
XML Information Retrieval and Information
Extraction

Norbert Fuhr?

University of Dortmund, Germany

Abstract. We present a new query language for information retrieval in XML doc-
uments and discuss its combination with information extraction methods. XIRQL
is an XML query language which implements IR-related features such as weighting
and ranking, relevance-oriented search, datatypes with vague predicates, and struc-
tural relativism. For information extracted from texts, XIRQL can rank records
based on uncertainty weights, and single conditions may be evaluated using vague
predicates for fact retrieval. When IE is used for automatic XML markup of plain
texts, XIRQL is able to consider uncertainty weights resulting from this process,
and the markup leads to increased precision of text searches.

1 Introduction

In many applications, large volumes of full-text documents are available.
However, often the systems managing these large volumes of data offer only
poor retrieval capabilities. Thus, the knowledge contained in the documents
can hardly be exploited.

Currently, there is a trend towards XML as standard document format.
For content based searches in full-text documents, XML offers two major
advantages:

1. Since XML represents the logical structure of a document in explicit
form, the retrieval system can return appropriate logical units as answers
to content-based queries.

2. Based on the markup of specific elements, high-precision searches can
be performed that look for content occurring in specific elements (e.g.
distinguishing between the sender and the addressee of a letter, finding
the definition of a concept in a mathematics textbook).

Unfortunately, most XML query languages proposed so far do not provide
mechanisms for performing content-based searches in XML documents. In the
following section, we present the new query language XIRQL (XML IR query
language) which implements several IR concepts for XML retrieval.

Even under the assumption that XML will become the standard document
format, there is still the legacy problem of large volumes of plain text. In
order to apply XML retrieval mechanisms to these texts, automatic markup
? Email: norbert.fuhr@acm.org

2 Norbert Fuhr

methods can be applied. However, due to the uncertainty of this process,
subsequent retrieval of the documents prepared this way also should take
into account this uncertainty. Since vagueness and uncertainty are central
concepts of XIRQL, this can be easily accomplished.

As an alternative method to automatic markup, information extraction
aims at the extraction of facts and knowledge from texts, in order to represent
this information in a standard record format. Again, no perfect solutions for
this process are possible, so the resulting uncertainty should be considered
when accessing these records.

In Section 4, we discuss the relationship between automatic markup and
information extraction and we show how XIRQL can be applied to the results
of these processes. Finally, we give an outlook on further work in this area.

2 XML Retrieval

In XML documents, text is enclosed in start tags and end tags for markup,
and the tag name provides information on the kind of content enclosed. As
an exception to this rule, #PCDATA elements (plain text) have no tags. El-
ements can be nested, like e.g. <author> <first> John </first> <last>
Smith </last> </author>.

Elements can also be assigned attributes, which are given in the start tag,
e.g. <date format="ISO">2000-05-01</date>; here the attribute name is
format, and the attribute value is ISO.

An example XML document follows , which also illustrates the tree struc-
ture resulting from the nesting of elements. Figure 1 shows the corresponding
document tree (the dashed boxes are explained in section 3.2).

<book class="H.3.3">

<author>John Smith</author> <title>XML Retrieval</title>

<chapter> <heading>Introduction</heading>

This text explains all about XML and IR.

</chapter>

<chapter> <heading>XML Query Language XQL</heading>

<section> <heading>Examples</heading>

</section>

<section> <heading>Syntax</heading>

Now we describe the XQL syntax.

</section>

</chapter>

</book>

All XML documents have to be well-formed, that is, the nesting of ele-
ments must be correct (<a> is forbidden). In addition, a doc-
ument type definition (DTD) may be given, which specifies the syntax of a
set of XML documents. An XML document is valid if it conforms to the
corresponding DTD.

XML Information Retrieval and Information Extraction 3

class="H.3.3"

author

John Smith

title

XML Retrieval Introduction

chapter

heading This. . .

heading

SyntaxExamples

heading

sectionheading

XML Query
Language XQL

section

We describe
syntax of XSL

chapter

book

Fig. 1. Example XML document tree

XIRQL is based on the XPath standard [Clark & DeRose 99], which was
derived from the XML query language XQL [Robie et al. 98]; XPath also
forms the path expression part of query language XQuery [Fernández et al. 01]
proposed by the W3C. Here we give a brief description of those elements of
XPath which are used in XIRQL.

XPath retrieves elements (i.e. subtrees) of the XML document fulfilling
the specified condition. The query heading retrieves the four different head-
ing elements from our example document. Attributes are specified with a
preceding ‘@’ (e.g. @class). Context can be considered by means of the child
operator ‘/’ between two element names, so e.g. section/heading retrieves
only headings occurring as children of sections, whereas ‘//’ denotes descen-
dants (e.g. book//heading). Wildcards can be used for element names, as in
chapter/*/heading. A ‘/’ at the beginning of a query refers to the root node
of documents (e.g. /book/title). The filter operator filters the set of nodes
to its left. For example, //chapter[heading] retrieves all chapters which
have a heading. (In contrast, //chapter/heading retrieves only the heading
elements of these chapters.) Explicit reference to the context node is possi-
ble by means of the dot (.): //chapter[.//heading] searches for a chapter
containing a heading element as descendant. Brackets are also used for sub-
scripts indicating the position of children within an element, with separate
counters for each element type; for example //chapter/section[2] refers to
the second section in a chapter (which is the third child of the second chapter
in our example document).

In order to pose restrictions on the content of elements and the value
of attributes, comparisons can be formulated. For example, /book[author =
"John Smith"] refers to the value of the element author, whereas /book[@class
= "H.3.3"] compares an attribute value with the specified string. Besides
strings, XPath also supports numbers and dates as data types, along with
additional comparison operators like gt and lt (for > and <).

Subqueries can be combined by means of Boolean operators and and or
or be negated by means of not.

4 Norbert Fuhr

For considering the sequence of elements, the operators before and after
can be used, as in //chapter[section/heading = "Examples" before
section/heading = "Syntax"].

These features of XPath allow for flexible formulation of conditions wrt.
to structure and content of XML documents. The result is always a set of
elements from the original document(s).

3 XIRQL Concepts

3.1 Requirements

From an IR point of view, XPath lacks the following features in order to use
it for content-based retrieval of XML documents:

Weighting: IR research has shown that document term weighting as well
as query term weighting are necessary tools for effective retrieval in tex-
tual documents. These two types of weights should be considered during
retrieval, thus resulting in a ranked list of elements.

Relevance-oriented search: The query language should also support tra-
ditional IR queries, whereby only the requested content is specified, but
not the type of elements to be retrieved. In this case, the IR system should
be able to retrieve the most relevant elements.

Data types and vague predicates: Since XML allows for a fine grained
markup of elements, there should be the possibility to use special search
predicates for different types of elements. For example, for an element
containing person names, a similarity search for proper names should be
offered. Thus, there should be the possibility to have elements of different
data types, where each data type comes with a set of specific search
predicates; these predicates also may be vague in the sense that they also
may return weights between 0 and 1.

Structural relativism: XPath is closely tied to the XML syntax, but syn-
tactically different XML constructs may express the same information.
Thus, appropriate generalizations should be included in the query lan-
guage.

In the following, we describe how these features have been integrated in
XIRQL.

3.2 Weighting

Classical IR models have treated documents as atomic units, whereas XML
suggests a tree-like view of documents. In order to develop weighting formulas
for structured documents, we generalize the classical weighting formulas. The
basic idea is to apply the classical weighting formulas to “atomic” units in
XML documents. In addition, we need a combination rule for the case when
larger units are retrieved.

XML Information Retrieval and Information Extraction 5

We start from the observation that text is contained in the leaf nodes of
the XML tree only. So these leaves would be an obvious choice as atomic units.
However, this structure may be too fine-grained (e.g. markup of each item
in an enumeration list, or markup of a single word in order to emphasize
it). A more appropriate solution is based on the concept of index objects
from the FERMI multimedia model [Chiaramella et al. 96] Given a hierarchic
document structure, only nodes of specific types form the roots of index
objects. In the case of XML, this means that we have to specify the names
of the elements that are to be treated as index nodes. This definition can be
part of the XML schema (see below).

From the weighting point of view, index objects should be disjoint, such
that each term occurrence is considered only once. On the other hand, we
should allow for the retrieval of results of different granularity: For very spe-
cific queries, a single paragraph may contain the right answer, whereas more
general questions could be answered best by returning a whole chapter of a
book. Thus, nesting of index objects should be possible. In order to combine
these two views, we first start with the most specific index nodes. For the
higher-level index objects comprising other index objects, only the text that
is not contained within the other index objects is indexed. As an example,
assume that we have defined section, chapter and book elements as index
nodes in our example document; the corresponding disjoint text units are
marked as dashed boxes in Figure 1.

So we have a method for computing term weights, and we can do a rele-
vance based search. Now we have to solve the problem of combining weights
and structural conditions. For the following examples, let us assume that
there is a comparison predicate cw (contains word) which tests for word oc-
currence in an element. Now consider the query
//section[heading cw "syntax"]
and assume that this word does not only occur in the heading, but also mul-
tiple times within the same index node (i.e. section). Here we first have to
decide about the interpretation of such a query: Is it a content-related con-
dition, or does the user search for the occurrence of a specific string? In the
latter case, in would be reasonable to view the filter part as a Boolean con-
dition, for which only binary weights are possible. We offer this possibility
by providing data types with a variety of predicates, where some of them are
Boolean and others are vague (see below).

For the content-related interpretation, we think that the context should
never be ignored in term weighting, even when structural conditions are spec-
ified; these conditions should only work as additional filters. So we take the
term weight from the index node. Thus the index node determines the signif-
icance of a term in the context given by the node. For computing the weight
of a term in an index node, we apply standard weighting schemes like e.g.
tf·idf (treating index nodes like atomic documents).

6 Norbert Fuhr

With the term weights defined this way, we have also solved the problem
of independence/identity of probabilistic events: Each term in each index
node represents a unique probabilistic event, and all occurrences of a term
within the same node refer to the same event (e.g. both occurrences of the
word “syntax” in the last section of our example document represent the
same event). Assuming unique node IDs, events can be identified by event
keys that are pairs [node ID, term]. For retrieval, we assume that different
events are independent. That is, different terms are independent of each other.
Moreover, occurrences of the same term in different index nodes are also in-
dependent of each other. Following this idea, retrieval results correspond to
Boolean combinations of probabilistic events which we call event expressions.
For example, a search for sections dealing with the syntax of XPath could be
specified as //section[.//* cw "XQL" and .//* cw "syntax"]
Here, our example document would yield the conjunction [5,XQL]∧[5, syntax].
In contrast, a query searching for this content in complete documents would
have to consider the occurrence of the term “XQL” in two different index
nodes, thus leading to the Boolean expression
([3,XQL] ∨ [5,XQL]) ∧ [5, syntax].

For dealing with these Boolean expressions, we adopt the idea of event
keys and event expressions described in [Fuhr & Rölleke 97], where we also
show how correct probabilities can be computed for arbitrary event expres-
sions.

In [Fuhr & Großjohann 01], we describe how this approach can be easily
extended in order to allow for query term weighting. Assume that the query
for sections about XQL syntax would be reformulated as
//section[0.6 · .//* cw "XQL" + 0.4 · .//* cw "syntax"].
For each of the conditions combined by the weighted sum operator, we in-
troduce an additional event with a probability as specified in the query (the
sum of these probabilities must not exceed 1). Let us assume that we iden-
tify these events as pairs of an ID referring to the weighted sum expres-
sion, and the corresponding term. Furthermore, the operator ‘·’ is mapped
onto the logical conjunction, and ‘+’ onto disjunction. For the last sec-
tion of our example document, this would result in the event expression
[q1,XQL] ∧ [5,XQL] ∨ [q1, syntax] ∧ [5, syntax]. In addition, we assume that
different query conditions belonging to the same weighted sum expression
are disjoint events and thus the final probability is computed as the scalar
product of query and document term weights:
P ([q1,XQL]) · P ([5,XQL]) + P ([q1, syntax]) · P ([5, syntax]).

3.3 Relevance-oriented Search

Above, we have described a method for combining weights and structural
conditions. In contrast, relevance-based search omits any structural condi-
tions; instead, we must be able to retrieve index objects at all levels. The
index weights of the most specific index nodes are given directly. For the

XML Information Retrieval and Information Extraction 7

retrieval of the higher-level objects, we have to combine the weights of the
different text units contained. For example, assume the following document
structure, where we list the weighted terms instead of the original text:

<chapter> 0.3 XQL
<section> 0.5 example </section>
<section> 0.8 XQL 0.7 syntax </section>

</chapter>

A straightforward possibility would be the OR-combination of the different
weights for a single term. However, searching for the term ‘XQL’ in this
example would retrieve the whole chapter in the top rank, whereas the sec-
ond section would be given a lower weight. It can be easily shown that this
strategy always assigns the highest weight to the most general element. This
result contradicts the structured document retrieval principle mentioned be-
fore. Thus, we adopt the concept of augmentation from [Fuhr et al. 98]. For
this purpose, index term weights are downweighted (multiplied by an augmen-
tation weight) when they are propagated upwards to the next index object.
In our example, using an augmentation weight of 0.6, the retrieval weight of
the chapter wrt. the query ‘XQL’ would be 0.3 + 0.6 · 0.8 − 0.3 · 0.6 · 0.8 =
0.596, thus ranking the section ahead of the chapter.

For similar reasons as above, we use event keys and expressions in order to
implement a consistent weighting process (e.g. equivalent query expressions
should result in the same weights for any given document). In [Fuhr et al. 98],
augmentation weights (i.e. probabilistic events) are introduced by means of
probabilistic rules. In our case, we can attach them to the root elements of
index nodes. Denoting these events as index node number, the last retrieval
example would result in the event expression [1,XQL] ∨ [3] ∧ [3,XQL].

3.4 Data Types and Vague Predicates

Given the possibility of fine-grained markup in XML documents, we would
like to exploit this information in order to perform more specific searches. For
the content of certain elements, structural conditions are not sufficient, since
the standard text search methods are inappropriate. For example, in an arts
encyclopedia, it would be possible to mark artist’s names, locations or dates.
Given this markup, one could imagine a query like “Give me information
about an artist whose name is similar to Ulbrich and who worked around
1900 near Frankfort, Germany”, which should also retrieve an article men-
tioning Ernst Olbrich’s work in Darmstadt, Germany, in 1899. Thus, we need
vague predicates for different kinds of data types (e.g. person names, loca-
tions, dates). Besides similarity (vague equality), additional datatype-specific
comparison operators should be provided (e.g. ‘near’, <, >, or ‘broader’, ‘nar-
rower’ and ‘related’ for terms from a classification or thesaurus). In order to
deal with vagueness, these predicates should return a weight as a result of the
comparison between the query value and the value found in the document.

8 Norbert Fuhr

The XML standard itself only distinguishes between three datatypes,
namely text, integer and date. The XML Schema recommendation [Fallside 01]
extends these types towards atomic types and constructors (tuple, set) that
are typical for database systems. For this purpose, various type-checking
mechanisms are provided, which operate at the syntactic level.

However, for IR applications, this notion of data types is of limited use.
This is due to the fact that most of the data types relevant for IR can hardly
be specified at the syntactic level (consider for instance names of a geographic
locations, or English vs. French text). In the context of XIRQL, data types are
characterized by their sets of vague predicates (such as phonetic similarity
of names, English vs. French stemming). Thus, for supporting IR in XML
documents, there should be a core set of appropriate datatypes and there
should be a mechanism for adding application-specific datatypes.

As a framework for dealing with these problems, we adopt the concept of
datatypes in IR from [Fuhr 99], where a datatype T is a pair consisting of
a domain |T | and a set of (vague comparison) predicates PT = {c1, . . . , cn}.
Like in other type systems, IR data types should also be organized in a type
hierarchy (e.g. Text – Western Language – English), where the subtype re-
stricts the domain and/or provides additional predicates (e.g. n-gram match-
ing for general text, plus adjacency and truncation for western languages,
plus stemming and noun phrase search for English). Through this mecha-
nism, additional data types can be defined easily by refining the appropriate
data type (e.g. introduce French as refinement of Western Language)1, by
restricting the domain |T | or by extending the set of vague predicates PT .

In order to exploit these data types in retrieval, the data types of the XML
elements have to be defined. For this purpose, we employ XML Schema, but
use mainly the application info (which is treated like comments by the XML
schema processor) for enumerating the vague predicates of a data type.

3.5 Structural Relativism

Since typical queries in IR are vague, the query language should also sup-
port vagueness in different forms. Besides relevance-based search as described
above, relativism wrt. elements and attributes seems to be an important fea-
ture. The XPath distinction between attributes and elements may not be
relevant for many users. In XIRQL, author searches an element, @author
retrieves an attribute and ~author is used for abstracting from this distinc-
tion.

Another possible form of relativism is induced by the introduction of
data types. For example, we may want to search for persons in documents,
without specifying their role (e.g. author, editor, referenced author, subject of

1 Please note that we make no additional assumptions about the internal structure
of the text data type (and its subtypes), like representing text as set or list of
words.

XML Information Retrieval and Information Extraction 9

a biography) in these documents. Thus, we provide a mechanism for searching
for certain data types, regardless of their position in the XML document tree.
For example, #persname searches for all elements and attributes of the data
type persname.

Further abstraction from the concrete XML syntax is possible by intro-
ducing datatypes. For example, a date value can be represented in various
forms in an XML document, as illustrated by the following example:

<date year="2001" month="12" day="11"/>
<date>2001-12-11</date>
<date><year>2001</year>

<month>12</month>
<day>11</day></date>

With the ‘date’ datatype, users just specify the date in a standard format in
their query and don’t need to know how dates happen to be represented in
the current document class.

4 XML Retrieval and Information Extraction

Information extraction (IE) deals with the problem of extracting facts and
knowledge from texts ([Crespo et al. 02]). Typically, for a certain type of
information need, a template is defined, which contains a number of slots
(attributes, fields). Then the IE system processes text documents in order
to extract the requested information; as output, instances of the predefined
templates (records) are created, where the slots are filled with appropriate
values from the text. Like in IR, this task is burdened with the intrinsic
uncertainty and vagueness of natural language and its processing (e.g. in
the examples in Figures 2–3, Raphael is recognized as a Baroque artist).
Since the output of an IE system cannot be perfect, many systems assign
uncertainty values to the instantiated templates. In addition, weights may be
also attached to single fields of a record.

Instead of creating instantiated templates, the IE system also can be
used for automatic markup (AM) of texts. In this case, values filling slots
are marked up as XML elements with the corresponding element name. In
addition, the whole text belonging to an instantiated template is marked up
as an element; since there may be additional text not belonging to any of the
slots, the template element has mixed content.

Table 1 compares IE with AM. IE presents facts out of context, but allows
for surveys over a number of instantiated templates (e.g. in a table) and also
enables post-processing of the extracted facts for text mining. In contrast,
AM leaves the facts within the context, so the human reader can easily detect
recognition errors and also take into account additional information from the
text related to the template (e.g. the date ‘17th century’ is modified in the
text to ‘beginning of 17th century’). In addition, AM enables retrieval for

10 Norbert Fuhr

<Art> <Style> <Title>Baroque Art</Title> <Description> An art-
historical term used both as an adjective and a noun to denote,
principally, the style that originated in <Orig Place>Rome</Orig Place>

at the beginning of the <Orig Date>17th century</Orig Date> supersed-
ing <Related Styles>Mannerism</Related Styles>. <Organisations>The
Council of Trent <date>(1545-63)</date> </Organisations> had strongly
advocated pictorial clarity and narrative relevance in religious art and
to a degree Italian artists such as <Artist>Santi di Tito <date>(1536-
1603)</date></Artist> had responded with a more simplified style which
has been called <Related Styles>’Anti-Mannerism’</Related Styles>. Yet
it was not until the <date>17th century</date>, with the grounds well of
renewed confidence and spiritual militancy in the <Organisations>Counter-
Reformation Catholic Church</Organisations> that a radical new style,
the <Related Styles>Baroque</Related Styles>, developed. Rome was
the most important centre of patronage at this period and the re-
turn to compositional clarity was facilitated by a renewed interest in
the antique and the <Related Styles>High Renaissance</Related Styles>

in the work of <Artist>Annibale Carracci</Artist> and his Bolog-
nese followers, <Artist>Domenichino</Artist>, <Artist>Guido</Artist>
<Artist>Reni</Artist> and <Artist>Guercino</Artist>. Their work is char-
acterized by a monumentality, balance and harmony deriving directly from
<Artist>Raphael<Artist>. </Description> <Source> </Style> </Art>

Fig. 2. Example text from an arts encyclopedia, with automatic markup

[Template: Art_Style]

Origination_Place: Rome

Origination_Date: 17th century

Organisations: Council of Trent, Counter-Reformation Catholic Church

Artists: Santi di Tito, Annibale Carracci, Domenichino, Guido

Reni, Guercino, Raphael

Related_Styles: Mannerism, Anti-Mannerism, High Renaissance

Fig. 3. Extracted information from example

aspects not covered by the template, in combination with conditions refer-
ring to specific slots (for example, we could search for artists mentioned in
connection with the phrase ‘religious art’).

Information extraction Automatic markup

facts out of context facts in context
table-oriented view document-oriented view
regular structure irregular (text) structure
enables text mining enables querying facts and (con)text

Table 1. Comparison of information extraction with automatic markup

XML Information Retrieval and Information Extraction 11

For IE as well as for AM, the XML retrieval methods described above can
be applied. Since uncertainty is a central concept of XIRQL, the uncertainty
weights produced by the IE system can be considered during subsequent
retrieval.

• In the IE case, instantiated records can be represented as XML docu-
ments. Here XIRQL allows for ranking of records based on uncertainty
weights produced by the IE system. In case the IE system has assigned
weights to single elements, XIRQL would consider only those weights be-
longing to elements referred to in the query. Another potential benefit
results from the concept of vague predicates in XIRQL, where records
with values similar to those specified in the query also can be retrieved.

• AM does not only pinpoint the role of certain pieces of text, it also
allows for the application of appropriate data types. Both features can
be exploited in order to increase the quality of text retrieval: whereas the
former serves as precision device, the latter may be used for increasing
recall. Again, uncertainty weights produced by the AM system can be
considered during retrieval. Query conditions may refer to marked up
parts of the text as well as to the remaining parts.

The current version of XIRQL allows for the retrieval of complete elements
of XML documents only. In contrast, XQuery supports the restructuring of
results and also provides some aggregation operators. Both of these features
are useful for text mining. However, a straightforward extension of XIRQL by
these operators is rather difficult, due to the uncertainty weights that XIRQL
assigns to the elements of the result.

As a simple example, assume that we have searched for documents deal-
ing with XML retrieval, and — among others — we have found two papers
by the author Smith, one with probability 0.6 and the other with probability
of 0.7. Now we would like to know the number of papers each author has
written on this topic, i.e. count the number of documents per author. For
Smith, 3 answers are possible: With probability 0.12= (1− 0.6) · (1− 0.7) of
his papers is on this subject, the probability of two papers is 0.42= 0.6 · 0.7,
and with probability 0.46, there is exactly one paper by Smith. So we would
end up with a probability distribution instead of a single value. Alternatively,
we could compute the expected value (which is 1.3), but this is still a float-
ing point number and not an integer as in the deterministic case. So, both
solutions yield results that do not conform to the type of answers in the
deterministic case. Using expectations may be more attractive, but further
processing of these values may lead to inconsistent results (e.g. the product of
two expectations is not identical to the expectation of the product of the cor-
responding variables). So there is no theoretically satisfying solution to this
problem. Instead a more pragmatic approach could be used; for example, one
could use the top k answers from XIRQL and treat them as deterministic
answers for the following processing steps, for which e.g. XQuery could be
employed.

12 Norbert Fuhr

5 Conclusions

In this paper, we have described the requirements of IR in XML documents,
and we have presented the query language XIRQL which fulfills these needs.

For texts that are not available in XML format, information extraction
and automatic markup methods can be applied. Whereas the former presents
the information out of context and allows for further processing, the latter
retains the context, thus enabling queries referring to both marked up facts
and (con)text. In both cases, XIRQL is able to consider the uncertainty
resulting from the preprocessing step. For text mining, further processing of
the XIRQL results is necessary. Here appropriate methods for dealing with
the uncertainty weights of the result elements still have to be developed.

References

[Chiaramella et al. 96] Chiaramella, Y.; Mulhem, P.; Fourel, F. (1996). A
Model for Multimedia Information Retrieval. Technical report, FERMI ESPRIT
BRA 8134, University of Glasgow. http://www.dcs.gla.ac.uk/fermi/tech\

_reports/reports/fermi96-4.ps.gz.
[Clark & DeRose 99] Clark, J.; DeRose, S. (1999). XML Path Language (XPath)

Version 1.0. http://www.w3.org/TR/xpath.
[Crespo et al. 02] Crespo, A.; Jannink, J.; Neuhold, E.; Rys, R.; Studer, R.

(2002). A Survey Of Semi-Automatic Extraction And Transformation. http:

//www-db.stanford.edu/~crespo/publications/extract.ps.
[Fallside 01] Fallside, D. (2001). XML Schema Part 0: Primer. http://www.w3.

org/TR/xmlschema-0/.
[Fernández et al. 01] Fernández, M.; Marsh, J.; Nagy, M. (2001). XQuery 1.0

and XPath 2.0 Data Model. http://www.w3.org/TR/query-datamodel/.
[Fuhr & Großjohann 01] Fuhr, N.; Großjohann, K. (2001). XIRQL: A Query

Language for Information Retrieval in XML Documents. In: Croft, W.; Harper,
D.; Kraft, D.; Zobel, J. (eds.): Proceedings of the 24th Annual International Con-
ference on Research and development in Information Retrieval, pages 172–180.
ACM, New York.

[Fuhr & Rölleke 97] Fuhr, N.; Rölleke, T. (1997). A Probabilistic Relational Al-
gebra for the Integration of Information Retrieval and Database Systems. ACM
Transactions on Information Systems 14(1), pages 32–66.

[Fuhr 99] Fuhr, N. (1999). Towards Data Abstraction in Networked Information
Retrieval Systems. Information Processing and Management 35(2), pages 101–
119.

[Fuhr et al. 98] Fuhr, N.; Gövert, N.; Rölleke, T. (1998). DOLORES: A System
for Logic-Based Retrieval of Multimedia Objects. In: Croft et al. (ed.): Proceed-
ings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 257–265. ACM, New York.

[Robie et al. 98] Robie, J.; Lapp, J.; Schach, D. (1998). XML Query Language
(XQL). In: Marchiori, M. (ed.): QL’98 — The Query Languages Workshop. W3C.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

