits in detail. Some simulation examples are presented at the end of the chapter in

order to validate the proposed algorithm.

5.2.1. Mathematical Representation of Prototype Second-Order Circuits

The second order circuit can be represented by its transfer function as follows [Chua87]:

where ζ is the damping ration and ωn is the natural frequency.

The characteristic polynomial for the differential equation in Laplace domain can be written

(the denominator D(s) of the transfer function):

H s( ) Y s( )
U s( )
------------ 1

s2 2ζωns ωn
2

+ +
------------------------------------------= = (5-1)
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The roots of the characteristics equation are called the natural frequencies of the circuit (iden-

tical to the poles of the circuit) and are given:

where the real part α called the damping factor and the imaginary part ω called damped fre-

quency of oscillation.

The natural frequency ωn can be computed as follows:

The quality factor (Q-factor) is given:

The specifications ωn, ζ, and Q-factor are called natural response specifications.

• Time Domain Specifications

The time domain specifications of the unit-step response are defined as follows [Kou95]:

Peak time tmax is defined as the time required to reach to the first maximum peak.

Rise time tr is defined as the time required for the step response to rise from 10 to 90 percent of

its final value.

Settling time ts is defined as the time required for the step response to decrease and stay within

a specified percentage of its final value (frequently = 5%).

Maximum overshoot OS% is defined as the difference between the maximum value of the step

response at the peak time tmax and the unit-step response (steady-state value) and given as:

The maximum overshoot is often represented as the percentage of the final value of the step

response as:

D s( ) s2 2ζωns ωn
2

+ + 0= = (5-2)

s1 2, ζωn– jωn 1 ζ2
–± α– jω±= =

α ζωn= ω ωn 1 ζ2
–=

(5-3)

ωn α( )2 ω( )2
+= (5-4)

Q
ωn
2α
-------– 1

2ζ
------= = (5-5)

OS ymax yunit step––= (5-6)

OS
OS

yunit step–
----------------------- 100⋅=% % (5-7)
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The time-domain specifications, the peak time tmax, the rise time tr, the settling time ts, and

maximum overshoot OS% are shown in Figure 5-4.

These specifications can be determined as a function of the pole location of the circuit, in other

words they can be evaluated as a function of the natural response specifications (ζ and ωn).

These specification are given [Kuo95]:

• Frequency Domain Specification

The following frequency-domain specifications for the second-order low-pass filter are often

used in practice [Kou95]:

Figure 5-4: Time domain specifications of the unit-step response
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Resonant peak Mr is defined as the maximum value of the |M(jω)|.

Resonant frequency ωr is defined as the frequency at which the peak resonant Mr occurs.

Bandwidth BW is defined as the frequency at which |M(jω)| drops to 70.7 percent of, or 3dB

down from its zero-frequency value.

The equations of the frequency domain specifications as a function of the natural response

specifications are given

The response of the low-pass filter in frequency-domain is shown in Figure 5-5.

Other frequency-domain specifications of all the second-order filter types which are related to

the pole location (or the natural response specifications) are found in [Sedr98].

Figure 5-5: The frequency response of the second-order low-pass filter
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5.2.2. Pole Sensitivity

The pole sensitivities with respect to the circuit elements are computed using the adjoint meth-

ods [Vla94] (cf. Chapter 4). This algorithm can be summarized:

1) Insert s = pi into the modified nodal matrix Y and obtain the LU factors (Y = LU).

2) Use back substitution to find x from Ux = en, where en is the nth unit vector.

3) Use back substitution to find xa from Ltxa = 0, (setting the xa
n = 1 and finding xa

n-1 in turn).

4) For each element hi, form δY/δhi, apply Eq. (5-16) to compute the pole sensitivity

5.2.3. Element Testability and Measurement Selection

The concept of the element testability ET can be defined as the degree of difficulty in testing a

circuit element h with respect to a specification SP.

Mathematically, the element testability of the circuit elements with respect to the circuit spec-

ifications can be expressed as:

The element testability ET(h, SP) can be expressed for second-order circuits with a small ele-

ment deviation (small ∆h) as a function of the relative deviation of a specification SP and the

relative deviation of the circuit element h as

The element testability also provides information about the effect of each element variation of

the circuit on the circuit specifications.

The element testability of the circuit elements with respect to the natural response specifica-

tions can be expressed as [Herp86]

h∂
∂pi

X
a( )
t

h∂
∂Y
X

X( )t CX
--------------------------–= (5-16)

ET h SP,( ) Sh
SP

= (5-17)

ET h SP,( )

∆SP
SP

-----------

∆h
h

-------
-----------= (5-18)

ET h ωn,( ) Sh
ωn Re Sh

p{ }= =

ET h Q,( ) S= h
Q

Sh
ζ

– 4Q
2

1– Im Sh
p{ }⋅–= = (5-20)

(5-19)

ET h ζ,( ) ET h Q,( )–= (5-21)
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where p is a circuit pole and h is a circuit element.

The sensitivity formulas of the time domain specifications are derived based on the above

equations and on the properties of the first-order sensitivity. These formulas are given in

Appendix A. Then the element testability ET(h, SP) of the circuit elements with respect to the

time-domain specification is equal to the sensitivity of the time specification SP associated to

the circuit elements (ET(h, SP) = SSP
h).

The sensitivity of the frequency domain specifications as a function of the sensitivity of the

natural response specifications are given in Appendix A. These sensitivities represent the ele-

ment testability ET(h, Sp), where SP is a frequency-domain specification.

The specifications that have to be measured for testing the circuit element h is selected corre-

sponding to the maximum value of the element testability as

5.3. Simulation Examples

5.3.1. Continuous-Time State-Variable Filter

The schematic of the continuous-time state-variable filter is given [Kami97]:

The poles of the filter are P1 = 2250. + 4465.13 i and P2 = 2250. - 4465.13 i

Figure 5-6: Schematic of the Continuous-Time State-Variable Filter
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The pole sensitivity of the filter is given in Table 35.

The natural response specifications are given in Table 36.

The sensitivities of the natural response specifications associated to circuit elements are com-

puted based on Eq. (5-10), Eq (5-20) and Eq. (5-21) and are given in Table 37. These sensitiv-

ities represent the element testability ET(h, SP). The absolute value of the damping ratio ζ

sensitivity is identical to the absolute value of the Q-factor sensitivity. Hence only Q-factor or

damping ratio ζ can be measured to test the parametric faults in the circuit elements R1, R6,

and R7 while the other elements can be tested by measuring the natural frequency ωn as shown

in Table 38.

Table 35: Pole sensitivities

h Sp1
h Sp2

h

R1 3.5 10-7 + 0.16796 i 3.5. 10-7 - 0.16796 i

R2 0.5 - 0.08398 i 0.5 + 0.08398 i

R3 - 0.5 + 0.25195 i - 0.5 - 0.25195 i

R4 - 0.5 - 0.25195 i - 0.5 + 0.25195 i

R5 - 0.5 - 0.08398 i - 0.5 + 0.08398 i

R6 3.15 10-7 - 0.35273 i 3.15 10-7 +0.3527 i

R7 - 3.15 10-7 + 0.35273 i - 3.15 10-7 - 0.35273 i

C1 - 0.5+ 0.25195 i - 0.5 - 0.25195 i

C2 - 0.5- 0.25195 i - 0.5 + 0.25195 i

Table 36: Natural response specifications

natural frequency ωn Q-factor damping ratio ζ

5000 1.1111 0.45

Table 37: Element testability of the circuits elements w.r.t. the natural response
specifications

h ET(h, ωn) ET(h, Q) ET(h, ζ)

R1 3.5 10-7 0.3333 -0.3333

R2 0.5 -0.1666 0.1666

R3 -0.5 0.5 -0.5
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As a result, The element testability of the resistors R1, R6, and R7 with respect to the ωn is

very low. Furthermore, since ωn sensitivity is related to the real part of the pole sensitivity, the

ambiguity groups with respect to the ωn are {R3, R4, C1, C2, R5}, {R1, R6, R7}, {R2}.

On the other hand, the element testability of the filter elements with respect to the Q-factor is

related to the imaginary part of the poles of the transfer function, thus the ambiguity groups

can be determined based on the imaginary part of the poles as {R1}, {R2, R5}, {R3, C1},

{R4,C4}, {R6}, {R7}. The specifications that have to be measured if the ambiguity groups are

taken into account and given in Table 39.

In order to compute the element testability using Eq. (5-18), the natural response specifica-

tions and their relative deviations are computed using the Saber simulator [Anal97] as given in

Table 40. The deviation of the filter elements is assumed to be equal to +10%.

R4 -0.5 -0.5 0.5

R5 -0.5 -0.1666 0.1666

R6 3.15 10-7 -0.7 0.7

R7 -3.15 10-7 0.7 -0.7

C1 -0.5 0.5 -0.5

C2 -0.5 -0.5 0.5

Table 38: The specifications that have to be measured

R1 R2 R3 R4 R5 R6 R7 C1 C2

Q or ζ ωn ωn, Q or ζ ωn, Q or ζ ωn Q or ζ Q or ζ ωn, Q or ζ ωn, Q or ζ

Table 39: The specifications that have to be measured

R1 R2 R3, C1 R4, C2 R5 R6 R7

Q or ζ ωn Q or ζ Q or ζ ωn Q or ζ Q or ζ

Table 37: Element testability of the circuits elements w.r.t. the natural response
specifications

h ET(h, ωn) ET(h, Q) ET(h, ζ)
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The element testability as a function of the relative deviation of the natural response specifica-

tions and the relative deviation of the circuit elements are given in Table 41 (∆h / h = 0.1). The

results in Table 41 are very close to the element testability reported in Table 37. However, the

sensitivity evaluation for each element h using Eq. (5-18) requires the formulation and solu-

tion of the system equations, resulting in high computational cost. Furthermore, the incremen-

tal values ∆SP/∆h tend toward the differential sensitivity only in the limit as ∆h --> 0, and a

very small value of ∆h in computations is precluded by roundoff errors. These difficulties are

avoided by using Eq. (5-17) as above discussed.

Table 40: Relative deviation of the natural response specifications

h actual ωn ∆ωn / ωn actual Q ∆Q / Q actual ζ ∆ζ / ζ

nominal 5000 0 1.1111 0 0.45 0

+10% in R1 5000 0 1.1458 0.03123 0.4363 -0.03044

+10% in R2 5244 0.0488 1.0925 -0.01674 0.45766 0.01702

+10% in R3 4767.3 -0.04654 1.1653 0.04878 0.429 -0.04666

+10% in R4 4767.3 -0.04654 1.0594 -0.04653 0.47196 0.0488

+10% in R5 4767.3 -0.0488 1.0925 -0.01674 0.45766 0.01702

+10% in R6 5000 0 1.0404 -0.06363 0.48 0.06666

+10% in R7 5000 0 1.1889 0.07 0.42056 -0.06666

+10% in C1 4767.3 -0.04654 1.1653 0.04878 0.429 -0.04666

+10% in C2 4767.3 -0.04654 1.0594 -0.04653 0.4719 0.0488

Table 41: Relative deviation of the natural response specifications computed by element
testability of the circuit elements w.r.t. ζ, Q, and ωn

h ET(h, ωn) ET(h, Q) ET(h, ζ)

R1 0 0.3123 -0.3044

R2 0.488 -0.1674 0.1702

R3 -0.4654 0.4878 -0.4666

R4 -0.4654 -0.04653 0.488

R5 -0.488 -0.1674 0.1702

R6 0 -0.6363 0.6666
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The step response of the continuous-time state-variable filter is shown in Figure 5-7

(u(t)=-1 volt).

The time-domain specifications are given in Table 42.

The element testability of the circuit elements with respect to the time-domain specifications is

computed by the equations given in Appendix A and given in Table 43.

R7 0 0.7 -0.6666

C1 -0.4654 0.4878 -0.4666

C2 -0.4654 -0.4653 0.488

Figure 5-7: Step response of the state-variable filter

Table 42: Time domain specifications

peak time tmax settling time ts overshoot OS% rise time tr

0.000703582 0.00142222 20.5346 0.000385

Table 43: Element testability of the circuit elements w.r.t. the time-domain specifications

h ET(h, tmax) ET(h, ts) ET(h, OS) ET(h, tr)

R1 -0.0846395 0.333332 0.661673 -0.194805

Table 41: Relative deviation of the natural response specifications computed by element
testability of the circuit elements w.r.t. ζ, Q, and ωn

h ET(h, ωn) ET(h, Q) ET(h, ζ)
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The filter elements can be tested by selecting the specification given in Table 44.

Note that the above selected measurements provide the maximum information about the ambi-

guity groups. In order to reduce the test cost by reducing the specification tests, the elements

R2 and R5 can be tested using only the rise time tr which provides a reasonable element test-

ability value of the element R2 (i.e. dropping the settling time ts does not affect the detectabil-

ity of the faults in R2 and R5).

The element testability of the circuit elements with respect to the time-domain specifications is

computed using Eq. (5-17) by Saber simulator [Anal97]. The element deviations is equal to

∆h/h = 0.1. The element testability is given in Table 45. By comparing the values in both

tables, we note that the element testability values reported in Table 45 are very close to the ele-

ment testability values in Table 43.

R2 -0.45768 -0.666663 -0.330833 -0.402598

R3 0.373041 0.999999 0.992511 0.20779

R4 0.626959 1.11111 10-6 -0.992511 0.792207

R5 0.542319 0.333332 -0.33084 0.597402

R6 0.177742 -0.699998 -1.38951 0.40909

R7 -0.177742 0.699998 1.38951 -0.40909

C1 0.373041 0.999999 0.992511 0.207793

C2 0.626959 1.11111 10-6 -0.992511 0.792207

Table 44: Measurement selection of the time-domain specifications

Element R1 R2 R3, C1 R4, C2 R5 R6 R7

SP OS ts OS OS tr OS OS

Table 45: Element testability of the circuit elements w.r.t. the time-domain specifications
computed by the relative deviation of the time-domain specifications

h ET(h, tmax) ET(h, ts) ET(h, OS%) ET(h, tr)

+10% in R1 -0.0752689 0.314004 0.615691 -0.177922

+10% in R2 -0.423458 0.624879 -0.334396 -0.370442

Table 43: Element testability of the circuit elements w.r.t. the time-domain specifications

h ET(h, tmax) ET(h, ts) ET(h, OS) ET(h, tr)
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The response of the LPO output of the filter in frequency-domain is shown in Figure 5-8.

The frequency-domain specifications of the low-pass filter (LPO) are given in Table 46.

+10% in R3 0.368805 1.00152 0.953177 0.202077

+10% in R4 0.623838 0.00138299 -0.940204 0.786415

+10% in R5 0.534136 0.312574 -0.329643 0.592453

+10% in R6 0.179649 -0.625 -1.27046 0.38961

+10% in R7 -0.159726 0.700019 1.37846 -0.38961

+10% in C1 0.368805 1.00152 0.953177 0.202077

+10% in R1 0.623838 0.00138299 -0.940204 0.786415

Figure 5-8: Frequency response (Bode plot) of the low-pass frequency output (LPO)

Table 46: Frequency-domain specifications of the LPO

peak resonant ωr peak resonant frequency Mr bandwidth BW

613.831 Hz 1.2442 1038.94 Hz

Table 45: Element testability of the circuit elements w.r.t. the time-domain specifications
computed by the relative deviation of the time-domain specifications

h ET(h, tmax) ET(h, ts) ET(h, OS%) ET(h, tr)
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The element testability of the circuit elements with respect to the frequency-domain specifica-

tions of the LPO are given in Table 47.

The filter elements can be tested using the specifications given in Table 48.

For test time reduction, the element R2 can be tested by ωr, hence the BW can be considered

as redundant measurement. Furthermore, we note that the resonant frequency ωr provides rea-

sonable element testability of the circuit elements, thus the circuit elements can be tested using

only the resonant frequency ωr.

The element testability of the circuit elements with respect to the frequency-domain specifica-

tions is computed using Eq. (5-17) by the Saber simulator. The element deviation is equal to

∆h/h = 0.1. The element testability is given in Table 49.

Table 47: Element testability of the circuit elements w.r.t. the frequency-domain
specifications of the LPO

h ET(h, ωr) ET(h, Mr) ET(h, BW)

R1 0.22689 0.248693 0.105891

R2 0.386555 -0.124345 0.447054

R3 -0.159665 0.37304 -0.341163

R4 -0.840335 -0.37304 -0.658837

R5 -0.61344 -0.124348 -0.552945

R6 -0.476469 -0.522256 -0.222371

R7 0.476469 0.522256 0.222371

C1 0.159665 0.37304 -0.341163

C2 -0.840335 -0.37304 -0.658837

Table 48: measurement section of the frequency-domain specifications

Element R1 R2 R3, C1 R4, C2 R5 R6 R7

SP Mr BW Mr ωr ωr Mr Mr

Table 49: Element testability of the LPO computed by the relative deviation of the
frequency-domain specifications

h ET(h, ωr) ET(h, Mr) ET(h, BW)

+10% in R1 0.202032 0.236372 0.127813
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By comparing the values in two tables, we note that the values reported in Table 50 are very

close to the values in Table 48.

5.3.2. Sallen-Key Bandpass Filter

The schematic of the Sallen-Key bandpass filter is shown in Figure 5-9 [Dai90].

The poles of the filter are P1 = -19309 - 153258 i and P2 = -19309 + 153258 i

+10% in R2 0.0364721 -0.12423 0.410167

+10% in R3 -0.174054 0.370182 -0.280967

+10% in R4 -0.794613 -0.342494 -0.672938

+10% in R5 -0.577472 -0.12423 -0.536158

+10% in R6 -0.480449 -0.498003 -0.302596

+10% in R7 0.429435 0.523482 0.27205

+10% in C1 -0.174054 0.370182 -0.280967

+10% in C2 -0.794613 -0.342494 -0.672938

Figure 5-9: The schematic of the Sallen-Key bandpass filter

Table 49: Element testability of the LPO computed by the relative deviation of the
frequency-domain specifications

h ET(h, ωr) ET(h, Mr) ET(h, BW)
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The pole sensitivities are given in Table 50.

The natural response specifications of the filter are given in Table 51.

The sensitivities of the natural response specifications are given in Table 53.

It is clear the filter elements can be tested by selecting the Q-factor or the damping ratio ζ

which also provides maximum information for fault identification for fault diagnosis.

The element testability of the filter elements with respect to the natural response specifications

computed using the relative deviation of the natural response specifications (computed using

Table 50: Pole sensitivities

h Sp1
h Sp2

h

R1 -0.0809061 + 0.11577 i -0.0809061 - 0.11577 i

R2 -0.419094 - 0.705268 i -0.419094 - 0.705268 i

R3 -0.5 + 0.589497 i -0.5 - 0.589497 i

R4 -0.652488 i +0.652488 i

R5 +0.652466 i -0.652466 i

C1 -0.5 - 0.263251 i -0.5 + 0.263251 i

C2 -0.5 + 0.263251 i -0.5 - 0.263251 i

Table 51:  Natural response specifications of the filter

natural frequency ωn Q-factor damping ratio ζ

154470 3.99995 0.125002

Table 52: Sensitivities of the natural response specifications

h ET(h, ωn) ET(h, Q) ET(h, ζ)

R1 -0.0809061 0.918888 -0.918888

R2 -0.419094 -5.59782 5.59782

R3 -0.5 4.67893 -4.67893

R4 0 -5.17872 5.17872

R5 0 5.17872 -5.17872

C1 -0.5 -2.08947 2.08947

C2 -0.5 2.08947 -2.08947
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the Saber simulator) are given in Table 54. In this case, the relative deviation of the filter ele-

ments is assumed to be equal to (∆h / h = 0.05).

The step response of the filter is shown in Figure 5-10.

Table 53: Element testability computed by relative deviation of the natural response
specifications

h ET(h, ωn) ET(h, Q) ET(h, ζ)

R1+5% -0.077685 0.918761 -0.918761

R2+5% -0.402667 -4.2798 4.2798

R3+5% -0.481647 5.90682 -5.90682

R4+5% 0 -3.9563 3.9563

R5+5% 0 6.98834 -6.98834

C1+5% -0.481647 -1.85527 1.85527

C2+5% -0.481647 2.26328 -2.26328

Figure 5-10: Step response of the Sallen-Key bandpass filter
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The time-domain specifications of the filter are given in Table 54.

The element testability of the circuit elements with respect to the time-domain specifications

are given in Table 55.

Clearly, the filter elements can be tested by selecting the settling time ts. The other specifica-

tions can be considered as redundant. However, the ambiguity groups {R3, R5} have to be

broken up by other measurements. In this case, a further measurement like e.g. rise time tr can

be selected for measurement.

The element testability of the filter elements with respect to the time-domain specifications

computed using the relative deviation of the time-domain specifications (computed using

Saber simulator) are given in Table 56. In this case, the relative deviation of the filter elements

is assumed to be equal to (∆h / h = 0.05).

Table 54: Time-domain specifications of the filter

peak time tmax (µsec) settling time ts (µsec) overshoot OS% rise time tr (µsec)

20.4987 165.728 67.3139 7.20205

Table 55: Element testability of the filter elements w.r.t. the time-domain specifications

h ET(h, tmax) ET(h, ts) ET(h, OS%) ET(h, tr)

R1 0.0663206 0.999794 0.369472 -0.177208

R2 0.507948 -5.17873 -2.25081 -1.99151

R3 0.425731 5.17893 1.88133 -0.814307

R4 0.082202 -5.17872 2.08229 1.4547

R5 -0.082202 5.17872 2.08229 -1.4547

C1 0.533166 1.58947 -0.840145 1.08693

C2 0.466834 2.58947 0.840145 -0.0869285

Table 56: Element testability computed using the relative deviation of the time-domain
specifications

h ET(h, tmax) ET(h, ts) ET(h, OS%) ET(h, tr)

R1+5% 0.0643121 1.00032 0.355959 -0.169716

R2+5% 0.511892 -3.95669 -2.08769 1.9718

R3+5% 0.428135 6.54603 1.92792 -0.818975
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The response of the filter in frequency domain is shown in figure 5-11.

The frequency-domain specifications of the filter are given in Table 57.

The element testability of the filter elements are given in Table 58.

R4+5% 0.0885387 -3.95688 -1.89973 1.38562

R5+5% 0.0711757 6.98793 2.18155 -1.45465

C1+5% 0.52858 -1.40738 -0.807507 1.08209

C2+5% 0.46221 2.81318 0.83264 -0.0917998

Figure 5-11: The response of the filter in frequency domain

Table 57: The frequency-domain specifications of the filter

low-frequency fL(Hz) high-frequency fH (Hz) bandwidth BW (Hz) fmax(Hz)

21702.9 27849.1 6146.17 24584.7

Table 58: Element testability of the filter elements w.r.t. the frequency-domain
specifications

h ET(h, fL) ET(h, fH) ET(h, BW) ET(h, fmax)

R1 0.0348487 -0.196661 -0.999794 -0.0809061

Table 56: Element testability computed using the relative deviation of the time-domain
specifications
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The filter elements can be tested by selecting the BW. However, the ambiguity groups {R2,

R4}, and {R3, R5} can be broken up by selecting another specification such as high-cutoff fre-

quency fH. The other specifications can be considered to be redundant.

The element testability of the filter elements with respect to the frequency-domain specifica-

tions computed using the relative deviation of the frequency-domain specifications (computed

using the Saber simulator) are given in Table 59. In this case, the relative deviation of the filter

elements is assumed to be equal to (∆h / h = 0.05).

The results in both Table 60 are closed to the results reported in Table 59.

The selection of the circuit specifications that have to be measured is so far considered for

each domain (i.e. the time-domain and the frequency-domain). However, the combination

between the specifications which need to be selected in the both domains is also possible.

R2 -1.12427 0.286079 5.17873 -0.419094

R3 0.089418 -1.08942 -5.17893 -0.5

R4 -0.652378 0.652378 5.17872 0

R5 0.652378 -0.652378 -5.17872 0

C1 -0.763216 -0.236784 1.58947 -0.5

C2 -0.236784 -0.763216 -2.58947 -0.5

Table 59: Element testability computed using the relative deviation of the frequency-
domain specification

h ET(h, fL) ET(h, fH) ET(h, BW) ET(h, fmax)

R1+5% 0.0311764 -0.185955 -0.952673 -0.077685

R2+5% -1.05191 0.268824 4.93251 -0.402667

R3+5% 0.0791327 -1.02676 -4.93183 -0.481647

R4+5% -0.601361 0.620004 4.9328 0

R5+5% 0.653958 -0.633252 -5.17856 0

C1+5% -0.727404 -0.232756 1.51391 -0.481647

C2+5% -0.233737 -0.726448 -2.46627 -0.481647

Table 58: Element testability of the filter elements w.r.t. the frequency-domain
specifications

h ET(h, fL) ET(h, fH) ET(h, BW) ET(h, fmax)
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5.4. Summary

In this chapter, we have presented a methodology for selecting the circuit specifications that

must be measured. The selected measurements can be utilized for obtaining high fault cover-

age or evaluating the test vectors in a fault simulator, reducing the test cost by reducing the

number of tests without affecting the fault coverage, and for breaking up the ambiguity groups

if the fault diagnosis is the goal of a test. The measurement selection algorithm is based on the

concept that is called the element testability. The element testability concept provides informa-

tion about the difficulty in testing the circuit elements (parametric faults caused by process

variation) with respect to circuit specifications as well as providing the information about the

effect of the variations of the circuit elements on the circuit specifications. The values of the

element testability can be easily obtained via the sensitivities of the circuit poles.

The measurement selection algorithm can be applied for first-order and second-order circuits

which form the basic of the construction of higher-order circuits. The measurement selection

algorithm for higher-order circuits is discussed in the next chapter.
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Chapter 6

Element Testability and Measurement Selection for
Higher-Order Circuits

6.1. Introduction

For higher-order circuits, we can no longer use the damping ratio ζ, the Q-factor, and the natu-

ral frequency ωn which are defined for prototype second-order systems. However, if the sys-

tem dynamics can be accurately represented by a pair of complex-conjugate dominant poles,

we can still use ζ, Q, and ωn to indicate the dynamics of the transient response.

In this chapter, we present an algorithm for element testability and measurement selection for

higher-order circuits that can be approximated by the second-order circuits. Then, the algo-

rithm discussed in the previous chapter for measurement selection can be employed in order to

reduce test time, improve fault coverage, and provide maximum information for fault identifi-

cation.

6.2. The algorithm

For higher order circuits, we have these two cases: (a) the higher order circuit has two com-

plex-conjugate dominant poles, and (b) the higher order circuit has no dominant pole.

a) The higher order circuit has two complex-conjugate dominant poles. In this case, the algo-

rithm for element testability and measurement selection can be summarized as follows:
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Step 1. Represent the higher-order circuits in the transfer function form in the Laplace

domain which can be generated using the circuit matrix or using the state-variable

equations as discussed in Section (4.2.1).

Step 2. Compute the poles of the transfer function by utilizing the QZ algorithm as dis-

cussed in Section (4.2.2).

Step 3. Consider the effect of the two complex-conjugate dominant poles and neglect the

effect of the other poles.

Step 4. Compute the natural response specifications (ζ, Q, ωn) based on the location of the

dominant poles.

Step 5. Select the desired specifications (in the time and frequency domains) which are

related to the natural response specifications.

Step 6. Compute the sensitivities of the dominant poles using the adjoint methods as dis-

cussed in Section (4.2.3).

Step 7. Compute the element testability of the circuit elements with respect to the desired

specifications based on the sensitivity of the natural response specifications.

Step 8. Select the measurements which correspond to the maximum element testability to

be performed to test parametric faults in circuit elements.

b) The higher order circuit has no dominant pole. In this case, the algorithm can be, thusly,

summarized:

Step 1. Approximate a higher-order circuit by a second-order circuit using model-order

reduction techniques. In our algorithm, a moment matching algorithm called the

asymptotic waveform evaluation (AWE) algorithm [Pill95] is used for approximat-

ing a higher-order circuit by a second-order one.

Step 2. Compute the natural response specifications (ζ, Q-factor, ωn) based on the location

of the approximate poles.

Step 3. Select the desired specifications (in the time and frequency domains) which are

related to the natural response specifications.

Step 4. Compute the pole sensitivities with respect to the elements of the original circuit

using the AWE algorithm.

Step 5. Compute the element testability of the circuit elements with respect to the desired

specifications based on the sensitivity of the natural response specifications.
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Step 6. Select the measurements which correspond to the maximum element testability to

be performed to test parametric faults in circuit elements.

The circuit representation and pole-zero calculation were discussed in Chapter 4, hence we

will discuss how the approximation of the a higher order circuit by a second-order one.

6.2.1. Dominant Poles

The location of the poles of a transfer function in the s-plan greatly affects the transient and

frequency responses of the system. It is important to extract the poles that have a dominant

effect on the system response. These poles are called dominant poles [Kou95].

The s-plan regions can be divided into two regions according to the dominant and insignificant

poles as shown in Figure 6.1. The poles that are close to the imaginary axis in the left-half s-

plan have a dominant effect on the time and frequency responses, whereas in contrast, the

poles that are far away from the imaginary axis have neglected effects on the time and fre-

quency responses. The distance D between the two regions can be determined if the value of

the real part of a pole is at least 5 to 10 times of a dominant poles [Kou95].

Example: Consider the following transfer function

The poles of the transfer function are P1 = -20, P2 = -2+i, P3 = -2-i. The effect of P1 can be

neglected. Then the approximate transfer function can be given as

Figure 6-1: Region of dominant and insignificant poles in the s-plan
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If a higher-order circuit can be approximated with reasonable accuracy by a second-order cir-

cuit, the natural response specifications described in the previous chapter can still employ it

for element testability computation and measurement section.

6.2.2. Model-Order Reduction

Model-order reduction techniques approximate the higher-order system by the lower-order

system with reasonable accuracy in order to reduce the effort of the analysis and the design.

The reduction is performed by extracting the dominant poles (eigenvalues) of higher-order cir-

cuits that have a dominant effect on the transient and frequency responses.

Moment matching used in the linear systems analysis as a method of model-order reduction

and is employed to extract a small set of dominant poles from a large network. The informa-

tion is obtained from the Taylor series and the Páde approximation of the original system.

Many algorithms of moment matching are proposed such as asymptotic waveform evaluation

(AWE) [Chip94, Pill95], Arnoldi algorithm [Silv95], and Lanczos algorithm [Feld95].

The asymptotic waveform evaluation (AWE) method can be easily understood and imple-

mented [Chip94, Pill95]. Moreover, AWE provides an efficient method for the sensitivity anal-

ysis which is the motivation for selecting this method.

AWE extracts a small approximate set of poles and residues, or a small approximate transfer

function; for a large network that may hundreds of actual poles. The CPU cost is approxi-

mately equal to a DC analysis of the network. In our algorithm, we will only extract the two

complex-conjugate dominant poles.

The AWE consists of two main steps: (1) moment generation, and (2) moment matching.

6.2.2.1. Moment Generation

The moments of the transfer function can be generated using either the modified nodal analy-

sis (MNA) formulation [Chip94] or the state space formulation [Pill95].

• MNA Formulation

The MNA of the linear network in the Laplace domain can be given

where Y(s) is the modified nodal matrix, X(s) is the solution vector which can be composed of

currents and voltages, and b is the source vector.

Y s( )[ ] X s( )[ ] b= (6-1)
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Y(s) and X(s) are a function of the complex frequency s. The system matrix Y(s) can be

expressed as Y = G + sC, where G and C are real matrices and s is the complex frequency vari-

able.

Expanding X(s) in a Maclaurin series yields

Equating like powers of s gives a recursive relationship for the moments:

Because the matrices G and C represent sparse matrices, the solution of Eq. (6-3) and Eq. (6-

4) can be accomplished efficiently. Furthermore, any invertible matrix G can be decomposed

into triangular matrices G = LU. Thus, the computational cost of the moments is equal to one

LU decomposition. This is approximately equal in CPU time to a DC solution of the circuit

equations.

The number of the moments necessary depends on the order of the approximation. In general,

when construction a q-pole approximate transfer function, 2q moments are needed.

• State Space Formulation

The differential state equations for a circuit driven by the single input u(t) are given

Applying the Laplace Transform to these equations yields

Assuming u(t) = δ(t) (U(s) = 1) and x(0) = 0 then

Expanding (I - sA-1)-1 about s = 0:

The vector of the coefficients of the powers of s are directly related to the moments of the

impulse response at all the state variables:

G sC+ M 0 M 1s M 2s
2 …+ + + b= (6-2)

GM 0 b=

GMi CMi 1––=

(6-3)

(6-4)

x ′ t( ) A x t( ) B u t( )⋅+⋅=

y t( ) C x t( ) D u t( )⋅+⋅=
(6-5)

sX s( ) x 0( )– AX s( ) BU s( )+=

Y s( ) CX s( ) DU s( )+=
(6-6)

X s( ) sI A–( ) 1–
B I sA

1–
–( ) A–( )[ ]

1–
B= =

X s( ) A
1–
I sA

1–
–( )

1–
B–=

(6-7)

X s( ) A
1–
I sA

1–
s

2
A

2–
s

3
A

3– …+ + + +( )B–= (6-8)
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The LU factorization of the matrix A is employed once to obtain the moment M0 and recur-

sively to obtain the higher moments Mi.

6.2.2.2. Moment Matching

The transfer function of a linear circuit can be expressed as

If the input is equal to the single impulse function δ(t), this leads to H(s) = Vout(s).

The transfer function in the complex frequency domain (the Laplace domain) can be expanded

as series in powers of s:

From the Eq. (6-11) and the Eq. (6-12) yields

The coefficients of the numerator ai’s can be expressed in terms of the moments Mi’s and the

denominator bi’s:

The coefficients of the denominator bi’s can be expressed in terms of the moments Mi’s and

given in matrix form:

M 0 A
1–
B–=

Mi A
i 1+( )–

B– A
1–
Mi 1–= =

(6-9)

(6-10)

H s( )
V out s( )
V in s( )
------------------

a0 a1 s a2 s
2 … am s

m+ + + +

1 b1 s b2 s
2 … bn sn+ + + +

---------------------------------------------------------------------== m n< (6-11)

H s( ) M 0 M 1s M 2s
2

M 3s
3 …+ + + += (6-12)

1 b1 s b2 s
2 …+ + +( ) M 0 M 1s M 2s

2
M 3s

3 …+ + + +( ) a0 a1 s a2 s
2 …+ + += (6-13)

a0 M 0=

a1 M 0b1 M 1+=

a2 M 0b2 M 1b1 M 2+ +=

…
aq M 0bq M 1bq 1– M 2bq 2– … Mq 1– b1 Mq+ + + + +=

(6-14)

M 0 M 1 … Mq 1–

M 1 M 2 … Mq

… … … …
Mq 1– Mq … M 2q 1–

bq
bq 1–

…
b1

Mq

Mq 1+

…
M 2q 1–

–= (6-15)

Mhbv Mv= (6-16)or
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where q is the order of the approximate transfer function which needs 2q moments to be com-

puted.

The poles pj of the approximate transfer function can be computed by finding the roots of the

denominator polynomial

The residues of the transfer function can be obtained using the following equation

The approximate transfer function can be expressed in pole-residue form as

In the time domain, an approximate impulse response can be given by

The steps involved in obtaining a low order approximation to a higher order circuit response

via moment matching can be summarized:

I) Find the 2q moments using the MNA formulation (Eq. (6-3) and Eq. (6-4)) or using the

state space formulation (Eq. (6-9) and Eq. (6-10)).

II) Obtain a set of polynomial coefficients {bq, bq-1, bq-2,..., b1} form the solution of q equa-

tions in q unknowns in terms of the 2q moments {M0, M1,..., M2q-1} using Eq. (6-15).

III) Obtain the roots of the resulting characteristic equation Eq. (6-17).

IV) Find corresponding residues by solving Eq. (6-18)

V) Compute the required time-domain response as a sum of q exponential (Eq. (6-20)).

6.2.3. Pole and Zero Sensitivity Calculation in AWE

The transfer function of a linear system can be expressed in form of a ratio of the two polyno-

mials namely the numerator and the denominator. The roots of the numerator and denominator

polynomials are the zeros and poles of the linear circuit, respectively.

D s( ) 1 b1 s b2 s
2 … bqs

q
+ + + += (6-17)

1 1 … 1

p1

1–
p2

1– … pq
1–

… … … …

p1

q– 1+
p1

q– 1+ … pq
q– 1+

k1

k2

…
kq

M 0

M 1

…
Mq 1–

= (6-18)

Hq s( )
ki

s pi–
-------------

i 1=

q

∑= (6-19)

h t( ) kie
pit

i 1=

q

∑= (6-20)
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In order to compute the root sensitivity of the polynomial P(s), first define the polynomial as

where bk is the coefficients of the polynomial P(s).

Then the polynomial P(s) is evaluated at a root pj, and the chain rule is applied to obtain the

root sensitivity:

where h is a circuit element.

Rearranging the Eq. (6-22) in terms of the pole sensitivity of interest,

Zero sensitivity can be computed in the same manner.

The sensitivity of the denominator coefficients can be calculated as follows:

The coefficients can be computed by inverting Mh

The coefficient sensitivities are given as (for simplicity the index of the coefficients b have

been not written)

Using the identity

the coefficient sensitivities are given as

The sensitivity of the numerator coefficients δa/δh can be computed by differentiating the Eq.

(6-14) with respect to the circuit elements.

P s( ) bks
k

k 0=

q

∑= (6-21)
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∂p j h∂
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q
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Mhbv Mv= (6-24)
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The moment sensitivity can be computed according to the MNA formulation (Eq. (6-3) and

Eq. (6-4)) or according to the state space formulation (Eq. (6-9) and Eq. (6-10)).

The moment sensitivity according to the state space formulation can be written as [Pill95]

where yT is the solution of the adjoint system given by the following equation.

where c is a column vector with all zeros and a 1 in the row corresponding to the node of inter-

est.

The sensitivities of the higher order moments can also be calculated recursively using the orig-

inal and adjoint solution. In summary

where yi is the vector for the ith adjoint solution:

On the other hand, the moment sensitivity can be computed using the MNA formulation. The

moments can be generated by

By differentiating these equations yields

For resistors (conductors), the moment sensitivity can be expressed as
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For capacitors and inductors, the moment sensitivity can be expressed as

In order to determine the moment sensitivity corresponding to one output, the moment sensi-

tivities are then multiplied by the vector dT, where dT is a column vector with all zeros and a

“1” corresponding to the output of interest.

The sensitivities of the approximate poles and zeros found by AWE show excellent correlation

with those of the original circuit and provide useful information in both the time and the fre-

quency domain [Lee92].

6.2.4. Element Testability and Measurement Selection

The concept of the element testability ET for higher-order circuits can be defined as the degree

of difficulty in testing a circuit element h with respect to a specification SP. Mathematically,

the element testability of the circuit elements with respect to the circuit specifications can be

expressed as:

where Sh
SP is the sensitivity of a specification SP with respect to the circuit element h.

The element testability provides the information about the effect of each element variation of

the circuit on the circuit specifications.

The element testability of the circuit elements with respect to the natural response specifica-

tions (the Q-factor, damping ratio ζ, and natural frequency ωn) can be expressed as a function

of the pole sensitivity

The sensitivities of the approximate poles reflect the effect of the variations of the circuit ele-

ments on the circuit specifications in the original circuit.
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The sensitivity formulas of time domain specifications are derived based on the above equa-

tions and the properties of the first-order sensitivity that are given in Appendix A. Then the

element testability ET(h, SP) of the circuit elements with respect to time-domain specifica-

tions is equal to the sensitivity of the time-domain specification SP associated to the circuit

elements (ET(h, SP) = Sh
SP).

The sensitivity of the frequency domain specifications as a function of the sensitivity of the

natural response specifications are given in Appendix A. These sensitively represent the ele-

ment testability ET(h, SP), where SP is a frequency-domain specification.

The specification that have to be measured to test the circuit element h is selected correspond-

ing to the maximum value of the element testability as

6.3. Simulation Examples

6.3.1. RLC Circuit

The schematic of the RLC circuit is given in Figure 6-2.

The poles of the RLC circuit are given in Table 60.

Figure 6-2: The schematic of the RLC circuit

Table 60: Poles of the original RLC circuit

P1 P2 P3 P4

-1678.71 + 12431.3 i -1678.71 - 12431.3 i -1321.29 + 39837.5 i -1321.29 - 39837.5 i

SP
h

max ET h SP,( )( )= (6-44)
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The moments of the approximate second-order circuit are given in Table 61.

The coefficients of the denominator are given in Table 62.

The poles of the second-order circuit (the roots of the polynomial P(s)=1+b1s+b2s2) are given

in Table 63.

The step responses of the original circuit and the approximate second-order circuit are shown

in Figure 6-3.

Table 61: Moments of the output

M0 M1 M2 M3

1 -0.000023 -6.491 10-9 2.86753 10-13

Table 62: The coefficients of the denominator polynomial

b1 b2

0.0000195812 6.94137 10-9

Table 63: The poles of the approximate second-order circuit

P1 P2

-1410.47 - 11919.5 i -1410.47 + 11919.5 i

Figure 6-3:.Step time response of the original and approximate circuits
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The natural response specifications (ωn, ζ, and Q) of the approximate second-order circuit

computed by the pole location of the approximate second-order circuit are given in Table 64.

The pole sensitivity of the approximate second-order circuit with respect to the original circuit

are given in Table 65.

The time domain specifications of the original circuit computed using the Saber simulator

[Anal97] are given in Table 66.

The time domain specifications of the approximate second-order circuit computed by Eq. (5-

12) to Eq (5-16) are given in Table 67.

Table 64: The natural response specifications of the approximate second-order circuit

ωn Q ζ

12002.7 4.25484 0.117513

Table 65: The pole sensitivities of the approximate second-order circuit

Sp1
h Sp2

h

R1 0.000226022 - 0.0147718 i 0.000226022 + 0.0147718 i

R2 0.00818852 - 0.104675 i 0.00818852 + 0.104675 i

C1 -0.0683852 + 0.0197076 i -0.0683852 - 0.0197076 i

C2 -0.427408 - 0.0794309 i -0.427408 + 0.0794309 i

L1 -0.213796 + 0.033687 i -0.213796 - 0.033687 i

L2 -0.290411 + 0.0260363 i -0.290411 - 0.0260363 i

Table 66: The time response specifications of the original circuits

tr ts OS% tmax

67.269 µsec 0.0018314 sec 67.181 278.08 µsec

Table 67: Time response specifications of the approximate circuit

tr ts OS% tmax

91.125 µsec 0.0022688 68.9531 263.567 µsec
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The sensitivities of the natural response specifications are given in Table 68.

The element testability of the circuit elements with respect to the time-domain specifications

are given in Table 69.

The specifications to be measured for testing the circuit elements are given in Table 70.

In order to reduce the test time by reducing the number of circuit specifications, the RLC cir-

cuit elements can be tested by selecting the settling time ts. The other specifications can be

considered as redundant.

In a similar manner, the element testability of the circuit elements with respect to the fre-

quency-domain specifications can be computed.

Table 68: Sensitivities of the natural response specifications

ωn Sensitivities  Q Sensitivities ζ Sensitivities

R1 0.000226022 0.124832 -0.124832

R2 0.00818852 0.884577 -0.884577

C1 -0.0683852 -0.166543 0.166543

C2 -0.427408 0.671248 0.671248

L1 -0.213796 -0.284679 0.284679

L2 -0.290411 -0.220025 0.220025

Table 69: Element testability of the filter elements w.r.t. the time-domain specifications

ET(h, tmax) ET(h, ts) ET(h, OS%) ET(h, tr)

R1 -0.00197362 -0.125058 -0.0470513 0.0333004

R2 -0.0205722 -0.892766 -0.333411 0.229384

C1 0.0707168 0.234929 0.0627728 0.0236564

C2 0.41801 -0.243841 -0.253004 0.607686

L1 0.217782 0.498476 0.1073 0.13734

L2 0.293491 0.510436 0.082931 0.231319

Table 70: Specifications to be measured

R1 R2 C1 C2 L1 L2

ts ts ts tr ts ts
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6.3.2. Leapfrog Filter

The schematic of the leapfrog is shown in Figure 6- 4 [Kami97]

The step response of the leapfrog filter is shown in Figure 6-5.

The poles of the filter are given in Table 71.

Figure 6- 4: The schematic of the leapfrog

Figure 6-5: Step response of the leapfrog filter

Table 71: The poles of the leapfrog filter

P1 P2 P3 P4

-5000.01 - 4999.97 i -5000.01 + 4999.97 i -5000.01 - 4999.98 i -5000.01 + 4999.98 i
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The poles of the approximate second-order circuits are given in Table 72.

The time domain specifications are given in Table 73.

The frequency response of the filter is shown in Figure 6-6.

The low-cutoff frequency is only selected as an example to be measured in the frequency

domain. Furthermore, we will combine the specifications of the time and frequency domain to

select the specifications that are needed to be measured.

Table 72: The pole of the approximate second-order circuit

P1 P2

-3750 - 3307.17 i -3750 + 3307.17 i

Table 73: The time domain specifications

rise time maximum overshoot settling time tmax

401.21 msec  7.1942% 0.0010604 sec  910.86 msec

Figure 6-6: Bode plot of the output of the leapfrog filter
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The sensitivities of the approximate poles are given in Table 74.

The element testability of the leapfrog filter elements is given in Table 75.

Table 74: The pole sensitivities of the approximate second-order filter

Sp1
h Sp2

h

R1 2.5 10-7 + 4.7245 10-7 i 2.5 10-7 - 4.7245 10-7 i

R2 0.25 + 0.47245 i 0.25 - 0.47245 i

R3 -0.375 - 0.236228 i -0.375 + 0.236228 i

R4 -0.375 - 0.236228 i -0.375 + 0.236228 i

R5 0.375 + 0.236228 i 0.375 - 0.236228 i

R6 -0.375 - 0.236228 i -0.375 + 0.236228 i

R7 -2.5 10-7 -2.5 10-7

R8 -0.375 - 0.236228 i -0.375 + 0.236228 i

R9 0.375 + 0.236228 i 0.375 - 0.236228 i

R10 0.25 + 0.47245 i 0.25 - 0.47245 i

R11 -0.375 - 0.236228 i -0.375 + 0.236228 i

R12 -0.375 - 0.236228 i -0.375 + 0.236228 i

C1 -0.12499 + 0.236228 i -0.12499 - 0.236228 i

C2 -0.375 - 0.236228 i -0.375 + 0.236228 i

C3 -0.375 - 0.236228 i -0.375 + 0.236228 i

C4 -0.12499 + 0.236228 i -0.12499 - 0.236228 i

Table 75: Element testability of leapfrog filter specifications

ET(h, ts) ET(h, tmax) ET(h, OS) ET(h, tr) ET(h, fL)

R1 1.66 10-7 -7.857 10-7 3.39 10-7 -5.42 10-7 5.62 10-7

R2 0.166659 -0.785711 3.39258 -0.542051 0.562105

R3 0.166659 0.642859 -1.69631 0.521027 -0.531055

R4 0.166659 0.642859 -1.69631 0.521027 -0.531055

R5 -0.166659 -0.642859 1.69631 -0.521027 0.531055

R6 0.166659 0.642859 -1.69631 0.521027 -0.531055

R7 2.5 10-7 2.5 10-7 0 2.5 10-7 -2.5 10-7

R8 0.166659 0.642859 -1.69631 0.521027 -0.531055

R9 -0.166659 -0.642859 1.69631 -0.521027 0.531055
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The specifications that need to be measured in order to test the circuit elements are given in

Table 76.

where UN indicates to that the element can not be tested (untestable elements).

Note that the circuit elements can be tested by selecting only the maximum overshoot OS% to

improve the fault coverage.

The resistors R1 and R7 are untestable using the above specifications. However, they can be

tested by computing the DC gain sensitivity with respect to the circuit elements as shown in

Table 77.

For fault diagnosis purpose, the ambiguity groups can be determined based on the algorithm

proposed in Chapter 4 and they are given in Table 78.

R10 0.166659 -0.785711 3.39258 -0.542051 0.562105

R11 0.166659 0.642859 -1.69631 0.521027 -0.531055

R12 0.166659 0.642859 -1.69631 0.521027 -0.531055

C1 0.333322 -0.142869 1.69631 -0.0210374 0.0310647

C2 0.166659 0.642859 -1.69631 0.521027 -0.531055

C3 0.166659 0.642859 -1.69631 0.521027 -0.531055

C4 0.333322 -0.142869 1.69631 -0.0210374 0.0310647

Table 76: Specifications to be measured

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 C1 C2 C3 C4

UN OS OS OS OS OS UN OS OS OS OS OS OS OS OS OS

Table 77: DC gain sensitivities

DC gain sensitivities with respect to the circuit elements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

-1 10-6 1 -10-6 10-6 0 -1 -2 10-6 2 10-6 2 10-6 -2 10-6 1

Table 78: Ambiguity groups

Groups 1 2 3 4 5 6 7 8 9

Elements R3, R4, R6, C2 R8, R11, R12, C3 R1, R7 R2 C4 R9 C1 R5 R10

Table 75: Element testability of leapfrog filter specifications

ET(h, ts) ET(h, tmax) ET(h, OS) ET(h, tr) ET(h, fL)
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6.4. Discussion

In this section, the difference between our method and the previous works will briefly be dis-

cussed.

The sensitivity analysis provides the relationship between the circuit elements and perfor-

mance specifications. This kind of analysis ensures both the structural and functional test

where the circuit elements are tested through verifying circuit functionality. In this sense, our

method is similar to the proposed method in [Slma95, Slam96]. However, the sensitivity anal-

ysis is a function of frequency as well as being the goal of the test method for improving fault

coverage by extracting the adequate frequency to test the circuit elements. Furthermore, this

method does not consider the reduction of the test time and the fault identification problem.

The fault observability concept is similar to our element testability concept. However, the

observability provides the difficulty in testing the circuit elements as a function of frequency,

whilst the element testability concept is independent of the frequency.

The authors in [Liu94, Fedi99, Pang01, Mane03] suggest an algorithm for determining the

ambiguity groups, and the authors in [Sten87, Spaa96b] propose an algorithm for reducing the

test cost by prediction of the circuit behavior. In contrast, our method can be employed for

reducing the test cost without sacrificing fault coverage. Furthermore, for the fault diagnosis

problem the ambiguity groups can be determined and specifications which can break them up

can be selected for measuring. The previous works mentioned mostly consider the transfer

function or the node voltages in the frequency domain for measuring. In contrast, our method

can select specifications in both the time and the frequency domain to be measured.

6.5. Summary

In this chapter, the concept of element testability which reflects the difficulty in testing of the

circuit elements for higher-order circuits was presented. Based on this concept, the circuit

specifications that need to be measured can be selected in order to reduce the test cost by

reducing the number of circuit specifications. The higher-order circuit is approximated by the

second-order one, then the element testability can be obtained based on the pole sensitivities

of the approximate second-order circuit which reflect the effect of the variations of the original

circuit elements on the circuit specifications. For the fault identification problem, the ambigu-

ity groups can be determined using the algorithm proposed in Chapter 4.
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Chapter 7

Testability Analysis of Nonlinear Circuits

7.1. Introduction

In this chapter, we will extend the ambiguity groups determination and measurement selection

algorithms proposed in the previous chapters for linear analog circuits to cover nonlinear ana-

log circuits. The ambiguity groups determination algorithm for nonlinear circuits is also based

on the sensitivities of the poles and zeros of the linearized circuit. The measurement selection

algorithm is based on the testability of the parameters of the linearized circuits which can be

obtained relying on the pole and zero sensitivities. This algorithm can be also employed to

improve the fault coverage and to reduce the test cost by reducing the number of specifications

that have to be measured.

The measurement selection algorithm proposed in [Milo94, Chao97] to improve the fault cov-

erage and to reduce the test cost by reducing the number of the specifications that have to be

measured. This algorithm does not provide the complete link between circuit specifications

and the circuit parameters (functional test). Furthermore, the selected measurements can not

be completely utilized for the fault identification problem. In contrast, our method provides

the complete link between circuit specifications and circuit parameters. In other words, the cir-

cuit parameters are tested through checking the circuit specifications. Also, the ambiguity

groups can be determined for fault diagnosis purpose.
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7.2. Testability Analysis Algorithm

The algorithm of testability analysis for nonlinear circuits is shown in Figure 7-1.

In step 1, a nonlinear circuit is linearized around an operating point by replacing the nonlinear

elements by their small-signal models. The linearized circuit is represented by its transfer

function in the Laplace domain as a function of the complex frequency s.

In step 2, the pole and zero analysis is performed using the QZ algorithm (cf. Chapter 4). If the

linearized circuit has a dominant pole, the effect of this pole is considered and effect of the

other poles is neglected.

In step 3, the sensitivities of the poles and zeros are computed by utilizing symbolic analysis

(cf. Chapter 2).

In step 4, the ambiguity groups is determined based on the pole-zero sensitivities.

Figure 7-1: Testability analysis algorithm
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In step 5, specifications that can be computed relying on the poles and zeros of the transfer

function are determined. In this chapter, we will only consider the frequency-domain specifi-

cations. However, the time-domain specifications can be used in the similar manner.

In step 6, the parameter testability of the circuit parameters with respect to the circuit specifi-

cations is computed. In this chapter, the term parameter instead of the term element is used.

Because the linearized circuit includes the elements such as resistor and capacitors as well as

the parameters such as β (the forward gain current for BJT transistors) and gm (the transcon-

ductance for MOSFET transistors). The term parameter is more general than the term element,

it can mean the circuit elements or other circuit parameters.

In step 7, the specifications that correspond to the maximum parameter testability are selected

to be measured in order to test the circuit parameters.

7.2.1. Circuit Linearization and Description

A linearized analog circuit will be represented in the s-domain. In the s-domain analysis a

capacitance C is replaced by an admittance sC, and an inductance L is replaced by an imped-

ance sL. The nonlinear devices such as diods and transistors are replaced by their small-signal

models. The DC analysis is required for determining the operating point of the circuit and for

computing the parameters of the small-signal models at the operating point. The equations of

the linearized circuit are expressed in matrix form using modified nodal analysis as

where Y is the admittance matrix, x is the vector of circuit variables (voltages or currents), and

b is the source vector.

According to the Cramer’s rule, the transfer function can be expressed as the ratio of the deter-

minant ∆(s) and some cofactors ∆ij(s) of the modified nodal matrix and given as

Or the transfer function can be expressed in pole-zero form as

Y[ ] x[ ] b[ ]= (7-1)

H s( ) ∆ij s( )
∆ s( )

-------------- a0 a1 s a2 s … am s
m+ + + +

b0 b1 s b2 s … bns
n+ + + +

------------------------------------------------------------------== m n< (7-2)

H s( ) N s( )
D s( )
------------ Am

s z1–( ) s z2–( )… s zm–( )
s p1–( ) s p2–( )… s pn–( )

---------------------------------------------------------------- Am

s zi–( )
i 1=

m

∏

s pi–( )
i 1=

n

∏
---------------------------== = (7-3)
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where n and m are the number of the poles and zeros, respectively, and the Am is equal to the

ratio of the coefficients am / bn (Am is called the midband gain for amplifier circuits [Sed98]).

7.2.2. Pole and Zero Analysis

The poles and zeros of the system are computed by invoking the QZ algorithm as discussed in

Chapter 4.

The locations of the poles of the transfer function in the s-plane greatly affect the frequency

and transient responses of the system. Therefore, it is important to sort out the poles that have

a dominant effect on the frequency and transient responses; these poles are called dominant

poles [Kuo95]. As a result, the behavior of higher-order systems can be approximated by

lower-order ones by considering only the effect of the dominant poles and neglecting the effect

of the other poles. As a rule of thumb, the dominant pole is determined if this pole is separated

from the nearest pole by at least two octaves (that is, a factor of four) [Sedr98].

7.2.3. Pole and Zero Sensitivity

In this chapter, we will employ the symbolic analysis (cf. Chapter 2). The simplification tech-

niques such as simplification before generation or simplification after generation [Half03],

which are used for symbolic analysis, can be utilized in order to generate an approximate

transfer function. The poles of the approximate transfer function can be obtained symbolically

by solving the denominator polynomial of the approximate transfer function with respect to

the complex frequency s (i.e. finding the roots of the denominator polynomial) [Anal01,

Somm03] or by exploiting the symbolic pole/zero approximation [Henn98]. The zeros of the

approximate transfer function can be obtained by finding the roots of the nominator polyno-

mial. The normalized differential sensitivities of the poles and zeros can be computed by

applying these equations:

If the pole is given by the real and imaginary parts p = σ + jω, the normalized sensitivity

becomes (the same formula is valid for the sensitivity of zeros of the transfer function))

Sh
z h

z
---
h∂

∂z
= (7-4)

Sh
p h

z
---
h∂

∂p
= (7-5)

Sh
p h
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h∂
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h
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h∂

∂ω⋅+ Sh
σ

j Sh
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7.2.4. Ambiguity Groups

The ambiguity group is defined as the groups of circuits element which cannot be distin-

guished from each other by measurements made at the designed test nodes and test conditions

[Dai90]. The ambiguity groups can be determined as follows:

If the pole and zero sensitivities with respect to the parameter h1 are the same as the pole and

zero sensitivities with respect to the parameter h2, leading that the parameter h1 and parame-

ter h2 to belong to the same ambiguity group.

Mathematically, the parameters h1 and h2 belong to the same the ambiguity group if

where i = 1, 2,..., n and j = 1,2,..., m.

The ambiguity group can be generalized if the sensitivity of the midband gain AM is taken into

account. In this way, the frequency response is fully considered. The sensitivity of midband

gain AM with respect to the circuit parameters can be computed by analyzing the linearized

circuit with the assumption that no storage elements in midband region is considered. The

ambiguity groups associated to the midband gain AM are determined as follows:

If the midband gain sensitivities with respect to the parameter h1 is the same as the midband

gain sensitivities with respect to the parameter h2, leading the parameter h1 and parameter h2

to belong to the same ambiguity group.

The total ambiguity groups can be mathematically determined by the intersection of the pole-

zero ambiguity groups and midband ambiguity groups.

7.2.5. Frequency-Domain Specifications

In this section we will discuss the frequency-domain specifications of the amplifier circuits as

described in [Sedr98], a simple examples for amplifier circuits are shown in Figure 7-2.

Sh1

pi Sh2

pi= Sh1

z j Sh2

z j= (7-7)
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The transfer function of the linearized circuit as a function of the complex frequency s can be

expressed in the general form as (band-pass function)

where AM is the midband gain, HLF(s) is the low-pass response with the low cutoff frequency

ωL, and HHF(s) is the high-pass response with the high cutoff frequency ωH. The ωL and ωH

are the frequencies at which the magnitude drops by 3 dB below the midband value as shown

in Figure 7-3. The bandwidth is defined as BW = ωH − ωL. For frequencies ω much greater

than ωL the function HLF(s) approaches to unity. Similarly, for frequencies ω much smaller

than ωH the function HHF(s) approaches to unity. Thus, for ωL << ω << ωH the transfer func-

tion becomes

The midband gain AM is determined by analyzing the equivalent circuit (linearized circuit)

with the assumption that the external capacitors (e.g. the coupling and bypass capacitors in

amplifier circuits) are acting as short circuits and the internal capacitors of the transistor model

are acting as open circuits. The midband gain AM can be computed from the transfer function

by approaching the complex frequency s to infinity.

Figure 7-2: Simple examples for amplifier circuits
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The low-frequency and high-frequency transfer functions can be expressed as

The low-frequency transfer function AL(s) is determined by analyzing the linearized circuit

including the external capacitors (e.g. the coupling and bypass capacitors in amplifier circuits)

but assuming that the transistor-model capacitors behave as perfect open circuits. On the other

hand, the high-frequency transfer function AH(s) is determined by analyzing the linearized cir-

cuit including the transistor-model capacitors but assuming the external capacitors behave as

perfect short circuits.

7.2.5.1. The Low-Frequency Response

The low-frequency transfer function can be expressed in general form as

where ωp1, ωp2,..., ωpn are the low-frequency poles and ωz1, ωz2,..., ωzn are the low-frequency

zeros. The low-frequency transfer function HLF(s) approaches to unity as s approaches to

infinity, thus AL(s) ≅  AM.

If the ωp1 is much higher than the all other low poles (ωp1 >> ωp2,..., ωpn, ωz1, ωz2,..., ωzn), the

low-frequency transfer function can be approximated by

Figure 7-3: Furnace response of the linearized nonlinear circuit
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where ωp1 is the dominant low-frequency pole. HLF(s) is the transfer function of a first-order

high-pass network.

In this case the low-frequency response is dominated by the low-frequency pole at s = ωp1 and

the low-cutoff frequency (lower 3-dB frequency) is approximated by

If a dominant low-frequency pole does not exist, an approximate formula can be driven for ωL

in terms of the poles and zeros and given [Sedr98].

7.2.5.2. The High-Frequency Response

The high-frequency transfer function can be expressed in general form as

where ωp1, ωp2,..., ωpn are the high-frequency poles and ωz1, ωz2,..., ωzn are the high-fre-

quency zeros. The high-frequency transfer function HHF(s) approaches to unity as the com-

plex frequency s approaches to infinity, thus AH(s) ≅  AM.

If the ωp1 is much lower than the all other high poles (ωp1 << ωp2,..., ωpn, ωz1, ωz2,..., ωzn), the

low-frequency transfer function can be approximated by

where ωp1 is the dominant high-frequency pole. HLF(s) is the transfer function of a first-order

low-pass network.

In this case the high-frequency response is dominated by the high-frequency pole at s = ωp1

and the high-cutoff frequency (upper 3-dB frequency) is approximated by
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If a dominant low-frequency pole does not exist, an approximate formula can be driven for ωH

in terms of the poles and zeros and given [Sedr98]

7.2.6. Parameter Testability and Measurement Selection

Parameter testability is defined as the relative degree of difficulty in testing a circuit parameter

h with respect to a specification SP. Parameter testability also provides the information about

the effect of the circuit parameters on the circuit specifications. Mathematically, the parameter

testability can be expressed as:

The sensitivity of low-cutoff frequency is approximately equal to the sensitivity of the domi-

nant low-frequency pole ωpL

If the circuit has no dominant pole, the sensitivity of the low-cutoff frequency can be com-

puted based on Eq. (7-20) and first-order sensitivity properties given in Appendix A as fol-

lows:

The sensitivity of high-cutoff frequency is approximately equal to the sensitivity of the domi-

nant high-frequency pole ωpH

or

The parameter testability PT(h, SP) can be expressed for linearized circuits for small parame-

ter deviation (small ∆h) as a function of the relative deviation of a specification SP and a rela-

tive deviation of the circuit parameter h as:
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However, as mentioned in Chapter 5, the computational cost is very high.

The specifications that have to be measured in order to test the parameter h is selected corre-

sponding to the maximum absolute value of the parameter testability values

7.3. Simulation Examples

For the first and the second examples the sensitivities of the poles and zeros of the transfer

function can be obtained using symbolic analysis. However, it is not possible to obtain the

poles and zeros sensitivities for the µA741 operation amplifier using the symbolic analysis.

Therefore, the approximation technique is used to obtain the symbolic form of the dominant

pole of the µA741 operation amplifier.

7.3.1. The Simple Common-Emitter Amplifier

The schematic of the common-emitter amplifier is shown in Figure 7-4 [Sed98].

Figure 7-4: The schematic of the common-emitter amplifier
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The small-signal transistor model is shown in Figure 7-5.

The frequency response of the common-emitter amplifier is shown in Figure 7-6 (without con-

sidering the effect of the internal capacitors).

.

The poles, zeros and midband gain of the common-emitter amplifies are given in Table 79.

Figure 7-5: Simple small-signal model for BJT

Figure 7-6: The frequency response of the common-emitter amplifier

Table 79: The poles zeros and midband gain of the common-emitter amplifier

P1 P2 P3 P4 Z1 AM

-452.206 -76.0989 -22.7273 -6 107 -5.34188 35.0655 dB

E
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CBE ROVBE

β IB
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0.0
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200.0
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The low-frequency dominant pole is ωL ≅ P1 = 452.206 (the absolute value of dominant pole

P1), the low-cutoff frequency can be obtain fL = 71.9708 Hz. The high-frequency dominant

pole is ωH ≅  P4 = 6 107, the high-cutoff frequency is fH = 9.54929 106 Hz.

The sensitivities of the poles, zero and midband gain with respect to the circuit parameters are

given in Table 80.

where (--) denotes that the capacitor is not considered.

We must note that the internal capacitors are not considered by the low frequency analysis,

therefore, they have no effect on the low-cutoff frequency. On the other hand, the external

capacitors have no effect on the high-cutoff frequency.

The ambiguity group according to the dominant low-frequency pole is {RC, RL, RO, C2} (by

applying a low-frequency input signal) (cf. Section 7.2.4.). The testable parameters are {R1,

R2, RE, C1, CE, β, RBE}.

The ambiguity groups according to the dominant high-frequency pole are {R1, R2, RE, β, RBE,

CBE}, {RC, RL, RO} (by applying a high-frequency input signal).

Table 80: The sensitivities of the poles, zero and midband gain

Sp1
h Sp2

h Sp3
h Sp4

h SZ
h SAM

h

R1 -0.0456239 -0.0607254 0 0 0 0

R2 -0.373287 -0.496844 0 0 0 0

RC 0 0 -0.5 -0.333333 0 0.5

RE -0.00216173 -0.0573508 0 0 -1 0

RL 0 0 -0.5 -0.333333 0 0.5

C1 -0.817003 -0.182997 0 -- 0 --

C2 0 0 -1 -- 0 --

CE -0.182997 -0.817003 0 -- -1 --

β 0.179935 0.755873 0 0 0 1

RBE -0.578928 -0.38508 0 0 0 -1

CBE -- -- -- 0 0 --

CBC -- -- -- -1 0 --

RO 0 0 0 -0.333333 0 0
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The ambiguity groups according to the zero are {RE, CE}, {R1, R2, RC, RL, RB, C1, C2, β}.

The ambiguity groups according to the AM are {R1, R2, RE}, {RC, RL}.

The total ambiguity groups is {RC, RL,}

Untestable parameters are CBE and C2.

The parameter testability of the circuit parameters with respect to the low-cutoff frequency,

high-cutoff frequency and midband gain is given in Table 81.

The specifications to be measured for testing the circuit parameters are given in Table 82.

where UN indicates to that the parameter can not be tested (untestable parameters) considering

the above specifications.

Table 81: The parameter testability

PT(h, fL) PT(h, fH) PT(h, ΑM)

R1 -0.0456239 0 0

R2 -0.373287 0 0

RC 0 -0.333333 0.5

RE -0.00216173 0 0

RL 0 -0.333333 0.5

C1 -0.817003 0 0

C2 0 0 0

CE -0.182997 0 0

β 0.179935 0 1

RBE -0.578928 0 -1

CBE 0 0 0

CBC 0 -1 0

RO 0 -0.333333 0

Table 82: The specifications to be measured

R1 R2 RC RE RL C1 C2 CE β RBE CBE CBC RO

 fL  fL ΑM  fL ΑM  fL UN  fL ΑM ΑM UN  fH  fH
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The relative deviation of the low-cutoff frequency, high-cutoff frequency and midband gain

are computed using Saber simulator [Anal97] and given in Table 83 (∆h/h = 0.1)

The parameter testability of the circuit parameters computed by Eq. (7-26) is given in Table

84. Clearly, the results in Table 84 are close to the results in Table 81.

Table 83: The relative deviation of the fL, fH, and AM

fL ∆fL/fL fH ∆fH/fH AM ∆AM/AM

nominal 73.0723 0 9.54929 106 0 -33.3333 0

R1 +10% 72.7675 -0.00417121 9.54929 106 0 -33.3333 0

R2 +10% 70.5953 -0.0338983 9.54929 106 0 -33.3333 0

RC +10% 73.064 -0.000113912 9.2599 106 -0.0303 -34.9206 0.05

RE +10% 73.048 -0.000333368 9.54929 106 0 -33.3333 0

RL +10% 73.064 -0.000113912 9.2599 106 -0.0303 -34.9206 0.05

C1 +10% 67.7939 -0.0722354 0 0 0 0

C2 +10% 73.0568 -0.000212657 0 0 0 0

CE +10% 71.911 -0.015893 9.54929 106 0 -33.3333 0

β +10% 74.5187 0.0197933 9.54929 106 0 -36.6667 0.1

RBE +10% 69.2951 -0.0516916 9.54929 106 0 -30.303 -0.1

CBE +10% 0 0 9.54929 106 0 0 0

CBC +10% 0 0 -8.68118 106 -0.0909 0 0

RO +10% 0 0 9.2599 106 -0.0303 0 0

Table 84: The element testability computed using Eq. (7-26)

PT(h, fL) PT(h, fH) PT(h, ΑM)

R1 +10% -0.0417121 0 0

R2 +10% -0.338983 0 0

RC +10% -0.00113912 -0.303 0.5

RE +10% -0.000333368 0 0

RL +10% -0.00113912 -0.303 0.5

C1 +10% -0.722354 0 0

C2 +10% -0.00212657 0 0
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7.3.2. The CMOS Differential Amplifier

The schematic of the single-ended CMOS differential amplifier is shown in Figure 7-7.

The transistor model which is used for the differential amplifier is given in Figure 7-8.

CE +10% -0.15893 0 0

β +10% 0.197933 0 1

RBE +10% -0.516916 0 -1

CBE +10% 0 0 0

CBC +10% 0 -0.909 0

RO +10% 0 -0.303 0

Figure 7-7: The schematic of the single-ended CMOS differential amplifier [Ana01]

Figure 7-8: The transistor model of the differential amplifier

Table 84: The element testability computed using Eq. (7-26)

PT(h, fL) PT(h, fH) PT(h, ΑM)

CL=10-13F

V1 = 1 V2 = 0

M3 M4

M1 M2

Ibias = 0

Vdd

output

1

3

2

4

5

S

DG

Cgd

Cgs Gdg

gmVgs

Vgs
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The poles of the differential amplifier are given in Table 85.

The high-frequency ωH is approximately equal to the dominant pole P1 (a high-pass response).

The pole sensitivities are given in Table 86.

The parameter testability of the differential amplifier parameters with respect to the high-fre-

quency dominant pole ωL and DC gain are given in Table 87.

Table 85: The poles of the differential amplifier

P1 P2 P3

-4.947422 106 -1.27509 108 -2.22303 108

Table 86: The pole sensitivities

SP1
h SP2

h SP1
h

GdsM1 0.0009105 0.00554056 -0.00160714

CgdM1 -0.000129784 -0.00136369 -0.0622911

CgsM1 0.0000576776 -0.484706 -0.0153517

gmM1 0.141887 0.483205 0.00813672

GdsM2 0.278479 0.012066 -0.0142175

CgdM2 -0.180272 -0.00314871 -0.0419516

CgsM2 0.0000576776 -0.484706 -0.0153517

gmM2 -0.142002 0.481335 0.0224124

GdsM3 0.000517439 0.000121001 0.00963608

CgdM3 0 0 0

CgsM3 -0.000901998 -0.00947766 -0.432923

gmM3 0.0428903 0.0100297 0.798732

GdsM4 0.71873 0.000279386 0.00648967

CgdM4 0.36723 0.000751493 0.105671

CgsM4 -0.000901998 -0.00947766 -0.432923

gmM4 -0.0414128 0.00742257 0.170418

CL -0.450679 -0.00787178 -0.104879

Table 87: The element testability with respect to the ωH and DC gain

PT(h, ωH) PT(h, DC gain)

GdsM1 0.0009105 -0.00484391
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where N indicates to that the parameter is not considered for this specification.

The ambiguity group according to the high-frequency ωH is {GdsM1, CgdM1, CgsM1,

CgsM2, CgsM3, GdsM3, CgsM4}. Note that the parameters in this group are not testable

since their effect on the high-frequency ωH is neglected.

The ambiguity groups according to the DC gain are {GdsM1, GdsM3} and {gmM1, gmM4}

(the capacitors are not considered).

The selected specifications to be measured to test the capacitor CL and small-signal parameters

of the differential amplifier are given in Table 88.

CgdM1 -0.000129784 N

CgsM1 0.0000576776 N

gmM1 0.141887 0.366771

GdsM2 0.278479 -0.271303

CgdM2 -0.180272 N

CgsM2 0.0000576776 N

gmM2 -0.142002 0.633229

GdsM3 0.000517439 -0.00427858

CgdM3 0 N

CgsM3 -0.000901998 N

gmM3 0.0428903 -0.35465

GdsM4 0.71873 -0.725499

CgdM4 0.36723 N

CgsM4 -0.000901998 N

gmM4 -0.0414128 0.360575

CL -0.450679 N

Table 88: The selected specifications

GdsM4 CL CgdM4 GdsM2 CgdM2 gmM1 gmM2 gmM3 gmM4

ωH,

DC gain
ωH ωH ωH,

DC gain
ωH DC gain DC gain DC gain DC gain

Table 87: The element testability with respect to the ωH and DC gain

PT(h, ωH) PT(h, DC gain)
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The other parameters are not testable with respect to the high-frequency dominant pole and

DC gain because their effect on the above specification can be neglected. Note that the transis-

tor M3 is difficult to test it considering the high-cutoff frequency and DC gain due to the low

values of their parameter testability.

The symbolic formula of the approximate pole of the differential amplifier can be obtained

using the combination of the simplification before generation SBG and simplification after

generation (SAG). This formula is given in [Ana01] and can be rewritten as

The sensitivities of the approximate pole with respect to the capacitor CL and small-signal

parameters of the differential amplifier is given in Table 89. The results in Table 89 are very

close to the results in Table 87.

7.3.3. The Operation Amplifier µA741

The schematic of the µA741 operation amplifier is shown in Figure 7-9 [Anal01].

Table 89: The sensitivities of the approximate pole

CgdM2 CgdM4 CL GdsM2 GdsM4 gmM1 gmM2 gmM3 gmM4

Sens. -0.181 -0.363 -0.454 0.2761 0.7238 0.138 -0.138 0.0437 -0.043

Figure 7-9: The schematic of the µA741 operation amplifier
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The small-signal transistor mode is shown in Figure 7-8 [Anal01].

The symbolic formula of the low-cutoff frequency is given

The parameter testability with respect to the low-cutoff frequency and DC gain is given in

Table 90.

The ambiguity groups according to the low-cutoff frequency are {gmQ16, RpiQ16} and

{gmQ17, RpiQ17}. In other words, the parametric faults in the transistor Q16 and the transis-

Figure 7-8: Simple small-signal model for BJT’s

Table 90: Parameter testability w.r.t. low-cutoff frequency and DC gain

parameter PT(h, ωL) PT(h, DC gain)

R8 0.512703 -0.512703

R9 -0.211975 0.211975

C1 -1 --

gmQ16 -0.699273 0.699273

gmQ17 -0.487297 0.487297

RoQ4 -0.300727 0.300727

RoQ131 -0.712589 0.712589

RoQ17 -0.287411 0.287411

RpiQ16 -0.699273 0.699273

RpiQ17 -0.487297 0.487297

gmQ2 -- 0.497409

gmQ4 -- 0.502591

E

CB

RPI

CBC

CBE ROVPI
gm VPI

CJS

S
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C1gmQ16gmQ17R9RoQ131RoQ17RoQ4RpiQ16RpiQ17

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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tor Q17 can not be distinguished. The ambiguity groups according to the DC gain is {R13,

gmQ14}. The rest of the circuit parameters are not testable with considering the low-cutoff

frequency and the DC gain. Some testability parameters values of the low-cutoff frequency

and the DC gain are close to each others (absolute value). This can be interpreted as being due

to the low value of the low-cutoff frequency (3.1 Hz). The measurements that have to be per-

formed in order to test the above parameters can be selected according to the maximum values

of the parameter testability.

Further measurements have to be performed for testing other parameters. For example by mea-

suring the DC voltage across the resistor R4 (assuming it is accessible), the parameters

(gmQ1, gmQ2, gmQ3, gmQ4, gmRoQ10, gmQ10) can be tested.

7.4. Summary

In this chapter, the ambiguity groups and the measurement selection of the nonlinear circuits

that can be linearized were discussed. The ambiguity groups are determined based on the pole

and zero sensitivities. If the variations of two parameters affect the poles and zeros of the

transfer function in the same way, this means these parameters belong to the same ambiguity

groups.

The measurement selection is based on the parameter testability concept. The parameter test-

ability is calculated based on the pole sensitivities with respect to the circuit parameters. In our

examples, the dominant pole case was discussed. If the circuit has no dominant pole, the

approximation techniques such as AWE (cf. Chapter 6) or symbolic simplification techniques

[Anal01] for linearized circuits can be utilized.

Our algorithm can be utilized to reduce test time without sacrificing fault coverage, and to pro-

vide maximum information for fault identification.
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Chapter 8

Conclusion

In this thesis we have presented a methodology for the testability analysis and the measure-

ment selection for linear and linearized analog circuits. This methodology is based on the

well-known pole and zero analysis and their sensitivities. Parametric faults which are difficult

to be tested and detected are considered in this thesis.

In the fault diagnosis two phases can be considered: the first one is the phase of the testability

analysis, while the second one is the phase of fault location. The testability analysis gives prior

information about the degree of solvability of the fault diagnosis problem. Such information

includes the number of testable and nontestable elements of a circuit, ambiguity groups, and

nodes to be tested. The degree of the solvability of the fault diagnosis problem can be quanti-

fied by the testability measure concept. The testability measure is mathematically evaluated by

the maximum number of linearly independent columns of the Jacobian matrix which is con-

structed by the derivative of the circuit performances with respect to the circuit elements. If the

rank of the Jacobian matrix is equal to the number of circuit elements, this indicates that all

faults in circuit elements can be identified. Otherwise, additional test nodes must be added or

the number of testable elements must be reduced to be equal to the rank of the matrix. Such

circuits are called low testability circuits. In low testability circuits, the testability analysis is

strictly tied to the ambiguity group concept. The ambiguity groups consist of circuit elements

that produce the same value of measurements. These elements can be determined by the lin-

early dependent columns of the Jacobian matrix.
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In this thesis, a novel algorithm for the testability measure and the ambiguity groups determi-

nation was proposed in Chapter 4. This algorithm is based on the pole and zero analysis and

the pole-zero sensitivity analysis. Unlike the other methods that depend on numerical methods

such as QR factorization or SVD decomposition.

We have shown that the testability measure (the number of the testable elements of a circuit) is

related to the number of the poles and zeros of the transfer function at a certain node as well as

to the DC gain at this node. Furthermore, the relationship between the testability measure,

which is computed based on pole and zero analysis, and controllability/observability concepts

from control theory is discussed. The controllable (or noncontrollable) and observable (or

nonobservable) states which are represented by voltages or currents of storage elements

(capacitors and inductors) in linear analog circuits can be determined using pole-zero sensitiv-

ity analysis.

In our method, the ambiguity groups can easily be determined based on the pole and zero sen-

sitivities as well as on the DC gain sensitivities, unlike the numerical methods by which the

ambiguity groups are determined by the linearly dependent columns of the testability matrix

(Jacobian matrix) using QR factorization or SVD decomposition.

Thus, our method presents a new definition of the ambiguity groups based on circuit theory.

The ambiguity group can be defined as a group of circuit elements which affect the poles and

zeros as well as the DC gain of a circuit in the same way.

Analog circuits have a large number of specifications to be checked in order to ensure circuit

functionality. However, checking all specifications can result in a very long test time. There-

fore, a subset of specifications is selected to be measured. This subset of specifications must

ensure that it reduces test time without sacrificing fault coverage and maximizes the informa-

tion for fault identification in the fault diagnosis problem.

In this thesis, a test method for measurement selection for linear circuits was proposed in

Chapter 5 and Chapter 6. The measurement selection algorithm depends on the element test-

ability concept. The element testability provides an insight into the difficulty in testing circuit

elements as well as the effect of circuit element variations on circuit specifications. The ele-

ment testability can easily be obtained based on the pole and zero sensitivities.

A measurement selection algorithm for second-order circuits is considered in Chapter 5. Spec-

ifications that need to be measured can be selected in the frequency-domain or in the time-

domain because these specifications are related to the poles and zeros of a circuit which can
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represent the time and frequency response. A measurement selection algorithm for higher-

order circuits which can be approximated by second-order ones was presented in Chapter 6.

The approximation of higher-order circuits by second-order ones is carried out by using a

model-order reduction technique. The asymptotic waveform evaluation (AWE) moment

matching as a method of model-order reduction is employed to extract a small set of dominant

poles (a pair of complex-conjugate dominant poles) of the higher-order circuit. Consequently,

the measurement selection algorithm for second-order circuits can be applied to select specifi-

cations that need to be measured.

The testability analysis for linearized analog circuits was presented in Chapter 7. A nonlinear

analog circuit is linearized about an operation point and represented by its transfer function in

the Laplace domain. The ambiguity groups can be determined based on the sensitivities of the

poles and zeros of the linearized circuit.

The measurement selection is based on the parameter testability concept which gives an

insight into the difficulty in testing the circuit parameters. Parameter testability can be

obtained based on the pole sensitivities with respect to the circuit parameters. Our algorithm

can also be utilized to reduce the test time without affecting fault coverage and to provide

maximum information for fault identification.

8.1. Original Contributions

This section presents a brief summary of the original contributions found in this thesis.

• For the first time, the pole and zero sensitivity analysis is employed in order to compute the

testability measure and to determine the ambiguity groups in analog circuits.

• The relationship between the testability measure and the number of the poles and zeros of a

linear circuit in addition to the DC gain is discussed.

• A new interpretation of ambiguity groups is given based on the circuit theory in contrast to

the mathematical interpretation given by linearly dependent columns of the testability

matrix.

• The relationship between the testability analysis based on pole and zero analysis and con-

trollability/observability from control theory.

• The element testability for linear circuits and the parameter testability for linearized circuits

concepts are introduced in order to provide information about the difficulty in testing circuit
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elements as well as the effect of variations of circuit elements on circuit specifications. Both

concepts are independent of the time and the frequency.

• An algorithm for selecting specifications that need to be measured can be used in the fre-

quency-domain or in the time-domain, because these specifications are related to the poles

and zeros of a circuit which can represent the time and frequency responses.

• A measurement selection algorithm which can be employed simultaneously for reducing the

test cost in terms of reducing the test time by reducing the number of specifications that need

to be measured, and for maximizing the information about the fault identification.

8.2. Recommendations for Future Research

The software implementation for automating the testability analysis and measurement selec-

tion algorithms is the main goal for our future work. However, some further suggestions for

future research can be given as follows

• The comparison between the complexity of our testability analysis method and the complex-

ity of the previous methods [Liu94, Pan01, Star00, Fedi99, Man03] could be addressed.

• In this thesis, the element testability which reflects the difficulty in testing the circuit ele-

ments under a fault condition has been discussed. Since the circuit nodes are less than the

circuit elements, it is desirable to compute the node testability which defined as the difficulty

in testing the circuit nodes under a fault condition. The concept root (pole-zero) localization

proposed in [Mant93, Gath01, Huan03] for a behavioral modeling of analog integrated cir-

cuits seems to be a promising concept for computing the node testability. It is also preferable

to obtain the controllability and the observability of each node in a circuit.

• The parametric fault coverage could be computed using specifications which are selected to

be measured. Also, these specifications could be utilized for developing a test signal genera-

tion algorithm.

• Measurement errors could be taken into account. Furthermore, the proposed algorithm for

testability analysis could be extended to testing the switched-capacitor filters.
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Appendix A

In this appendix we will describe two methods for computing the sensitivity, namely the

adjoint method in Section A.1 and the measurement-based perturbation method, which is used

in the Saber simulator, in Section A.2. Furthermore, the properties of the first-order sensitivity

are given in Section A.3. The sensitivities of natural response specifications, time-domain

specification, and frequency-domain specifications of second-order circuits are presented in

Section A.4.

A.1. Adjoint Methods for Sensitivity Computation

In this section, the adjoint method for computing the sensitivity is addressed based on

[Vlac94] (see also [Lito97]).

Consider a circuit of linear equations in the form

where Y and b may be real or complex and depend on some circuit parameters h.

The solution of the linear equations is formally written as

By differentiating Eq. (A-1) in order to evaluate the sensitivity of all components of the vector

x to a single parameter h yields

Rewriting Eq. (A-3) yields

Y[ ] x[ ] b[ ]= (A-1)

x[ ] Y[ ] 1–
b[ ]= (A-2)

Y
h∂

∂x
h∂

∂Y
x+

h∂
∂b= (A-3)

Y
h∂

∂x
h∂

∂Y
x

h∂
∂b– 

 –= (A-4)
156



If Eq. (A-1) is solved using LU decomposition and forward and backward substitution, the

vector x is known. Thus the product (δY/δh)x can be formed and right-hand side of Eq. (A-4)

can be generated. Since LU factors are already available, the solution of Eq. (A-4) requires

only one additional forward and backward substitution to get δx/δh. The solution of Eq. (A-4)

generates the sensitivity of the whole vector x with respect to a single variable element h.

The sensitivity of all components of x is seldom required. Frequently, a single output φ which

is related to x is the output of interest, and the derivatives of φ with respect to many variable

elements hi are needed. This method is called adjoint method for computing the sensitivity.

For notational simplicity, the subscript i of h will not be written in the derivations.

The formal solution of Eq. (A-4) is

Let the output of interest be a scalar variable φ(x). The φ(x) is a linear combination of the com-

ponents of x

where d is a constant vector. The objective now is to compute the sensitivity of the scalar func-

tion φ(x) with respect to h. By differentiating Eq. (A-6) yields

Substitute for δx/δh from (A-5)

Note that the row vector d t Y -1 in Eq. (A-8) can be precomputed together with the solution

vector x before the sensitivity calculations are carried out.

An adjoint vector xa can be defined as

Postmultiply (A-9) by Y and take the transpose to get xa as the solution to the system

Substituting Eq. (A-9) into Eq. (A-8) yields

h∂
∂x Y

1–

h∂
∂Y
x

h∂
∂b– 

 –= (A-5)

φ d
t
x= (A-6)

h∂
∂φ d
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h∂
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= (A-7)

h∂
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– Y
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∂Y
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For each parameter hi, the matrix δY/δhi and the vector δb/δhi will be formed and the products

indicated on the right-hand side of Eq. (A-11) evaluated. Using Eq. (A-11), the sensitivity of

the function φwith respect to the parameter hi can be computed as a function of the frequency.

The computational procedure of the differential sensitivity for the adjoint approach is summa-

rized as follows:

• Step 1: Solve the linear circuit described by Eq. (A-1).

• Step 2: Solve the adjoint circuit described by Eq. (A-9).

• Step3: For each parameter hi, form δY/δhiand δb/δhi. Insert in Eq. (A-11) to compute δφ/δh.

By applying the sensitivity equation to the network problem, the right-hand side of Eq. (A-11)

is just a multiplication of the component of x and xa. The sensitivity formula can be expressed

as

where v is 1 for reactive elements and zero otherwise, xi and xj are the voltages nodes i and j,

respectively, of the linear circuit, and xi
a and xj

a are the voltages nodes i and j, respectively, of

the adjoint circuit.

A.2. Sensitivity Computation using Saber Simulator

The sensitivity can be computed by using a measurement-based perturbation method [Saber

simulator online Handbook]. A specified parameter hi is perturbed from its nominal value and

the effect on a specified performance measure Tj for the design is determined as shown below:

This sensitivity is called incremental sensitivity. The incremental values ∆Tj/∆hi tend to the

differential sensitivity only in the limit as ∆h --> 0.

h∂
∂φ x

a( )
t

h∂
∂Y
x x

a( )
t

h∂
∂b

–= (A-11)

h∂
∂φ s

v
xi
a
x j
a

–( ) xi x j–( )= (A-12)

ρhi
T j

T j∆
hi∆

---------= (A-12)
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To provide meaningful comparisons, the result is normalized as shown below:

where hi is the nominal value of the perturbed parameter, Tj is the nominal value of the perfor-

mance measure, ∆Tj is the amount by which the performance measure changes in response to

the parameter perturbation, and ∆hi is the amount by which the parameter is perturbed.

When Tj or hi is 0 or very close to 0, a fully normalized result cannot be calculated.

The perturbation method for calculating the sensitivity can be compared to another commonly

used method, the adjoint (or matrix) method. Although the adjoint method provides fast

results, it is more limited in its use because it can be used only to calculate the sensitivity of

quantities that are part of the design, typically node voltages and some branch currents. Quan-

tities that must be measured from a waveform, such as the duty cycle or rise time, cannot be

determined with the adjoint method.

Thus, the perturbation method used by the Saber simulator is more versatile in that it can be

used to determine the sensitivity of any measurable quantity that can be extracted from the

results of an analysis.

Saber uses the following process to execute the sensitivity analysis:

1) Increase the parameter value by the value defined in the Perturbation field.

2) Run the specified analyses.

3) Calculate the specified measurements.

4) Repeat steps 1- 3 for each parameter in the Parameter List field.

5) Repeat steps 2 and 3 using the nominal parameter values.

6) Calculate the sensitivity based on the difference between the nominal and perturbed

parameter values.

Practical considerations rule out incremental sensitivity. First, the incremental values ∆x/∆h

tend to the differential sensitivity only in the limit as ∆h --> 0, and a very small value of ∆h in

computations is precluded by roundoff errors. Second, the sensitivity evaluation for each ele-

ment h requires the formulation and solution of Eq. (A-1), resulting in high computational

cost. These difficulties are avoided by using the adjoint methods as discussed above.

ρhi
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hi
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A.3. Sensitivity Properties

The properties of the first-order sensitivity are given [Fila95, Su96]
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where y is the circuit performance, x is the circuit element, and k is a constant and is indepen-

dent of circuit element x.

A.4. Sensitivities of Natural Response, Time-Domain, and Frequency-

Domain Specifications for Second-Order Circuits

The sensitivity of a circuit specification with respect to a circuit element can be derived based

on the above-mentioned sensitivity properties and the equation of a specification given in

Chapter 4.

The normalized differential sensitivities of the natural response specifications as a function of

the normalized differential sensitivity of a circuit pole Sx
p are given [Herp86]

where x is the circuit element, p is the circuit pole, ωn is the natural frequency, Q is the Quality

factor, ζ is the damping ratio, Re is the real part of the pole sensitivity, Im is the imaginary part

of the pole sensitivity.

The normalized differential sensitivities of the time-domain specifications as a function of the

normalized differential sensitivity of the natural response specifications are given
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where tmax is the peak time, tr is the time rise, ts is the settling time, OS is the Maximum over-

shoot.

The normalized differential sensitivities of the frequency-domain specifications of low-pass

filters as a function of the normalized differential sensitivity of the natural response specifica-

tions are given

where Mr is the resonant peak (the maximum value of the |M(jω)|), ωr is the resonant fre-

quency (the frequency at which the peak resonant Mr occurs), and BW is the bandwidth of

low-pass filters.

The normalized differential sensitivities of the frequency-domain specifications of band-pass

filters as a function of the normalized differential sensitivity of the natural response specifica-

tions are given

where BW is the bandwidth of band-pass filters, ωH is the high-cutoff frequency (rad/sec), ωL

is the low-cutoff frequency (rad/sec), and ωmax is the center frequency (rad/sec).
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	1
	2
	3
	4
	5
	6
	7
	Elements
	R1, C7
	R2, C6
	R3, C5
	R4, C4
	R5, C3
	R6, C2
	R7, C1
	Table 8: The normalized sensitivity of low-pass frequency

	Elements
	R1, C7
	R2, C6
	R3, C5
	R4, C4
	R5, C3
	R6, C2
	R7, C1
	Sensitivities
	-0.262
	-0.236
	-0.195
	-0.146
	-0.0956
	-0.0496
	-0.0147
	Table 9: The zeros of the circuit at node 4

	Z2
	Z3
	Z4
	Z5
	-1.766 109
	-1.17365 109
	-5 108
	-6.03073792 107
	Table 10: Zero sensitivities

	h
	Sz1h
	Sz2h
	Sz3h
	Sz4h
	R1
	0
	0
	0
	0
	R2
	0
	0
	0
	0
	R3
	0
	0
	0
	0
	R4
	-0.0519901
	-0.183634
	-0.333333
	-0.431043
	R5
	-0.333333
	-0.333333
	0
	-0.333333
	R6
	-0.431043
	-0.0519901
	-0.333333
	-0.183634
	R7
	-0.183634
	-0.431043
	-0.333333
	-0.0519901
	C1
	0
	0
	0
	0
	C2
	0
	0
	0
	0
	C3
	0
	0
	0
	0
	C4
	-0.183634
	-0.431043
	-0.333333
	-0.0519901
	C5
	-0.431043
	-0.0519901
	-0.333333
	-0.183634
	C6
	-0.333333
	-0.333333
	0
	-0.333333
	C7
	-0.0519901
	-0.183634
	-0.333333
	-0.431043
	4.3.2. Continuous-Time State-Variable Filter
	Table 11: The Poles of the state-variable filter


	P1
	P2
	2250. + 4465.13 i
	-2250. - 4465.13 i
	Table 12: The circuit zeros at node HPO, BPO, and LPO

	LPO
	no zeros
	BPO
	Z2 = - 1 ⁄ 1000001�C2�R4 = -0.005
	HPO
	Z1 = - 1⁄1000001 C1R3 = -0.005
	Z2 = - 1⁄1000001�C2�R4 = -0.005
	Table 13: Testability measure

	Tt (LPO)
	Tt (BPO)
	Tt (HPO)
	3
	4
	5
	Table 14: Pole Sensitivities

	h
	Sp1h
	Sp2h
	R1
	3.5. 10-7 + 0.167967 i
	3.5. 10-7 - 0.167967 i
	R2
	0.5 - 0.083982 i
	0.5 + 0.083982 i
	R3
	- 0.5 + 0.251951 i
	- 0.5 - 0.251951 i
	R4
	- 0.5 - 0.251951 i
	- 0.5 + 0.251951 i
	R5
	- 0.5 - 0.08398 i
	- 0.5 + 0.08398 i
	R6
	3.15 10-7 - 0.35273 i
	3.15 10-7 +0.35273 i
	R7
	- 3.15 10-7 + 0.35273 i
	- 3.15 10-7 - 0.35273 i
	C1
	- 0.5+ 0.251951 i
	- 0.5 - 0.251951 i
	C2
	- 0.5 - 0.251951 i
	- 0.5 + 0.251951 i
	Table 15: Ambiguity groups at LPO

	Groups
	1
	2
	3
	4
	5
	6
	7
	Elements
	R1
	R2
	R5
	R6
	R7
	R3, C1
	R4, C2
	Table 16: Zero Sensitivities at nodes BPO and HPO

	h
	Szh (BPO)
	Szh (HPO)
	R1
	0
	0
	0
	R2
	0
	0
	0
	R3
	0
	-1
	0
	R4
	-1
	0
	-1
	R5
	0
	0
	0
	R6
	0
	0
	0
	R7
	0
	0
	0
	C1
	0
	-1
	0
	C2
	-1
	0
	-1
	Table 17: Rise time, settling time, and maximum overshoot specifications

	h
	rise time (msec)
	settling time (sec)
	maximum overshoot (v)
	nominal
	314.64
	0.0015689
	0.19899
	R1 +20%
	300.95
	0.0015003
	0.19736
	R2 +20%
	287.5
	0.00097944
	0.19754
	R3 +20%
	331.91
	0.001816
	0.23017
	R4 +20%
	360.41
	0.0011584
	0.16855
	R5 +20%
	350.08
	0.0015816
	0.22673
	R6 +20%
	334.3
	0.0010622
	0.15694
	R7 +20%
	290.72
	0.0015562
	0.27061
	C1 +20%
	332.12
	0.001813
	0.23144
	C2 +20%
	360.1
	0.0011587
	0.16861
	Table 18: The low-cutoff frequency, bandwidth, and high-cutoff frequency specifications

	h
	Low-cutoff frequency (Hz)
	bandwidth (Hz)
	high-cutoff frequency (Hz)
	nominal
	1057.3
	725.07
	603.97
	R1 +10%
	1064.6
	707.7
	599.29
	R2 +10%
	1100.3
	788.87
	637.49
	R3 +10%
	1024.7
	650.61
	566.2
	R4 +10%
	986.76
	714.62
	586.83
	R5 +10%
	997.09
	693.34
	581.09
	R6 +10%
	1031.7
	770.91
	618.09
	R7 +10%
	1079.2
	679.78
	590.92
	C1 +10%
	1024.7
	650.51
	566.2
	C2 +10%
	986.76
	714.62
	586.83
	Table 19: The ambiguity groups at node LPO, BPO, and HPO

	Group
	1
	2
	3
	4
	Elements
	R6, R7
	R1, R2, R5
	C2, R4
	C1, R3
	4.3.3. Leapfrog Filter
	Table 20: The poles of the leapfrog filter


	P1
	P2
	P3
	P4
	-5000.01 - 4999.97 i
	-5000.01 + 4999.97 i
	-5000.01 - 4999.98 i
	-5000.01 + 4999.98 i
	Table 21: Pole sensitivities

	h
	Sp1h
	Sp2h
	Sp3h
	Sp4h
	R1
	- 10-6 i
	- 10-6 i
	0
	0
	R2
	-5 10-7 + i
	-5 10-7 - i
	0
	0
	R3
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	0
	0
	R4
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	0
	0
	R5
	0.5 + 0.5 i
	0.5 - 0.5 i
	0
	0
	R6
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	0
	0
	R7
	0
	0
	- 5 10-7
	- 5 10-7
	R8
	0
	0
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	R9
	0
	0
	0.5 + 0.5 i
	0.5 - 0.5 i
	R10
	0
	0
	- 10-6 + i
	- 10-6 + i
	R11
	0
	0
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	R12
	0
	0
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	C1
	-0.5 + 0.5 i
	-0.5 - 0.5 i
	0
	0
	C2
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	0
	0
	C3
	0
	0
	-0.5 - 0.5 i
	-0.5 + 0.5 i
	C4
	0
	0
	-0.5 + 0.5i
	-0.5 - 0.5i
	Table 22: Ambiguity groups at the output node

	Groups
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Elements
	R3, R4, R6, C2
	R8, R11, R12, C3
	R1, R7
	R2
	C4
	R9
	C1
	R5
	R10
	Table 23: Normalized sensitivities of the low-pass frequency and rise time

	Normalized sensitivity of low-pass frequency with respect of the filter elements
	R3, R4, R6, C2
	R8, R11, R12, C3
	R1, R7
	R2
	C4
	R9
	C1
	R5
	R10
	-0.379
	-0.591
	-6. 10-6
	0.379
	-0.15
	0.59
	-0.00649
	0.229
	0.411
	Normalized sensitivity of rise time with respect of the filter elements
	R3, R4, R6, C2
	R8, R11, R12, C3
	R1, R7
	R2
	C4
	R9
	C1
	R5
	R10
	0.484
	0.592
	-0.0074
	-0.649
	0.125
	-0.555
	-0.21
	-0.44
	-0.428
	Table 24: Zero sensitivities at node 10

	Zero sensitivities with respect to the circuit elements
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	C1
	C2
	C3
	C4
	0
	0
	0
	0
	0
	0
	0
	0
	0
	-1
	0
	0
	0
	0
	0
	-1
	4.3.4. The 5-Pole (100Hz) low-pass filter
	Table 25: The poles and zeros of the filter


	Poles
	zeros at node 4
	zeros at node 5
	zeros at node 8
	zeros at node 9
	-160.463-115.709 i
	-160.463-115.709 i
	-160.463+115.709 i
	-160.463+115.709 i
	-96.75 - 69.7658 i
	-96.75 - 69.7658 i
	-96.75 + 69.7658 i
	-96.75 + 69.7658 i
	-96.75 + 69.7658 i
	-96.75 + 69.7658 i
	-96.75 - 69.7658 i
	-96.75 - 69.7658 i
	-628.931
	-243.902
	-147.059
	Table 26: Pole sensitivities

	h
	Sp1h
	Sp2h
	Sp3h
	Sp4h
	Sp5h
	Ra1
	-1
	0
	0
	0
	0
	Ra2
	0
	0
	0
	0
	0
	Ra3
	0
	0
	0
	0
	0
	Rb1
	0
	-0.5 -5.3 10-6 i
	-0.5 +5.3 10-6 i
	0
	0
	Rb2
	0
	-0.5 +5.3 10-6 i
	-0.5 -5.3 10-6 i
	0
	0
	Rb3
	0
	0
	0
	0
	0
	Rc1
	0
	0
	0
	-0.5 -5.3 10-6 i
	-0.5 +5.3 10-6 i
	Rc2
	0
	0
	0
	-0.5 +5.3 10-6 i
	-0.5 -5.3 10-6 i
	Rc3
	0
	0
	0
	0
	0
	Ca1
	-1
	0
	0
	0
	0
	Cb1
	0
	-0.5 - 0.693 i
	-0.5 + 0.693 i
	-0
	0
	Cb2
	0
	-0.5 + 0.693 i
	-0.5 - 0.693 i
	0
	Cc1
	0
	0
	0
	-0.5 - 0.693 i
	-0.5 + 0.693 i
	Cc2
	0
	0
	0
	-0.5 + 0.693 i
	-0.5 - 0.693 i
	Table 27: Ambiguity groups at the output

	Group
	1
	2
	3
	4
	Elements
	Ra1, Ca1
	Ra2,Ra3,Rb3,Rc3
	Rb1, Rb2
	Rc1, Rc2
	Table 28: The low-pass frequency sensitivities (nominal value = 16.703 Hz)

	1
	2
	3
	4
	5
	6
	7
	8
	Cc1
	Rc1, Rc2
	Cb1
	Rb1, Rb2
	Cc2
	Cb2
	Ca1, Ra1
	Ra2, Rb3, Ra3, Rc3
	-0.425
	-0.251
	-0.245
	-0.088
	-0.074
	-0.069
	-0.016
	0
	Table 29: Testability measures of 5-pole filter at nodes 4, 5, 8, and 9

	Tt at node 4
	Tt at node 5
	Tt at node 8
	Tt at node 9
	2
	5
	4
	7
	Table 30: Ambiguity groups at node 8

	Groups
	1
	2
	3
	4
	5
	Elements
	Cb1
	Rb1, Rb2
	Ca1, Ra1
	Cb2
	Ra2, Rb3, Ra3, Rc3, Rc1, Rc2, Cc1, Cc2
	Table 31: Ambiguity groups at node 8

	Groups
	Cb1
	Rb1, Rb2
	Ca1, Ra1
	Cb2
	Ra2, Rb3, Ra3, Rc3, Rc1, Rc2, Cc1, Cc2
	Sens.
	-0.99
	-0.458
	-0.0884
	0.138
	0
	4.4. Generalization of the Testability Analysis Algorithm
	Table 32: DC sensitivities


	DC sensitivities with respect to the circuit elements
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	-1
	10-6
	1
	-10-6
	10-6
	0
	-1
	-2 10-6
	2 10-6
	2 10-6
	-2 10-6
	1
	Table 33: DC ambiguity groups

	Groups
	1
	2
	3
	4
	5
	6
	Elements
	R1, R7
	R2, R5
	R4, R8, R11
	R3, R12
	R9, R10
	R6
	Table 34: Total ambiguity groups

	Groups
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	Elements
	R1,R7
	R6,C2
	R8, R11,C3
	R2
	R3
	R4
	R5
	R9
	R10
	R12
	C1
	C4
	4.5. Summary
	1) Our methodology is based on the pole-zero analysis and on the pole-zero sensitivity which can ...
	2) The proposed methodology is independent of the frequency, unlike the sensitivity analysis wher...
	3) This methodology provides a new interpretation of the ambiguity groups based on the circuit th...
	4) The proposed method provides the relationship between the concept of the controllability and o...
	5) The ambiguity groups, which are determined using numerical methods, depend on circuit specific...
	6) The sensitivity analysis can be achieved based on the pole-zero sensitivity analysis (cf. Eq (...
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	Element Testability and Measurement Selection for Second-Order Circuits
	5.1. Introduction
	5.2. The Algorithm
	Step 1. Represent a second-order circuit by the transfer function form in the Laplace domain whic...
	Step 2. Compute the poles of the transfer function by utilizing the QZ algorithm.
	Step 3. Compute the natural response specifications (z, Q-factor, wn) based on the location of th...
	Step 4. Select the desired specifications (in time and frequency domains) which can be computed b...
	Step 5. Compute the pole sensitivities using the adjoint methods as discussed in Section (4.2.3).
	Step 6. Compute the element testability of the circuit elements with respect to the selected spec...
	Step 7. Select the specifications that have to be measured to test the circuit elements correspon...
	Step 8. In order to reduce the test cost, drop the specifications which do not affect fault cover...
	Step 9. For the fault diagnosis, select the specifications which provide maximum information abou...
	5.2.1. Mathematical Representation of Prototype Second-Order Circuits
	5.2.2. Pole Sensitivity
	5.2.3. Element Testability and Measurement Selection

	5.3. Simulation Examples
	5.3.1. Continuous-Time State-Variable Filter
	Table 35: Pole sensitivities


	h
	Sp1h
	Sp2h
	R1
	3.5 10-7 + 0.16796 i
	3.5. 10-7 - 0.16796 i
	R2
	0.5 - 0.08398 i
	0.5 + 0.08398 i
	R3
	- 0.5 + 0.25195 i
	- 0.5 - 0.25195 i
	R4
	- 0.5 - 0.25195 i
	- 0.5 + 0.25195 i
	R5
	- 0.5 - 0.08398 i
	- 0.5 + 0.08398 i
	R6
	3.15 10-7 - 0.35273 i
	3.15 10-7 +0.3527 i
	R7
	- 3.15 10-7 + 0.35273 i
	- 3.15 10-7 - 0.35273 i
	C1
	- 0.5+ 0.25195 i
	- 0.5 - 0.25195 i
	C2
	- 0.5- 0.25195 i
	- 0.5 + 0.25195 i
	Table 36: Natural response specifications

	natural frequency wn
	Q-factor
	damping ratio z
	5000
	1.1111
	0.45
	Table 37: Element testability of the circuits elements w.r.t. the natural response specifications

	h
	ET(h, wn)
	ET(h, Q)
	ET(h, z)
	R1
	3.5 10-7
	0.3333
	-0.3333
	R2
	0.5
	-0.1666
	0.1666
	R3
	-0.5
	0.5
	-0.5
	R4
	-0.5
	-0.5
	0.5
	R5
	-0.5
	-0.1666
	0.1666
	R6
	3.15 10-7
	-0.7
	0.7
	R7
	-3.15 10-7
	0.7
	-0.7
	C1
	-0.5
	0.5
	-0.5
	C2
	-0.5
	-0.5
	0.5
	Table 38: The specifications that have to be measured

	R1
	R2
	R3
	R4
	R5
	R6
	R7
	C1
	C2
	Q or z
	wn
	wn, Q or z
	wn, Q or z
	wn
	Q or z
	Q or z
	wn, Q or z
	wn, Q or z
	Table 39: The specifications that have to be measured

	R1
	R2
	R3, C1
	R4, C2
	R5
	R6
	R7
	Q or z
	wn
	Q or z
	Q or z
	wn
	Q or z
	Q or z
	Table 40: Relative deviation of the natural response specifications

	h
	actual wn
	Dwn / wn
	actual Q
	DQ / Q
	actual z
	Dz / z
	nominal
	5000
	0
	1.1111
	0
	0.45
	0
	+10% in R1
	5000
	0
	1.1458
	0.03123
	0.4363
	-0.03044
	+10% in R2
	5244
	0.0488
	1.0925
	-0.01674
	0.45766
	0.01702
	+10% in R3
	4767.3
	-0.04654
	1.1653
	0.04878
	0.429
	-0.04666
	+10% in R4
	4767.3
	-0.04654
	1.0594
	-0.04653
	0.47196
	0.0488
	+10% in R5
	4767.3
	-0.0488
	1.0925
	-0.01674
	0.45766
	0.01702
	+10% in R6
	5000
	0
	1.0404
	-0.06363
	0.48
	0.06666
	+10% in R7
	5000
	0
	1.1889
	0.07
	0.42056
	-0.06666
	+10% in C1
	4767.3
	-0.04654
	1.1653
	0.04878
	0.429
	-0.04666
	+10% in C2
	4767.3
	-0.04654
	1.0594
	-0.04653
	0.4719
	0.0488
	Table 41: Relative deviation of the natural response specifications computed by element testabili...

	h
	ET(h, wn)
	ET(h, Q)
	ET(h, z)
	R1
	0
	0.3123
	-0.3044
	R2
	0.488
	-0.1674
	0.1702
	R3
	-0.4654
	0.4878
	-0.4666
	R4
	-0.4654
	-0.04653
	0.488
	R5
	-0.488
	-0.1674
	0.1702
	R6
	0
	-0.6363
	0.6666
	R7
	0
	0.7
	-0.6666
	C1
	-0.4654
	0.4878
	-0.4666
	C2
	-0.4654
	-0.4653
	0.488
	Table 42: Time domain specifications

	peak time tmax
	settling time ts
	overshoot OS%
	rise time tr
	0.000703582
	0.00142222
	20.5346
	0.000385
	Table 43: Element testability of the circuit elements w.r.t. the time-domain specifications

	h
	ET(h, tmax)
	ET(h, ts)
	ET(h, OS)
	ET(h, tr)
	R1
	-0.0846395
	0.333332
	0.661673
	-0.194805
	R2
	-0.45768
	-0.666663
	-0.330833
	-0.402598
	R3
	0.373041
	0.999999
	0.992511
	0.20779
	R4
	0.626959
	1.11111 10-6
	-0.992511
	0.792207
	R5
	0.542319
	0.333332
	-0.33084
	0.597402
	R6
	0.177742
	-0.699998
	-1.38951
	0.40909
	R7
	-0.177742
	0.699998
	1.38951
	-0.40909
	C1
	0.373041
	0.999999
	0.992511
	0.207793
	C2
	0.626959
	1.11111 10-6
	-0.992511
	0.792207
	Table 44: Measurement selection of the time-domain specifications

	Element
	R1
	R2
	R3, C1
	R4, C2
	R5
	R6
	R7
	SP
	OS
	ts
	OS
	OS
	tr
	OS
	OS
	Table 45: Element testability of the circuit elements w.r.t. the time-domain specifications compu...

	h
	ET(h, tmax)
	ET(h, ts)
	ET(h, OS%)
	ET(h, tr)
	+10% in R1
	-0.0752689
	0.314004
	0.615691
	-0.177922
	+10% in R2
	-0.423458
	0.624879
	-0.334396
	-0.370442
	+10% in R3
	0.368805
	1.00152
	0.953177
	0.202077
	+10% in R4
	0.623838
	0.00138299
	-0.940204
	0.786415
	+10% in R5
	0.534136
	0.312574
	-0.329643
	0.592453
	+10% in R6
	0.179649
	-0.625
	-1.27046
	0.38961
	+10% in R7
	-0.159726
	0.700019
	1.37846
	-0.38961
	+10% in C1
	0.368805
	1.00152
	0.953177
	0.202077
	+10% in R1
	0.623838
	0.00138299
	-0.940204
	0.786415
	Table 46: Frequency-domain specifications of the LPO

	peak resonant wr
	peak resonant frequency Mr
	bandwidth BW
	613.831 Hz
	1.2442
	1038.94 Hz
	Table 47: Element testability of the circuit elements w.r.t. the frequency-domain specifications ...

	h
	ET(h, wr)
	ET(h, Mr)
	ET(h, BW)
	R1
	0.22689
	0.248693
	0.105891
	R2
	0.386555
	-0.124345
	0.447054
	R3
	-0.159665
	0.37304
	-0.341163
	R4
	-0.840335
	-0.37304
	-0.658837
	R5
	-0.61344
	-0.124348
	-0.552945
	R6
	-0.476469
	-0.522256
	-0.222371
	R7
	0.476469
	0.522256
	0.222371
	C1
	0.159665
	0.37304
	-0.341163
	C2
	-0.840335
	-0.37304
	-0.658837
	Table 48: measurement section of the frequency-domain specifications

	Element
	R1
	R2
	R3, C1
	R4, C2
	R5
	R6
	R7
	SP
	Mr
	BW
	Mr
	wr
	wr
	Mr
	Mr
	Table 49: Element testability of the LPO computed by the relative deviation of the frequency-doma...

	h
	ET(h, wr)
	ET(h, Mr)
	ET(h, BW)
	+10% in R1
	0.202032
	0.236372
	0.127813
	+10% in R2
	0.0364721
	-0.12423
	0.410167
	+10% in R3
	-0.174054
	0.370182
	-0.280967
	+10% in R4
	-0.794613
	-0.342494
	-0.672938
	+10% in R5
	-0.577472
	-0.12423
	-0.536158
	+10% in R6
	-0.480449
	-0.498003
	-0.302596
	+10% in R7
	0.429435
	0.523482
	0.27205
	+10% in C1
	-0.174054
	0.370182
	-0.280967
	+10% in C2
	-0.794613
	-0.342494
	-0.672938
	5.3.2. Sallen-Key Bandpass Filter
	Table 50: Pole sensitivities


	h
	Sp1h
	Sp2h
	R1
	-0.0809061 + 0.11577 i
	-0.0809061 - 0.11577 i
	R2
	-0.419094 - 0.705268 i
	-0.419094 - 0.705268 i
	R3
	-0.5 + 0.589497 i
	-0.5 - 0.589497 i
	R4
	-0.652488 i
	+0.652488 i
	R5
	+0.652466 i
	-0.652466 i
	C1
	-0.5 - 0.263251 i
	-0.5 + 0.263251 i
	C2
	-0.5 + 0.263251 i
	-0.5 - 0.263251 i
	Table 51: Natural response specifications of the filter

	natural frequency wn
	Q-factor
	damping ratio z
	154470
	3.99995
	0.125002
	Table 52: Sensitivities of the natural response specifications

	h
	ET(h, wn)
	ET(h, Q)
	ET(h, z)
	R1
	-0.0809061
	0.918888
	-0.918888
	R2
	-0.419094
	-5.59782
	5.59782
	R3
	-0.5
	4.67893
	-4.67893
	R4
	0
	-5.17872
	5.17872
	R5
	0
	5.17872
	-5.17872
	C1
	-0.5
	-2.08947
	2.08947
	C2
	-0.5
	2.08947
	-2.08947
	Table 53: Element testability computed by relative deviation of the natural response specifications

	h
	ET(h, wn)
	ET(h, Q)
	ET(h, z)
	R1+5%
	-0.077685
	0.918761
	-0.918761
	R2+5%
	-0.402667
	-4.2798
	4.2798
	R3+5%
	-0.481647
	5.90682
	-5.90682
	R4+5%
	0
	-3.9563
	3.9563
	R5+5%
	0
	6.98834
	-6.98834
	C1+5%
	-0.481647
	-1.85527
	1.85527
	C2+5%
	-0.481647
	2.26328
	-2.26328
	Table 54: Time-domain specifications of the filter

	peak time tmax (msec)
	settling time ts (msec)
	overshoot OS%
	rise time tr (msec)
	20.4987
	165.728
	67.3139
	7.20205
	Table 55: Element testability of the filter elements w.r.t. the time-domain specifications

	h
	ET(h, tmax)
	ET(h, ts)
	ET(h, OS%)
	ET(h, tr)
	R1
	0.0663206
	0.999794
	0.369472
	-0.177208
	R2
	0.507948
	-5.17873
	-2.25081
	-1.99151
	R3
	0.425731
	5.17893
	1.88133
	-0.814307
	R4
	0.082202
	-5.17872
	2.08229
	1.4547
	R5
	-0.082202
	5.17872
	2.08229
	-1.4547
	C1
	0.533166
	1.58947
	-0.840145
	1.08693
	C2
	0.466834
	2.58947
	0.840145
	-0.0869285
	Table 56: Element testability computed using the relative deviation of the time-domain specificat...

	h
	ET(h, tmax)
	ET(h, ts)
	ET(h, OS%)
	ET(h, tr)
	R1+5%
	0.0643121
	1.00032
	0.355959
	-0.169716
	R2+5%
	0.511892
	-3.95669
	-2.08769
	1.9718
	R3+5%
	0.428135
	6.54603
	1.92792
	-0.818975
	R4+5%
	0.0885387
	-3.95688
	-1.89973
	1.38562
	R5+5%
	0.0711757
	6.98793
	2.18155
	-1.45465
	C1+5%
	0.52858
	-1.40738
	-0.807507
	1.08209
	C2+5%
	0.46221
	2.81318
	0.83264
	-0.0917998
	Table 57: The frequency-domain specifications of the filter

	low-frequency fL(Hz)
	high-frequency fH (Hz)
	bandwidth BW (Hz)
	fmax(Hz)
	21702.9
	27849.1
	6146.17
	24584.7
	Table 58: Element testability of the filter elements w.r.t. the frequency-domain specifications

	h
	ET(h, fL)
	ET(h, fH)
	ET(h, BW)
	ET(h, fmax)
	R1
	0.0348487
	-0.196661
	-0.999794
	-0.0809061
	R2
	-1.12427
	0.286079
	5.17873
	-0.419094
	R3
	0.089418
	-1.08942
	-5.17893
	-0.5
	R4
	-0.652378
	0.652378
	5.17872
	0
	R5
	0.652378
	-0.652378
	-5.17872
	0
	C1
	-0.763216
	-0.236784
	1.58947
	-0.5
	C2
	-0.236784
	-0.763216
	-2.58947
	-0.5
	Table 59: Element testability computed using the relative deviation of the frequency- domain spec...

	h
	ET(h, fL)
	ET(h, fH)
	ET(h, BW)
	ET(h, fmax)
	R1+5%
	0.0311764
	-0.185955
	-0.952673
	-0.077685
	R2+5%
	-1.05191
	0.268824
	4.93251
	-0.402667
	R3+5%
	0.0791327
	-1.02676
	-4.93183
	-0.481647
	R4+5%
	-0.601361
	0.620004
	4.9328
	0
	R5+5%
	0.653958
	-0.633252
	-5.17856
	0
	C1+5%
	-0.727404
	-0.232756
	1.51391
	-0.481647
	C2+5%
	-0.233737
	-0.726448
	-2.46627
	-0.481647
	5.4. Summary
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	6.3.1. RLC Circuit
	Table 60: Poles of the original RLC circuit


	P1
	P2
	P3
	P4
	-1678.71 + 12431.3 i
	-1678.71 - 12431.3 i
	-1321.29 + 39837.5 i
	-1321.29 - 39837.5 i
	Table 61: Moments of the output

	M0
	M1
	M2
	M3
	1
	-0.000023
	-6.491 10-9
	2.86753 10-13
	Table 62: The coefficients of the denominator polynomial

	b1
	b2
	0.0000195812
	6.94137 10-9
	Table 63: The poles of the approximate second-order circuit

	P1
	P2
	-1410.47 - 11919.5 i
	-1410.47 + 11919.5 i
	Table 64: The natural response specifications of the approximate second-order circuit

	wn
	Q
	z
	12002.7
	4.25484
	0.117513
	Table 65: The pole sensitivities of the approximate second-order circuit

	Sp1h
	Sp2h
	R1
	0.000226022 - 0.0147718 i
	0.000226022 + 0.0147718 i
	R2
	0.00818852 - 0.104675 i
	0.00818852 + 0.104675 i
	C1
	-0.0683852 + 0.0197076 i
	-0.0683852 - 0.0197076 i
	C2
	-0.427408 - 0.0794309 i
	-0.427408 + 0.0794309 i
	L1
	-0.213796 + 0.033687 i
	-0.213796 - 0.033687 i
	L2
	-0.290411 + 0.0260363 i
	-0.290411 - 0.0260363 i
	Table 66: The time response specifications of the original circuits

	tr
	ts
	OS%
	tmax
	67.269 msec
	0.0018314 sec
	67.181
	278.08 msec
	Table 67: Time response specifications of the approximate circuit

	tr
	ts
	OS%
	tmax
	91.125 msec
	0.0022688
	68.9531
	263.567 msec
	Table 68: Sensitivities of the natural response specifications

	wn Sensitivities
	Q Sensitivities
	z Sensitivities
	R1
	0.000226022
	0.124832
	-0.124832
	R2
	0.00818852
	0.884577
	-0.884577
	C1
	-0.0683852
	-0.166543
	0.166543
	C2
	-0.427408
	0.671248
	0.671248
	L1
	-0.213796
	-0.284679
	0.284679
	L2
	-0.290411
	-0.220025
	0.220025
	Table 69: Element testability of the filter elements w.r.t. the time-domain specifications

	ET(h, tmax)
	ET(h, ts)
	ET(h, OS%)
	ET(h, tr)
	R1
	-0.00197362
	-0.125058
	-0.0470513
	0.0333004
	R2
	-0.0205722
	-0.892766
	-0.333411
	0.229384
	C1
	0.0707168
	0.234929
	0.0627728
	0.0236564
	C2
	0.41801
	-0.243841
	-0.253004
	0.607686
	L1
	0.217782
	0.498476
	0.1073
	0.13734
	L2
	0.293491
	0.510436
	0.082931
	0.231319
	Table 70: Specifications to be measured

	R1
	R2
	C1
	C2
	L1
	L2
	ts
	ts
	ts
	tr
	ts
	ts
	6.3.2. Leapfrog Filter
	Table 71: The poles of the leapfrog filter


	P1
	P2
	P3
	P4
	-5000.01 - 4999.97 i
	-5000.01 + 4999.97 i
	-5000.01 - 4999.98 i
	-5000.01 + 4999.98 i
	Table 72: The pole of the approximate second-order circuit

	P1
	P2
	-3750 - 3307.17 i
	-3750 + 3307.17 i
	Table 73: The time domain specifications

	rise time
	maximum overshoot
	settling time
	tmax
	401.21 msec
	7.1942%
	0.0010604 sec
	910.86 msec
	Table 74: The pole sensitivities of the approximate second-order filter

	Sp1h
	Sp2h
	R1
	2.5 10-7 + 4.7245 10-7 i
	2.5 10-7 - 4.7245 10-7 i
	R2
	0.25 + 0.47245 i
	0.25 - 0.47245 i
	R3
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	R4
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	R5
	0.375 + 0.236228 i
	0.375 - 0.236228 i
	R6
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	R7
	-2.5 10-7
	-2.5 10-7
	R8
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	R9
	0.375 + 0.236228 i
	0.375 - 0.236228 i
	R10
	0.25 + 0.47245 i
	0.25 - 0.47245 i
	R11
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	R12
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	C1
	-0.12499 + 0.236228 i
	-0.12499 - 0.236228 i
	C2
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	C3
	-0.375 - 0.236228 i
	-0.375 + 0.236228 i
	C4
	-0.12499 + 0.236228 i
	-0.12499 - 0.236228 i
	Table 75: Element testability of leapfrog filter specifications

	ET(h, ts)
	ET(h, tmax)
	ET(h, OS)
	ET(h, tr)
	ET(h, fL)
	R1
	1.66 10-7
	-7.857 10-7
	3.39 10-7
	-5.42 10-7
	5.62 10-7
	R2
	0.166659
	-0.785711
	3.39258
	-0.542051
	0.562105
	R3
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	R4
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	R5
	-0.166659
	-0.642859
	1.69631
	-0.521027
	0.531055
	R6
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	R7
	2.5 10-7
	2.5 10-7
	0
	2.5 10-7
	-2.5 10-7
	R8
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	R9
	-0.166659
	-0.642859
	1.69631
	-0.521027
	0.531055
	R10
	0.166659
	-0.785711
	3.39258
	-0.542051
	0.562105
	R11
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	R12
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	C1
	0.333322
	-0.142869
	1.69631
	-0.0210374
	0.0310647
	C2
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	C3
	0.166659
	0.642859
	-1.69631
	0.521027
	-0.531055
	C4
	0.333322
	-0.142869
	1.69631
	-0.0210374
	0.0310647
	Table 76: Specifications to be measured

	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	C1
	C2
	C3
	C4
	UN
	OS
	OS
	OS
	OS
	OS
	UN
	OS
	OS
	OS
	OS
	OS
	OS
	OS
	OS
	OS
	Table 77: DC gain sensitivities

	DC gain sensitivities with respect to the circuit elements
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	-1
	10-6
	1
	-10-6
	10-6
	0
	-1
	-2 10-6
	2 10-6
	2 10-6
	-2 10-6
	1
	Table 78: Ambiguity groups

	Groups
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Elements
	R3, R4, R6, C2
	R8, R11, R12, C3
	R1, R7
	R2
	C4
	R9
	C1
	R5
	R10
	6.4. Discussion
	6.5. Summary
	Chapter 7


	Testability Analysis of Nonlinear Circuits
	7.1. Introduction
	7.2. Testability Analysis Algorithm
	7.2.1. Circuit Linearization and Description
	7.2.2. Pole and Zero Analysis
	7.2.3. Pole and Zero Sensitivity
	7.2.4. Ambiguity Groups
	7.2.5. Frequency-Domain Specifications

	Figure 7-2: Simple examples for amplifier circuits
	7.2.5.1. The Low-Frequency Response
	7.2.5.2. The High-Frequency Response
	7.2.6. Parameter Testability and Measurement Selection
	7.3. Simulation Examples
	7.3.1. The Simple Common-Emitter Amplifier
	Table 79: The poles zeros and midband gain of the common-emitter amplifier



	P1
	P2
	P3
	P4
	Z1
	AM
	-452.206
	-76.0989
	-22.7273
	-6 107
	-5.34188
	35.0655 dB
	Table 80: The sensitivities of the poles, zero and midband gain

	Sp1h
	Sp2h
	Sp3h
	Sp4h
	SZh
	SAMh
	R1
	-0.0456239
	-0.0607254
	0
	0
	0
	0
	R2
	-0.373287
	-0.496844
	0
	0
	0
	0
	RC
	0
	0
	-0.5
	-0.333333
	0
	0.5
	RE
	-0.00216173
	-0.0573508
	0
	0
	-1
	0
	RL
	0
	0
	-0.5
	-0.333333
	0
	0.5
	C1
	-0.817003
	-0.182997
	0
	--
	0
	--
	C2
	0
	0
	-1
	--
	0
	--
	CE
	-0.182997
	-0.817003
	0
	--
	-1
	--
	b
	0.179935
	0.755873
	0
	0
	0
	1
	RBE
	-0.578928
	-0.38508
	0
	0
	0
	-1
	CBE
	--
	--
	--
	0
	0
	--
	CBC
	--
	--
	--
	-1
	0
	--
	RO
	0
	0
	0
	-0.333333
	0
	0
	Table 81: The parameter testability

	PT(h, fL)
	PT(h, fH)
	PT(h, AM)
	R1
	-0.0456239
	0
	0
	R2
	-0.373287
	0
	0
	RC
	0
	-0.333333
	0.5
	RE
	-0.00216173
	0
	0
	RL
	0
	-0.333333
	0.5
	C1
	-0.817003
	0
	0
	C2
	0
	0
	0
	CE
	-0.182997
	0
	0
	b
	0.179935
	0
	1
	RBE
	-0.578928
	0
	-1
	CBE
	0
	0
	0
	CBC
	0
	-1
	0
	RO
	0
	-0.333333
	0
	Table 82: The specifications to be measured

	R1
	R2
	RC
	RE
	RL
	C1
	C2
	CE
	b
	RBE
	CBE
	CBC
	RO
	fL
	fL
	AM
	fL
	AM
	fL
	UN
	fL
	AM
	AM
	UN
	fH
	fH
	Table 83: The relative deviation of the fL, fH, and AM

	fL
	DfL/fL
	fH
	DfH/fH
	AM
	DAM/AM
	nominal
	73.0723
	0
	9.54929 106
	0
	-33.3333
	0
	R1 +10%
	72.7675
	-0.00417121
	9.54929 106
	0
	-33.3333
	0
	R2 +10%
	70.5953
	-0.0338983
	9.54929 106
	0
	-33.3333
	0
	RC +10%
	73.064
	-0.000113912
	9.2599 106
	-0.0303
	-34.9206
	0.05
	RE +10%
	73.048
	-0.000333368
	9.54929 106
	0
	-33.3333
	0
	RL +10%
	73.064
	-0.000113912
	9.2599 106
	-0.0303
	-34.9206
	0.05
	C1 +10%
	67.7939
	-0.0722354
	0
	0
	0
	0
	C2 +10%
	73.0568
	-0.000212657
	0
	0
	0
	0
	CE +10%
	71.911
	-0.015893
	9.54929 106
	0
	-33.3333
	0
	b +10%
	74.5187
	0.0197933
	9.54929 106
	0
	-36.6667
	0.1
	RBE +10%
	69.2951
	-0.0516916
	9.54929 106
	0
	-30.303
	-0.1
	CBE +10%
	0
	0
	9.54929 106
	0
	0
	0
	CBC +10%
	0
	0
	-8.68118 106
	-0.0909
	0
	0
	RO +10%
	0
	0
	9.2599 106
	-0.0303
	0
	0
	Table 84: The element testability computed using Eq. (7-26)

	PT(h, fL)
	PT(h, fH)
	PT(h, AM)
	R1 +10%
	-0.0417121
	0
	0
	R2 +10%
	-0.338983
	0
	0
	RC +10%
	-0.00113912
	-0.303
	0.5
	RE +10%
	-0.000333368
	0
	0
	RL +10%
	-0.00113912
	-0.303
	0.5
	C1 +10%
	-0.722354
	0
	0
	C2 +10%
	-0.00212657
	0
	0
	CE +10%
	-0.15893
	0
	0
	b +10%
	0.197933
	0
	1
	RBE +10%
	-0.516916
	0
	-1
	CBE +10%
	0
	0
	0
	CBC +10%
	0
	-0.909
	0
	RO +10%
	0
	-0.303
	0
	7.3.2. The CMOS Differential Amplifier
	Table 85: The poles of the differential amplifier


	P1
	P2
	P3
	-4.947422 106
	-1.27509 108
	-2.22303 108
	Table 86: The pole sensitivities

	SP1h
	SP2h
	SP1h
	GdsM1
	0.0009105
	0.00554056
	-0.00160714
	CgdM1
	-0.000129784
	-0.00136369
	-0.0622911
	CgsM1
	0.0000576776
	-0.484706
	-0.0153517
	gmM1
	0.141887
	0.483205
	0.00813672
	GdsM2
	0.278479
	0.012066
	-0.0142175
	CgdM2
	-0.180272
	-0.00314871
	-0.0419516
	CgsM2
	0.0000576776
	-0.484706
	-0.0153517
	gmM2
	-0.142002
	0.481335
	0.0224124
	GdsM3
	0.000517439
	0.000121001
	0.00963608
	CgdM3
	0
	0
	0
	CgsM3
	-0.000901998
	-0.00947766
	-0.432923
	gmM3
	0.0428903
	0.0100297
	0.798732
	GdsM4
	0.71873
	0.000279386
	0.00648967
	CgdM4
	0.36723
	0.000751493
	0.105671
	CgsM4
	-0.000901998
	-0.00947766
	-0.432923
	gmM4
	-0.0414128
	0.00742257
	0.170418
	CL
	-0.450679
	-0.00787178
	-0.104879
	Table 87: The element testability with respect to the wH and DC gain

	PT(h, wH)
	PT(h, DC gain)
	GdsM1
	0.0009105
	-0.00484391
	CgdM1
	-0.000129784
	N
	CgsM1
	0.0000576776
	N
	gmM1
	0.141887
	0.366771
	GdsM2
	0.278479
	-0.271303
	CgdM2
	-0.180272
	N
	CgsM2
	0.0000576776
	N
	gmM2
	-0.142002
	0.633229
	GdsM3
	0.000517439
	-0.00427858
	CgdM3
	0
	N
	CgsM3
	-0.000901998
	N
	gmM3
	0.0428903
	-0.35465
	GdsM4
	0.71873
	-0.725499
	CgdM4
	0.36723
	N
	CgsM4
	-0.000901998
	N
	gmM4
	-0.0414128
	0.360575
	CL
	-0.450679
	N
	Table 88: The selected specifications

	GdsM4
	CL
	CgdM4
	GdsM2
	CgdM2
	gmM1
	gmM2
	gmM3
	gmM4
	wH,
	DC gain
	wH
	wH
	wH,
	DC gain
	wH
	DC gain
	DC gain
	DC gain
	DC gain
	Table 89: The sensitivities of the approximate pole

	CgdM2
	CgdM4
	CL
	GdsM2
	GdsM4
	gmM1
	gmM2
	gmM3
	gmM4
	Sens.
	-0.181
	-0.363
	-0.454
	0.2761
	0.7238
	0.138
	-0.138
	0.0437
	-0.043
	7.3.3. The Operation Amplifier mA741
	Table 90: Parameter testability w.r.t. low-cutoff frequency and DC gain


	parameter
	PT(h, wL)
	PT(h, DC gain)
	R8
	0.512703
	-0.512703
	R9
	-0.211975
	0.211975
	C1
	-1
	--
	gmQ16
	-0.699273
	0.699273
	gmQ17
	-0.487297
	0.487297
	RoQ4
	-0.300727
	0.300727
	RoQ131
	-0.712589
	0.712589
	RoQ17
	-0.287411
	0.287411
	RpiQ16
	-0.699273
	0.699273
	RpiQ17
	-0.487297
	0.487297
	gmQ2
	--
	0.497409
	gmQ4
	--
	0.502591
	7.4. Summary
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