Bildverzeichnis

Bild 1.1:	Hauptanwendungsgebiete der Magnetosensorik	2
Bild 1.2:	Mehrstufige Wandlung einer Messgröße S_E über eine magnetische Zwischengröße S_m in eine elektrische Größe S_e	4
Bild 1.3:	Prinzipien der zu entwickelnden Sensorsysteme	9
Bild 2.1:	Funktion und prinzipieller Aufbau von galvanomagnetischen Wandlerelementen auf Halbleiterbasis	12
Bild 2.2:	Typische Kennlinien galvanomagnetischer Sensorelemente	14
Bild 2.3:	Elektrische und magnetische Feldkomponenten bei einer Hallsonde	20
Bild 2.4:	Ferromagnetisches Element im permanentmagnetischen Feld	21
Bild 2.5:	Simulierte Einflüsse eines ferromagnetischen Elements auf die magnetische Flussdichtekomponente B_z im permanenterzeugten Magnetfeld	24
Bild 2.6:	Komponenten, Struktur und Material in einem technischen System	25
Bild 2.7:	Prinzipielle ein-, zwei- und dreidimensionale "Struktur"-Variationen	27
Bild 2.8:	Informationstheoretisches Modell zur Informationscodierung durch strukturierte Komponenten galvanomagnetischer Sensorsysteme	28
Bild 2.9:	Black-Box zur Darstellung der Einschränkung der Systemfreiheitsgrade	30
Bild 2.10:	Strukturvarianten sensitiver Sensorsystem-Komponenten	34
Bild 2.11:	Strukturvarianten felderzeugender Sensorsystem-Komponenten	35
Bild 2.12:	Strukturvariierte ferromagnetische Sensorsystem-Bezugselemente	37
Bild 3.1:	Typische magnetische Winkel- und Drehzahlsensoren	40
Bild 3.2:	Sensorsystem-Varianten mit strukturierten Bezugselementen zur Erfassung von Rotationsbewegungen eines Messobjektes	41
Bild 3.3:	Rotationsbewegungen mit strukturierten Sensoren erfassen	42
Bild 3.4:	Mobiles Sensorsystem zur Erfassung der komplexen Ruder- Bewegung	44
Bild 3.5:	Beispiele galvanomagnetischer Standard-Positionssensoren	45
Bild 3.6:	Positionssensoren aus mehreren Hall-Elementen in Zeilenanordnung	45
Bild 3.7:	Einfluss des Abstandes dz auf den Feldverlauf in der Sensorebene	47
Bild 3.8:	Querschnitt eines hydraulischen Proportional-Wegeventils mit Lage- regelung und eingebauter Elektronik, Nenngröße 6 (NG6) [BOS-98]	48
Bild 3.9:	Black-Box-Darstellung für ein magnetisches Messsystem zur Positionserfassung des Steuerkolbens hydraulischer Proportional-Wegeventile	49

Bild 3.10:	Wegmesssystem mit Spinning-Current-Hall-Sensoren	50
Bild 3.11:	Simulationsbild einer Antriebsspule eines Proportional-Wegeventils mit adaptiertem Sensorsystem (Querschnitt) [KRE-98, PIT-99b]	51
Bild 3.12:	Feldgradient $dB_z(x)/dx$ an der Stelle $B_z = 0$ für verschiedene Magnetanordnungen in Abhängigkeit des Abstandes dz	52
Bild 3.13:	Proportional-Wegeventil 4WRSE NG 6 mit adaptiertem INSAFA-Sensor	53
Bild 3.14:	Fehlerfreie Anordnung der Komponenten des Wegmesssystems in drei Ansichten für die Ruheposition (Mittelstellung) des Steuerkolbens	57
Bild 3.15:	Einfluss des geometrischen Fehlers Höhenversatz eines Einzelmagneten	60
Bild 3.16:	Verlauf des Feldgradienten bei Höhenversatz eines Einzelmagneten	60
Bild 3.17:	Einfluss des geometrischen Fehlers Verdrehung um die Längsachse	61
Bild 3.18:	Änderung des Feldgradienten unter dem Einfluss einer Verdrehung der Magnetanordnung um deren Längsachse für die Mittelstellung des Ventil-Steuerkolbens ($x = 0$)	62
Bild 4.1:	Messung einer Objektlänge mit einem vorgespannten Hall-Sensor	65
Bild 4.2:	Einfluss einer Änderung des Abstandes <i>dz</i> im Messbereich	67
Bild 4.3:	Detektion von Unregelmäßigkeiten an der Objektoberfläche	68
Bild 4.4:	Galvanomagnetische Erfassung/Vermessung eines nicht- magnetischen Objekts mithilfe einer magnetisch leitenden Zusatzschicht	71
Bild 4.5:	Mögliche Zustände des informationstragenden Gestaltmerkmals Form	73
Bild 4.6:	Aufbau eines galvanomagnetischen Sensorsystems zur Geometriedatenerfassung nicht-magnetischer Objekte	75
Bild 4.7:	Fehlerhafte Dimensionierung der kompressiblen Rückstellschicht	76
Bild 4.8:	Anschlagkanten zur Ausrichtung des Messobjekts	78
Bild 4.9:	Beispiel für die Verwendung von Feldplatten- Widerstandspotentiometern	79
Bild 4.10:	Einsatz von Differenzial-Feldplatten zur Analyse der Oberflächengeometrie nicht-magnetischer Messobjekte	80
Bild 4.11:	Mechanisches Kinderfuß-Messgerät der DSI	85
Bild 4.12:	Brandsohlen-Konstruktionsschema gemäß WMS-Richtlinie	87
Bild 4.13:	Galvanomagnetisches Fußmesssystem mit strukturierten Komponenten	91
Bild 4.14:	Ablauf einer Fußmessung bzw. Schuhgrößenbestimmung mit dem galvanomagnetischen Fußmesssystem mit strukturierten Komponenten	94

Bild 5.1:	Grundaufbau eines Barcodefeldes am Beispiel des EAN 13	101
Bild 5.2:	Vergleich von 1D- und 2D-Barcodes anhand einer Beispielinformation	104
Bild 5.3:	Erfassung, Auswertung und Verarbeitung optischer Barcodes	105
Bild 5.4:	Anordnung und Umwandlung eindimensionaler M-Codes	106
Bild 5.5:	Einfluss der Sensorgeschwindigkeit v_S auf das Lesen von M-Codes	107
Bild 5.6:	Einfluss der Elementbreite <i>b</i> auf die Signalspannung U_H	108
Bild 5.7:	Zweidimensionaler M-Code mit gestuftem Bezugselement	108
Bild 5.8:	Zweidimensionaler M-Code aus geschichteten Einzelelementen	109
Bild 5.9:	Adaption eines Zweibreiten-Barcodes durch einen 2-Schicht- $M^{\rm M}\mbox{-}Code$	111
Bild 5.10:	Optimierung durch nicht-magnetische Bereiche	112
Bild 5.11:	Sonderzeichen zur Optimierung der Lesbarkeit von M-Codes	113
Bild 5.12:	Optimierung der Sicherheit von geschichteten Strukturcodes	114
Bild 5.13:	3D-Strukturcodierung mit geschichteten Strukturcodes	114
Bild 5.14:	Beispiel eines objektintegrierten M-Codes (Inlet) zur	
	Produktidentifikation	116
Bild 5.15:	Mobiles, handgeführtes Lesesystem für magnetische Strukturcodes	117