8 Anhang

8.1 Verwendete Geräte, Chemikalien und Gleichungen

8.1.1 Geräte

- 1. HPLC-Pumpe S 1000 der Firma Sykam
- 2. HPLC-Probenaufgabeventil 7125 der Firma Rheodyne
- 3. Differentialrefraktometer Optilab Multiref 902b der Firma Wyatt Technology
- 4. Streulichtphotometer-Detektor miniDAWN Tristar von der Firma Wyatt Technology
- Dynamisches Wärmestrom-Differenz-Kalorimeter DSC 204 Phoenix[®] und ein TASC 414/3A Controller der Firma Netzsch Gerätebau GmbH
- 6. FTA Flammability Unit" der Firma Stanton Redcroft zur LOI-Bestimmung
- 7. Videokamera Hitachi KP-D50 mit ¹/₂^{''}-CCD-Chip
- 8. Von oben einsehbarer, zylindrischer Ofen, Sonderanfertigung der Firma Schumann Analytische Messtechnik mit symmetrischer Beheizung durch Infrarotstrahler
- 9. Elektronenmikroskop LEO 1530 FE der Firma LEO Electron Microscopy Ltd.
- 10. Plasma 40 Emission Spectrometer der Firma Perkin Elmer mit induktiv gekoppeltem Argonplasma (ICP) als Anregungsquelle; Software: Plasma 400 Software – Color Version 4.10 © 1990
- **11.** Röhrenofen der Firma Heraeus (maximale Temperatur 850 °C)
- 12. mls 1200 mega der Firma Milestone f
 ür den Mikrowellendruckaufschluss mit mega 240 Controller der Firma Milestone
- 13. Waage AE 240 der Firma Mettler
- 14. CS30HT-Coulometer der Firma Behr-Labortechnik in Düsseldorf
- 15. Kugelmühle "Pulverisette 0" der Firma Fritsch GmbH
- 16. FT/IR-Spektrometer System 2000 der Firma PerkinElmer
- 17. Beheizbare IR-Zelle (Eigenanfertigung)
- Thermowaage STA503 der Firma Bähr Thermoanalyse GmbH mit Software WinTA 6.0
- 19. Kinetische Rechensoftware Netzsch Thermokinetics der Firma Netzsch Gerätebau GmbH

8.1.2 Verwendete Chemikalien

Substanz	Reinheit	Hersteller	Molare Masse [g/mol]
			18 1
Tetrahydrofuran	Chromasolv®	Riedel-de Haën	72,11
Sb ₂ O ₃	p. a.	Merck	291,50
KBr	Für die IR-Spektroskopie	Merck	119,01
ZnS	Reinst	Riedel-de Haën	97,43
CaCO ₃	p. a.	Merck	100,09
NaOH	p. a.	Riedel-de Haën	40,00
PVC	Purum	Fluka	Low
H ₂ O ₂	30 % p. a.	Fluka	34,02
HC1	37,5 % p. a.	J. T. Baker	36,46
Zn-Standard	1,000 g/l p. a.	Bernd Kraft	65,39
Ca-Standard	1,000 g/l p. a.	Bernd Kraft	40,08
Sb-Standard	1,000 g/l	Bernd Kraft	121,75
HNO ₃	65 % reinst	Merck	63,02

Tabelle 8.1 Liste der verwendeten Chemikalien

8.1.3 Verwendete Gleichungen zur Statistik

Arithmetischer Mittelwert:

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

 x_i : Messwert der i-ten Messung

N : Anzahl der Messungen

Standardabweichung der Einzelmessungen vom Mittelwert:

$$s_x = \sqrt{\frac{\sum\limits_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$$

 x_i : Messwert der i-ten Messung

 \overline{x} : Arithmetischer Mittelwert

N : Anzahl der Messungen

Relative Standardabweichung:

$$s_{rel} = \frac{s_x}{\overline{x}} \cdot 100\%$$

$$s_x: \qquad \text{Standardabweichung der Einzelmessungen vom Mittelwert}$$

$$\overline{x}: \qquad \text{Arithmetischer Mittelwert}$$

Lineare Regression:

y = mx + b (Gleichung der Ausgleichsgeraden)

- *x*: Konzentration
- y: Signalwert
- *m*: Steigung (Empfindlichkeit des Verfahrens)
- *b*: Ordinatenabschnitt bei x = 0

$$m = \frac{Q_{xy}}{Q_{xx}}$$

Anhang

$$Q_{xx} = \sum_{i=1}^{N} x_i^2 - \frac{\left(\sum_{x=1}^{N} x_i\right)^2}{N}$$
$$Q_{xy} = \sum_{i=1}^{N} (x_i \cdot y_i) - \left[\frac{\sum_{i=1}^{N} y_i \cdot \sum_{i=1}^{N} x_i}{N}\right]$$

 x_i : Konzentrationswert des i-ten Standards

- *y_i*: Signalwert der i-ten Messung
- *N* : Anzahl der Messungen

$$b = \overline{y} - m\overline{x}$$

$$\overline{x} = \sum_{i=1}^{N} x_i$$
 Arbeitsbereichmitte in Konzentrationsrichtung
 $\overline{y} = \sum_{i=1}^{N} y_i$ Arbeitsbereichmitte in Signalrichtung

Bestimmtheitsmaß R² der linearen Regression:

$$R = \frac{\sum_{i=1}^{N} \left[(x_i - \overline{x}) \cdot (y_i - \overline{y}) \right]}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{N} (y_i - \overline{y})^2}}$$

- *R*: Korrelationskoeffizient
- x_i : Konzentrationswert des i-ten Standards
- \overline{x} : Arithmetischer Mittelwert der i Messwerte
- *y_i*: Signalwert der i-ten Messung
- \overline{y} : Arithmetischer Mittelwert der i Signalwerte
- *N* : Anzahl der Messungen
- R^2 : Bestimmtheitsmaß

Reststandardabweichung der Bezugsgeraden:

$$s_{y} = \sqrt{\frac{Q_{xx} - \frac{Q_{xy}^{2}}{Q_{xx}}}{N-2}}$$
$$Q_{xx} = \sum_{i=1}^{N} x_{i}^{2} - \frac{\left(\sum_{x=1}^{N} x_{i}\right)^{2}}{N}$$
$$Q_{xy} = \sum_{i=1}^{N} (x_{i} \cdot y_{i}) - \left[\frac{\sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} x_{i}}{N}\right]$$

- x_i : Messwert der i-ten Messung
- *y_i*: Signalwert der i-ten Messung
- *N* : Anzahl der Messungen

Verfahrensstandardabweichung:

$$s_{x0} = \frac{s_y}{m}$$

- s_{y} : Reststandardabweichung der linearen Regression
- *m*: Steigung der Ausgleichsgeraden (Empfindlichkeit)

Konzentrationen der Nachweisgrenze:

$$c_{NWG} = \Phi_{N,99} \cdot \frac{s_{Bl}}{m}$$

- $\Phi_{N,99}$: Faktor zur Schnellschätzung der Nachweisgrenze mit 99 % iger Sicherheit. Bei N = 20 (20 Blindwertmessungen) ist $\Phi_{N,99} = 2,9 \approx 3$
- s_{Bl} : Standardabweichung des Blindwertes
- *m*: Steigung der Ausgleichsgeraden

8.2 Elementverteilung von Zink, Antimon und Calcium

8.2.1 Widerfindungsraten der Reinsubstanzen

Probe	Ein	waagen	[mg]	Kon Auf	zentratio fschlusslo [mg/kg	on der ösung]	Standa	ardabwei [mg/kg]	chung	Widerf	indungsr	ate [%]
	Sb ₂ O ₃	ZnS	CaCO ₃	Sb	Zn	Ca	Sb	Zn	Ca	Sb	Zn	Ca
R1	3,4	2,4	2,1	2,78	1,63	0,82	0,05	0,06	0,04	98,2	100,9	97,9
R2	3,2	2,0	1,9	2,75	1,31	0,65	0,04	0,08	0,03	103,0	97,3	85,8
R3	2,9	1,6	1,9	2,49	1,02	0,70	0,05	0,02	0,04	102,9	94,9	91,9
R4	3,1	2,3	1,8	2,55	1,56	0,62	0,10	0,03	0,02	98,43	101,2	85,7
						Mittelw	ert			100,6	98,59	90,3
						Standar	dabweich	ung		2,7	3,0	5,8
						relative	Standard	abweichu	ng [%]	2,7	3,1	6,4

Tabelle 8.2 Bestimmung der Widerfindungsraten von Zn, Ca und Sb beim Mikrowellenaufschluss

8.2.2 Zink-, Antimon- und Calciumbilanz

Tabelle 8.3 Zink-, Calcium und Antimongehalte der	Absorptionslösungen nach der	PVC-Thermolyse bei
unterschiedlichen Temperaturen		

Thermolysetemperatur	Deckerster	Ca-Gehalt	Sb-Gehalt	Zn-Gehalt
[°C]	Probenbezeichnung	[% d. Einwaage]	[% d. Einwaage]	[% d. Einwaage]
150	P1	0	0,2	0
	P2	0	0,1	0
	P3	0	0,2	0
	P4	0	0,1	0
300	P1	0	0,1	0
	P2	0,1	5,7	0
	P3	0	2,0	0
	P4	0	0,1	0
450	P1	0	0,2	0
	P2	0	6,1	0
	P3	0	2,5	0
	P4	0	0,3	0
600	P1	0	0,8	0,3
	P2	0	6,1	0,1
	P3	0	3,8	0,2
	P4	0	0,4	0

Thermolysetemperatur	Duchankansiskauna	Ca-Gehalt	Sb-Gehalt	Zn-Gehalt
[°C]	Probenbezeichnung	[% d. Einwaage]	[% d. Einwaage]	[% d. Einwaage]
	P1	1,5	0	6,6
22	P2	1,5	8,0	0,1
	P3	1,7	4,7	3,6
	P4	1,7	0	0,1
	P1	1,7	0	5,4
150	P2	1,5	7,9	0,1
100	P3	1,5	4,7	3,2
	P4	2,5	0	0,1
	P1	1,1	0	5,4
300	P2	1,5	0,1	0
•••	P3	2,0	0,1	4,0
	P4	2,3	0	0,1
	P1	1,8	0	6,2
450	P2	1,4	0	0
	P3	1,9	0,1	3,7
	P4	2,4	0	0,1
	P1	1,5	0	4,3
600	P2	1,5	0	0,1
	P3	1,6	0,1	2,2
	P4	1,6	0	0,1

Tabelle 8.4 Zink-, Calcium und Antimongehalte der Thermolyserückstände der PVC-Thermolyse bei unterschiedlichen Temperaturen

8.2.3 Schwefelgehalte der festen Thermolyserückstände

Tabelle 8.5 Ergebnisse der coulometrischen Schwefelbestimmung thermisch behandelter PVC-Proben

Thermolysetemperatur			Schwefelge	halt [% der	· Einwaage]		
[°C]	P4	NP1	NP2	NP3	NP5	P1	Probe 10
22	0,109	0,405	0,577	0,903	1,345	3,226	2,283
200	0,099	0,397	0,565	0,763	1,332	2,590	1,210
300	0,034	0,148	0,502	1,149	1,149	2,540	0,884
450	0,016	0,177	0,307	1,072	1,072	2,003	0,515

P3 P4 120 °C 140 °C 150 °C 130 °C 160 °C 180 °C 190 °C 170 200 °C 220 °C 230 °C 210 °C 240 °C 250 °C 260 °C 270 °C 280 °C 290 °C 300 °C 310 °C

8.3 Fotografien der visuellen Analyse der PVC-Zersetzung

Abbildung 8.1 Thermische Zersetzung von P1, P2, P3 und P4 unter Argon

Abbildung 8.2 Thermooxidative Zersetzung von P1, P2, P3 und P4 unter synthetischer Luft

Abbildung 8.3 Thermische Zersetzung von P4, P1 und Probe 3 unter Argon

Abbildung 8.4 Thermooxidative Zersetzung von P4, P1 und Probe 3 unter synthetischer Luft

Abbildung 8.5 Thermooxidative Zersetzung von Probe 6 unter synthetischer Luft

Abbildung 8.6 Thermische Zersetzung von Probe 6 unter Argon

Abbildung 8.7 Thermooxidative Zersetzung von P4, P1, Probe 9 und Probe 10 unter synthetischer Luft

Abbildung 8.8 Thermische Zersetzung von P4, P1, Probe 9 und Probe 10 unter Argon

Abbildung 8.9 Thermische Zersetzung von P4, NP2, NP3 und P1 unter Argon

Abbildung 8.10 Thermooxidative Zersetzung von P4, NP2, NP3 und P1 unter synthetischer Luft

8.4 Thermogramme

Abbildung 8.11 Thermogramm der thermischen Zersetzung von NP1 unter Argon

Abbildung 8.12 Thermogramm der thermooxidativen Zersetzung von NP1 unter Luft

Abbildung 8.14 Thermogramm der thermooxidativen Zersetzung von NP2 unter Luft

Abbildung 8.15 Thermogramm der thermischen Zersetzung von NP3 unter Argon

Abbildung 8.16 Thermogramm der thermooxidativen Zersetzung von NP3 unter Luft

Abbildung 8.17 Thermogramm der thermischen Zersetzung von NP5 unter Argon

Abbildung 8.20 Thermogramm der thermooxidativen Zersetzung von P1 unter Luft

Abbildung 8.18 Thermogramm der thermooxidativen Zersetzung von NP5 unter Luft

Abbildung 8.19 Thermogramm der thermischen Zersetzung von P1 unter Argon

Abbildung 8.21 Thermogramm der thermischen Zersetzung von P2 unter Argon

Abbildung 8.22 Thermogramm der thermooxidativen Zersetzung von P2 unter Luft

Abbildung 8.23 Thermogramm der thermischen Zersetzung von P3 unter Argon

Abbildung 8.26 Thermogramm der thermooxidativen Zersetzung von P4 unter Luft

Abbildung 8.24 Thermogramm der thermooxidativen Zersetzung von P3 unter Luft

Abbildung 8.25 Thermogramm der thermischen Zersetzung von P4 unter Argon

Abbildung 8.27 Thermogramm der thermischen Zersetzung von Probe 3 unter Argon

Abbildung 8.28 Thermogramm der thermooxidativen Zersetzung von Probe 3 unter Luft

Abbildung 8.29 Thermogramm der thermischen Zersetzung von Probe 6 unter Argon

Abbildung 8.32 Thermogramm der thermooxidativen Zersetzung von Probe 9 unter Luft

Abbildung 8.30 Thermogramm der thermooxidativen Zersetzung von Probe 6 unter Luft

Abbildung 8.31 Thermogramm der thermischen Zersetzung von Probe 9 unter Argon

Abbildung 8.33 Thermogramm der thermischen Zersetzung von Probe 10 unter Argon

Abbildung 8.34 Thermogramm der thermooxidativen Zersetzung von Probe 10 unter Luft

Abbildung 8.35 Thermogramm der thermischen Zersetzung von PVC_purum unter Argon

Abbildung 8.36 Thermogramm der thermooxidativen Zersetzung von PVC_purum unter Luft

8.5 IR-Spektroskopie

Abbildung 8.37 IR-Spektren der thermischen Zersetzung von NP1 unter Argon

Abbildung 8.38 IR-Spektren der thermooxidativen Zersetzung von NP1 unter Luft

Abbildung 8.39 IR-Spektren der thermischen Zersetzung von NP2 unter Argon

Abbildung 8.40 IR-Spektren der thermooxidativen Zersetzung von NP2 unter Luft

Abbildung 8.41 IR-Spektren der thermischen Zersetzung von NP3 unter Argon

Abbildung 8.42 IR-Spektren der thermooxidativen Zersetzung von NP3 unter Luft

Abbildung 8.43 IR-Spektren der thermischen Zersetzung von NP5 unter Argon

Abbildung 8.44 IR-Spektren der thermooxidativen Zersetzung von NP5 unter Luft

Abbildung 8.45 IR-Spektren der thermischen Zersetzung von P1 unter Argon

Abbildung 8.46 IR-Spektren der thermooxidativen Zersetzung von P1 unter Luft

Abbildung 8.47 IR-Spektren der thermischen Zersetzung von P2 unter Argon

Abbildung 8.48 IR-Spektren der thermooxidativen Zersetzung von P2 unter Luft

Abbildung 8.49 IR-Spektren der thermischen Zersetzung von P3 unter Argon

Abbildung 8.50 IR-Spektren der thermooxidativen Zersetzung von P3 unter Luft

Abbildung 8.51 IR-Spektren der thermischen Zersetzung von P4 unter Argon

Abbildung 8.52 IR-Spektren der thermooxidativen Zersetzung von P4 unter Luft

Abbildung 8.53 IR-Spektren der thermischen Zersetzung von Probe 3 unter Argon

Abbildung 8.54 IR-Spektren der thermooxidativen Zersetzung von Probe 3 unter Luft

Abbildung 8.55 IR-Spektren der thermischen Zersetzung von Probe 6 unter Argon

Abbildung 8.56 IR-Spektren der thermooxidativen Zersetzung von Probe 6 unter Luft

Abbildung 8.57 IR-Spektren der thermischen Zersetzung von Probe 9 unter Argon

Abbildung 8.58 IR-Spektren der thermooxidativen Zersetzung von Probe 9 unter Luft

Abbildung 8.59 IR-Spektren der thermischen Zersetzung von Probe 10 unter Argon

Abbildung 8.60 IR-Spektren der thermooxidativen Zersetzung von Probe 10 unter Luft

8.6 TG-Kinetik

VETZSC Project: Vlodel Sti St	CH Thermokinetics Decomposition tep 1: n-th order with autor tep 2: n-th order	of NP1 in Argon atalysis by B	Date/Time A —1 → B —2 → C	r: 27.02.2	2000 at 18:40	
ARAMET	Parameter	EVIATIONS Initial \	/al. Optimum Val.	Sign	t*Std.Dev.	1872/CH Thermitering. Description of MP1 is Appr
5	lg A1/s^-1	9.60	9.6007		6.09E-02	Here Lifth,
	E1 kJ/mol	135.10	135.1017	+	0.6554	1
	React.ord. 1	1.33	61 1.3363	+	0.1043	A-140-040
	lg Kcat 1	1.60	1.6055		4.48E-02	
	lg A2/s^-1	17.98	164 17.9865		1.2140	-m
	E2 kJ/mol	221.87	50 221.8749	+	12.3268	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	React.ord. 2	2.21	09 2.2109	+	0.2902	11 12 1
	FollReact. 1	0.86	0.8633		2.60E-02	
	Mass Diff 1/mg	-54,15	-54.1571		constant	
	Mass Diff 2/mg	-55.64	.98 -55.6498		constant	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15	Mass Diff 3/mg	-55.98	-55.9850		constant	
	Mass Diff 4/mg	-55.88	.31 -55.8831		constant	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	Mass Diff 5/mg	-55.57	19 -55.5719		constant	1/ 13/6
ATISTIC ast sque san of re prelation	CS ares: sidues: n coefficient:	879.48020 0.76828 0.999637	Number of cycles: Max.No of cycles: Rel. precision:		7 50 0.001000	

Abbildung 8.61 TG-kinetische Parameter der thermischen Zersetzung von NP1 unter Argon

Project: Nodel Sti	Decomposition ap 1: n-th order with autor ap 2: n-th order	of NP2 atalysis by B	A−1→B−2→C			
¥	Parameter	Initial	/al. Optimum Val.	Sian	t*Std.Dev.	NET2ECH Thermalmentor. Decomposition of MP3
	In \$1/e^_1	11.4	11 4706		2 47E-02	Here Diff.
	E1 klimol	147.9	723 147 9723		0.3196	8-0+8-2+2
	Reart and 1	0.6	313 0.6813	÷.	5 92E-02	and the states
	la Kest 1	0.0	127 0.9127		5.73E-02	/ // // == tree
	la 42/s^-1	23.0	715 23 0715		0.2234	···· } // // ···· 33856
	E2 k limol	256.0	20.0713		2 0839	
	React ord 2	2.00.0	722 3 3722	1	3.21E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	FollRoart 1	0.3	113 0.3113		1 79E-02	
	Mass Diff 1/mg	-54 7	-54 7437		constant	
	Mass Diff 2/mg	54 3	285 .54 3285		constant	
	Mass Diff 3/mg	-55.2	351 .55 2351		constant	
	Mass Diff 4/mg	-54.8	54 9251		constant	
ŝ	Mass Diff 5/mg	-55.9	-55.9914	8	constant	
ATISTIC ast squa san of re prelation	:S res: sidues: coefficient: 5:1541)	223.29382 0.37629 0.999909 1.950	Number of cycles: Max.No of cycles: Rel. precision: Durbin:Watson Value:		50 50 0.000100	Here and the second sec

Abbildung 8.62 TG-kinetische Parameter der thermischen Zersetzung von NP2 unter Argon

Abbildung 8.63 TG-kinetische Parameter der thermischen Zersetzung von NP3 unter Argon

Abbildung 8.64 TG-kinetische Parameter der thermischen Zersetzung von NP5 unter Argon

Abbildung 8.65 TG-kinetische Parameter der thermischen Zersetzung von P1 unter Argon

Abbildung 8.66 TG-kinetische Parameter der thermischen Zersetzung von P2 unter Argon

Abbildung 8.67 TG-kinetische Parameter der thermischen Zersetzung von P3 unter Argon

Abbildung 8.68 TG-kinetische Parameter der thermischen Zersetzung von P4 unter Argon

54 A. 14 - 44 T = 1000
A-148-540
A A
111 JA
A 51 B A
4 41 44
JEF 73
18133
11111
11111
1111
31111
11116
31111

Abbildung 8.69 TG-kinetische Parameter der thermischen Zersetzung von Probe 3 unter Argon

NETZSO Project: Model St St	CH Thermokinetics Decomposition ep 1: n-th order with autor ep 2: n-th order	of Probe 6 in Argo catalysis by B	n A−1→B−2⇒∙C	: 27.02.2	2000 at 21:51	
t	Parameter	Initial \	/al. Optimum Val.	Sign	t*Std.Dev.	
) 2 3 5 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 7 5 7	Ig A1/s^-1 E1 kJ/mol React.ord. 1 Ig Kcat 1 Ig Kcat 1 Ig A2/s^-1 E2 kJ/mol React.ord. 2 FoilReact. 1 Mass Diff 2/mg Mass Diff 3/mg Mass Diff 3/mg Mass Diff 6/mg	6.65 114_2(2 1.55 3.83 10.77 127.31 1.77 0.36 -45.10 -45.02 -45.02 -45.04 -45.01 -45.45	96 6.6596 346 114.2046 779 1.5079 711 3.8371 721 12.73121 721 12.73121 704 1.7204 64 0.3684 607 -45.1807 313 -45.2333 354 -45.0854 449 -44.6949 14 -45.0114 22 -45.4322	* * *	5.96E-02 0.3009 3.26E-02 8.83E-02 0.1449 1.3100 3.78E-02 3.50E-02 constant constant constant constant constant	
TATISTIC east squa lean of re orrelation critical(0.	CS irres: sidues: 1 coefficient: 95;1363):	206.24014 0.33139 0.999776 1.950	Number of cycles: Max.No of cycles: Rel. precision: Durbin-Watson Value:		50 50 0.001000 0.028	

Abbildung 8.70 TG-kinetische Parameter der thermischen Zersetzung von Probe 6 unter Argon

Abbildung 8.71 TG-kinetische Parameter der thermischen Zersetzung von Probe 9 unter Argon

Abbildung 8.72 TG-kinetische Parameter der thermischen Zersetzung von Probe 10 unter Argon

Abbildung 8.73 TG-kinetische Parameter der thermischen Zersetzung von PVC_purum unter Argon

Abbildung 8.74 TG-kinetische Parameter der thermooxidativen Zersetzung von NP1 unter Luft

Abbildung 8.75 TG-kinetische Parameter der thermooxidativen Zersetzung von NP2 unter Luft

Abbildung 8.76 TG-kinetische Parameter der thermooxidativen Zersetzung von NP3 unter Luft

Abbildung 8.77 TG-kinetische Parameter der thermooxidativen Zersetzung von NP5 unter Luft

VETZSC Project: Nodel St St	CH Thermokinetics Decomposition ep 1: n-th order with auto ep 2: n-th order	of P1 in synthetic a catalysis by B	ir A—1→B—2→	∙C	27.02.2	000 at 23:05		
t ARAMIE I	Parameter	Initial V	al. Optim	um Val.	Sign	t*Std.Dev.		
)	la A1/s^-1	10.59	06	10.5920		6.82E-02	HET25CH The Holesesso	Deargonite of PT is synhift; at
	E1 kJ/mol	143.38	49 1/	43.3892	+	0.6303	(Here Dell'h.	
	React.ord, 1	0.82	97	0.8282	+	4.96E-02	6-1	Contraction of the owner owner owner owner own
	la Kcat 1	1.72	48	1.7235		5.39E-02		1990 2 5
	lg A2/s^-1	53.43	67	53.4418		0.3231		1 FK 1 K. Y-1+4-5+C
	E2 kJ/mol	552.91	50 50	52,9180	+	3.0910		1 (1) 1 / m 202 mm
	React ord, 2	6.38	33	6.3878		0.2286		
	FolReact 1	0.60	36	0.6027		2 84E-02		[[]]] [[[[[[[[[[[[[[[
	Mass Diff 1/mg	-48.15	77 -	48.1577		constant		
	Mass Diff 2/mg	-47.74	08	47 7408		constant	- 31 -	
0	Mass Diff 3/mg	-48 13	19 -	48 1319		constant		
1	Mass Diff 4/mg	-48 80	66	48 8066		constant		1111 4 4
2	Mass Diff 5/mg	-48.29	32 -	48 2932		constant	- 11 -	
3	Mass Diff 6/mg	-48 83	26 -	48 8326		constant		1461 4 4
TATISTIC last squa ean of re orrelation	CS irres: sidues: coefficient:	1221.18906 0.79814 0.999279	Number of cycle Max.No of cycle: Rel. precision:	5: 5:		5 50 0.001000	-11	

Abbildung 8.78 TG-kinetische Parameter der thermooxidativen Zersetzung von P1 unter Luft

Abbildung 8.79 TG-kinetische Parameter der thermooxidativen Zersetzung von P2 unter Luft

Abbildung 8.80 TG-kinetische Parameter der thermooxidativen Zersetzung von P3 unter Luft

Project: Model St St	Decomposition tep 1: n-th order with autor tep 2: n-th order	of P4 in synthetic atalysis by B	air A−1→B−2→C	. 20.02.2	2000 at 00.00	
a	Parameter	Initial	Val. Optimum Val.	Sign	t*Std.Dev.	NET2EXH Translandeza Discriptional of PF in synthetic at
0 1 2 3 4 5 6 7 8 9 10 11 12	Ig A1/s^-1 E1 kJ/mol React.ord, 1 Ig Kcat 1 Ig Kcat 1 E2 kJ/mol React.ord, 2 FollReact, 1 Mass Diff 1/mg Mass Diff 2/mg Mass Diff 2/mg Mass Diff 3/mg	8.4 121,7 1,4 1,3 18,2 231,4 1,6 0,9 -55,9 -56,6 -56,7 -56,4 -57,1	102 8,4102 569 121.7569 101 1,4010 565 1,3965 590 18.2690 567 231,4567 456 16.456 029 0,9029 034 -55,9034 575 -56,6055 323 -66,7323 56 -56,4056 375 -57,1075	:	2.33E-02 0.3212 7.08E-02 3.09E-02 1.2080 13.8579 0.5857 1.29E-02 constant constant constant constant	
TATISTIC east squa lean of re correlation critical(0.	CS ares: isidues: n coefficient: 95;1512):	932.29863 0.77731 0.999588 1.950	Number of cycles: Max.No of cycles: Rel. precision: Durbin-Watson Value:		50 50 0.000100 0.033	a de la constance de la consta

Abbildung 8.81 TG-kinetische Parameter der thermooxidativen Zersetzung von P4 unter Luft

Abbildung 8.82 TG-kinetische Parameter der thermooxidativen Zersetzung von Probe 3 unter Luft

Abbildung 8.83 TG-kinetische Parameter der thermooxidativen Zersetzung von Probe 6 unter Luft

Abbildung 8.84 TG-kinetische Parameter der thermooxidativen Zersetzung von Probe 9 unter Luft

Abbildung 8.85 TG-kinetische Parameter der thermooxidativen Zersetzung von Probe 10 unter Luft

Abbildung 8.86 TG-kinetische Parameter der thermooxidativen Zersetzung von PVC_purum unter Luft