9. Anhang

Anhang A - Tabellenanhang

Tab. 9.1:Einfluss der Li⁺ - Ionenkonzentration auf die relative spektrale Linienbreite des C-5 Man
Signals einer EPS- Lösung (7,5 g/L)

Ionenkonz. [mol · L ⁻¹]	rel. Linienbr.
0,00	1,000
0,01	0,965
0,02	0,973
0,05	0,977
0,10	0,983
0,50	0,949
1,00	0,947
1,50	0,969
2,00	0,965
2,50	0,992

Tab. 9.2:Einfluss der Li⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_1 des C-5 Man
Signals einer EPS- Lösung (7,5 g/L)

Ionenkonz. [mol $\cdot L^{-1}$]	<i>T</i> ₁ [s]	Std.abw. [s]
0,00	0,306	0,010
0,01	0,277	0,006
0,02	0,278	0,010
0,05	0,284	0,010
0,10	0,276	0,009
0,50	0,290	0,019
1,00	0,238	0,013
1,50	0,261	0,009
2,00	0,248	0,015
2,50	0,289	0,006

<u>Tab. 9.3:</u> Einfluss der Li⁺- Ionenkonzentration auf die relative spektrale Linienbreite des C-5 Man

Ionenkonz. [mol · L ⁻¹]	rel. Linienbr.
0,00	1,000
0,01	0,921
0,02	0,912
0,05	0,910
0,10	0,876
0,50	0,821
1,00	0,817
1,50	0,851
2,00	0,825
2,50	0,828

Signals einer Alginatlösung (10 g/L)

Tab. 9.4:Einfluss der Li⁺- Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_1 des C-5 Man
Signals einer Alginatlösung (10 g/L)

Ionenkonz.	T_{1}	Std.abw.
$[mol \cdot L^{-1}]$	[s]	[s]
0,00	0,297	0,006
0,01	0,273	0,012
0,02	0,294	0,013
0,05	0,303	0,004
0,10	0,294	0,007
0,50	0,267	0,013
1,00	0,235	0,014
1,50	0,240	0,013
2,00	0,315	0,010
2,50	0,245	0,012

<u>Tab. 9.5:</u> Einfluss der Mg²⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5 Man Signals einer

EPS- Lösung (7,5 g/L)

Ionenkonz. [mmol · L ⁻¹]	Linienbr _{. hH} [Hz]	Std.abw. [Hz]
0,0	140,3	2,1
0,7	138,3	2,1
1,2	144,1	2,2
1,6	146,3	2,2
2,0	149,5	2,2
2,7	179,2	2,7
3,6	184,7	2,8

Tab. 9.6:Einfluss der Mg^{2+} - Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_i des C-5 Man
Signals einer EPS- Lösung (7,5 g/L)

Ionenkonz. [mmol · L ⁻¹]	<i>T</i> ₁ [s]	Std.abw. [s]
0,0	0,308	0,008
0,7	0,291	0,007
1,2	0,307	0,005
1,6	0,287	0,010
2,0	0,318	0,010
2,7	0,298	0,010
3,6	0,290	0,019

Tab. 9.7: Einfluss der Ca²⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5 Man Signals einer EPS-

Lösung (7,5 g/L)		
Ionenkonz. [mmol · L ⁻¹]	Linienbr _{. hH} [Hz]	Std.abw. [Hz]
0,0	141,0	2,1
0,7	145,9	2,2
1,2	150,0	2,3
1,6	157,0	2,4
2,0	160,5	2,4
2,7	183,9	2,8
3,6	173,3	2,6

Tab. 9.8:Einfluss der Ca^{2+} - Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_1 des C-5 Man

Signals einer EPS- Lösung (7,5 g/L)

Ionenkonz.	T_{I}	Std.abw.
$[mmol \cdot L^{-1}]$	[s]	[s]
0,0	0,318	0,008
0,7	0,308	0,008
1,2	0,330	0,005
1,6	0,332	0,019
2,0	0,350	0,014
2,7	0,320	0,013
3,6	0,346	0,011

<u>Tab. 9.9:</u> Einfluss der Al³⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5 Man Signals einer EPS-

Ionenkonz. [mmol · L ⁻¹]	Linienbr _{. hH} [Hz]	Std.abw. [Hz]
0,0	152,3	2,3
0,1	153,8	2,3
0,5	152,7	2,3
1,0	150,6	2,2
1,5	153,2	2,3
2,0	154,1	2,3

Lösung (7,5 g/L); (pH = 4)

<u>Tab. 9.10</u>: Einfluss der Al^{3+} - Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_l des C-5 Man

Signals einer EPS- Lösung (7,5 g/L); (pH = 4)		
Ionenkonz. [mmol · L ⁻¹]	<i>T</i> ₁ [s]	Std.abw. [s]
0,0	0,311	0,007
0,1	0,315	0,006
0,5	0,314	0,007
1,0	0,317	0,009
1,5	0,314	0,004
2,0	0,308	0,011

 Tab. 9.11:
 Einfluss der Al³⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5 Man Signals einer EPS

Lösung (7,5 g/L); (pH = 7)

Ionenkonz. [mmol · L ⁻¹]	Linienbr _{. hH} [Hz]	Std.abw. [Hz]
0,0	123,4	1,9
0,1	122,6	1,8
0,5	122,6	1,8
1,0	125,5	1,9
1,5	121,7	1,8
2,0	124,1	1,9

Tab. 9.12:Einfluss der Al^{3+} - Ionenkonzentration auf die Spin - Gitter Relaxationszeit T_I des C-5 Man
Signals einer EPS- Lösung (7,5 g/L); (pH = 7)

Ionenkonz.	T_{I}	Std.abw.
$[mmol \cdot L^{-1}]$	[s]	[s]
0,0	0,312	0,010
0,1	0,321	0,009
0,5	0,309	0,007
1,0	0,311	0,013
1,5	0,316	0,007
2,0	0,312	0,012

Tab. 9.13:Zeitabhängige Änderung der Linienbreite der C-5 Mannuronatlinie im Spektrum eines nativen
Biofilms von *P. aeruginosa* SG81 unter Einfluss von Stressfaktoren (Nährstoff- und Sauer-
stoffknappheit)

Zeit [d]	Linienbr _{. hH} [Hz]	Std.abw. [Hz]
0	190,8	2,9
1	185,9	2,8
2	179,6	2,7
14	165,4	2,5
20	165,2	2,5
25	166,9	2,5
27	166,2	2,5
30	165,4	2,5
150	156,8	2,3

Anhang B - Abbildungsanhang

Anhang C - Tabellenverzeichnis

Tab. 2.1:	Spannweite mikrobieller Existenz nach Flemming [2]	4
Tab. 2.2:	Beispiele für bakterielle Infektionen, die im Zusammenhang mit Biofilmen	7
	stehen [29]	
Tab. 2.3:	Übersicht über die Funktionalität der EPS innerhalb von Biofilmen	12
Tab. 2.4:	Zusammensetzung der EPS einer Laborkultur von Pseudomonas	
	aeruginosa SG81 bezogen auf 10 ⁹ Zellen	15
Tab. 5.1:	Temperaturabhängige Änderung der Halbwertsbreite [Hz] der C-5 Man u.	
	Gul Resonanzlinien	61
Tab. 6.1:	Verschiebungswerte der Resonanzsignale [ppm] für P. aeruginosa und L.	
	digitata in der Gegenüberstellung	90
Tab. 6.2:	Sequenzanalyse und Bestimmung des M/G- Verhältnisses für P.	
	aeruginosa SG81 und L. digitata	91
Tab. 9.1:	Einfluss der Li ⁺ - Ionenkonzentration auf die relative spektrale Linienbreite	
	des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	131
Tab. 9.2:	Einfluss der Li ⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit	
	T_1 des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	131
Tab. 9.3:	Einfluss der Li ⁺ - Ionenkonzentration auf die relative spektrale Linienbreite	
	des C-5 Man Signals einer Alginatlösung (10 g/L)	132
Tab. 9.4:	Einfluss der Li ⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit	
	T ₁ des C-5 Man Signals einer Alginatlösung (10 g/L)	132
Tab. 9.5:	Einfluss der Mg ²⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5	
	Man Signals einer EPS- Lösung (7,5 g/L)	132
Tab. 9.6:	Einfluss der Mg ²⁺ - Ionenkonzentration auf die Spin - Gitter Relaxations-	
	zeit <i>T</i> ₁ des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	133
Tab. 9.7:	Einfluss der Ca ²⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5	
	Man Signals einer EPS- Lösung (7,5 g/L)	133
Tab. 9.8:	Einfluss der Ca ²⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit	
	T ₁ des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	133
Tab. 9.9:	Einfluss der Al ³⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5	
	Man Signals einer EPS- Lösung (7,5 g/L); (pH = 4)	134

Tab. 9.10:	Einfluss der Al ³⁺ - Ionenkonzentration auf die Spin – Gitter Relaxations-		
	zeit T_1 des C-5 Man Signals einer EPS- Lösung (7,5 g/L); (pH = 4)	134	
Tab. 9.11:	Einfluss der Al ³⁺ - Ionenkonzentration auf die Halbwertsbreite des C-5		
	Man Signals einer EPS- Lösung (7,5 g/L); (pH = 7)	134	
Tab. 9.12:	Einfluss der Al^{3+} - Ionenkonzentration auf die Spin – Gitter Relaxations-		
	zeit T_1 des C-5 Man Signals einer EPS- Lösung (7,5 g/L); (pH = 7)	135	
Tab. 9.13:	Zeitabhängige Änderung der Linienbreite der C-5 Mannuronatlinie im		
	Spektrum eines nativen Biofilms von P. aeruginosa SG81 unter Einfluss		
	von Stressfaktoren (Nährstoff- und Sauerstoffknappheit)	135	

Anhang D - Abbildungsverzeichnis

Abb. 2.1: "Microbial mats" im Yellowstone Nationalpark (USA)	5
Abb. 2.2: Entstehung und Evolution eines Biofilms in einem Wassersystem	9
Abb. 2.3: Darstellung der Biofilmstruktur in einem Fließwassersystem	10
Abb. 2.4: Aufbau eines N-acyl- L-Homoserinlacton Autoinduktors	11
Abb. 2.5: Schematische Darstellung der physikalischen und chemischen Prozesse	
innerhalb eines Biofilms [56]	14
Abb. 2.6: Schematische Darstellung der unterschiedlichen Wechselwirkungskräfte	
innerhalb der EPS- Matrix	15
Abb. 2.7: Häufige Monomerbausteine in Polysacchariden (Teil I)[60]	18
Abb. 2.8: Häufige Monomerbausteine in Polysacchariden (Teil II)[60]	19
Abb. 2.9: Darstellung der Beweglichkeit der glycosidischen Bindung anhand dreier	
Beispiele	20
Abb. 2.10: Monosaccharidische Grundbausteine des Alginats: D- Mannuronat und L-	
Guluronat	21
Abb. 2.11: Ausschnitt aus einem Alginatmolekül bakterieller Herkunft	22
Abb. 2.12: Grundzüge der Biosynthese bakterieller Alginate	23
Abb. 2.13: Das "Egg-box" Modell für Calcium- Alginatgele nach Yalpani [80]	25
Abb. 3.1: Darstellung der Spinverteilung im thermischen Gleichgewicht im	
Laborkoordinatensystem	26
Abb. 3.2: Darstellung des Wachstums des makroskopischen Magnetisierungsvektors	
M_z für ein Spinsystem mit $T_I = 20$ s	28
Abb. 3.3: Schema eines Inversion Recovery- Experiments	29
Abb. 3.4: Impulsfolge zur Bestimmung der Spin - Gitter Relaxationszeit T_1 von ¹³ C-	
Kernen	30
Abb. 3.5: Darstellung der zeitlichen Abnahme der Quermagnetisierung M _y	31
Abb. 3.6: Darstellung der Abnahme des Magnetisierungsvektors M _{xy} in der x,y- Ebene	
für ein Spinsystem mit $T_2 = 3$ s	32
Abb. 3.7: Schema der Auswirkungen einer Carr-Purcell-Maiboom-Gill- Sequenz zur	
Bestimmung der Spin - Spin Relaxationszeit T ₂	33
Abb. 3.8: Schematische Darstellung eines CPMG- Spektrums in der Zeitdomäne	34

Abb. 3.9: Darstellung der Halbwertsbreite an einem simulierten Resonanzsignal	
(Lorentzkurve)	35
Abb. 3.10: Direkte Kopplung von Elektronen- und Kernspin	37
Abb. 3.11: Kerne in der näheren Umgebung eines ungepaarten Elektrons erfahren	
fluktuierende Magnetfelder in der x,y- Ebene	38
Abb. 5.1: ${}^{13}C{}^{1}H$ -NMR Spektrum (statisch) eines nativen Biofilms von <i>P. aeruginosa</i>	
SG81	45
Abb. 5.2: ¹³ C- CP-NMR Spektrum (statisch) eines nativen Biofilms von <i>P. aeruginosa</i>	
SG81	46
Abb. 5.3: ¹³ C- CP-NMR Spektrum eines nativen Biofilms von <i>P. aeruginosa</i> SG81,	
Ausschnittsvergrößerung der Hydroxylkohlenstoffresonanzen	47
Abb. 5.4: ¹³ C{ ¹ H}-NMR Spektrum von partiell abgebautem und deacetyliertem	
Alginat von <i>P. aeruginosa</i> SG81 bei T = 333 K	48
Abb. 5.5: Ausschnittsvergrößerung des Bereichs der anomeren Kohlenstoffatome	49
Abb. 5.6: Ausschnittsvergrößerung des Resonanzbereichs der Hydroxylkohlenstoffe	49
Abb. 5.7: Zuordnung der ¹³ C- Signale der M-2, M-3 und G-3 Ringkohlenstoffe zu	
einzelnen Triadensequenzen	50
Abb. 5.8: ¹³ C{ ¹ H}-NMR Spektrum (statisch) eines ¹³ C- angereicherten Biofilms von	
P. aeruginosa SG81	52
Abb. 5.9: Ausschnittsvergrößerung des Resonanzbereichs der Hydroxylgruppen-	
kohlenstoffe eines ¹³ C- angereicherten Biofilms von <i>P. aeruginosa</i>	53
Abb. 5.10: ¹³ C{ ¹ H}-NMR Spektrum (statisch) einer wässrigen, ¹³ C- angereicherten	
Lösung (7,5 g/L) von EPS	54
Abb 5.11: Resonanzbereich der Hydroxylgruppenkohlenstoffe einer wässrigen EPS -	
Lösung (7,5 g/L)	55
Abb 5.12: Resonanzbereich der Hydroxylgruppenkohlenstoffe einer wässrigen Alginat	
- Lösung (10,0 g/L)	56
Abb. 5.13: ¹³ C{ ¹ H}-NMR Spektrum (statisch) einer EPS- Lösung bei unterschied-	
lichen pH- Werten	57
Abb. 5.14: 5×5 µm Ausschnitte einer AFM- Aufnahme von einer getrockneten EPS-	
Lösung auf Mica	58

Abb. 5.15:	$^{13}C{^{1}H}$ - NMR Spektren einer wässrigen EPS- Lösung (7,5 g/L) in	
	Abhängigkeit von der Temperatur	60
Abb. 5.16:	Darstellung der Veränderung der Linienbreite des C-5 Man Resonanz-	
	signals in Abhängigkeit von der Temperatur	61
Abb. 5.17:	Darstellung der Veränderung der Linienbreite des C-5 Gul Resonanzsignals	
	in Abhängigkeit von der Temperatur	62
Abb. 5.18:	Abhängigkeit der apparenten Viskosität η_{app} einer 3,6% igen PVA, einer	
	20,2% igen PAS und einer EPS- Lösung von der LiCl- Ionenstärke	63
Abb. 5.19:	$^{13}C{^{1}H}$ - NMR Spektren einer wässrigen EPS – Lösung (7,5 g/L) in	
	Abhängigkeit von der LiCl- Ionenstärke	64
Abb. 5.20:	Einfluss der Li ⁺ - Ionenkonzentration auf die relative spektrale Linienbreite	
	des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	65
Abb. 5.21:	Einfluss der Li ⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit	
	<i>T</i> ₁ des C-5 Man Signals einer EPS- Lösung	65
Abb. 5.22:	¹³ C{ ¹ H}- NMR Spektren der Hydroxylgruppen in einer wässrigen	
	Alginatlösung (10 g/L) in Abhängigkeit von der Li ⁺ - Konzentration	67
Abb. 5.23:	Einfluss der Li ⁺ - Ionenkonzentration auf die relative spektrale Linienbreite	
	des C-5 Man Signals einer Alginatlösung (10 g/L)	68
Abb. 5.24:	Einfluss der Li ⁺ - Ionenkonzentration auf die Spin - Gitter Relaxationszeit	
	T_1 des C-5 Man Signals einer Alginatlösung (10 g/L)	68
Abb. 5.25:	¹³ C{ ¹ H}- NMR Spektren der Hydroxylgruppenresonanzlinien in einer	
	wässrigen EPS- Lösung (7,5 g/L) in Abhängigkeit von der Mg ²⁺ - Kon-	
	zentration	71
Abb. 5.26:	Darstellung der Veränderung der Linienbreite des C-5 Man Resonanz-	
	signals in Abhängigkeit von der Mg ²⁺ - Konzentration in einer EPS- Lösung	
	(7,5 g/L)	72
Abb. 5.27:	Einfluss der Mg ²⁺ - Ionenkonzentration auf die Spin – Gitter Relaxation T_1	
	des C-5 Man Signals einer EPS- Lösung (7,5 g/L)	72
Abb. 5.28:	¹³ C{ ¹ H}- NMR Spektren der Hydroxylgruppenresonanzlinien in einer	
	wässrigen EPS- Lösung (7,5 g/L) in Abhängigkeit von der Ca ²⁺ - Kon-	
	zentration	74

Abb. 5.29: Darstellung der Verä	nderung der Linienbreite des C-5 Man Resonanz-	
signals in Abhängigl	keit von der Ca ²⁺ - Konzentration in einer EPS- Lösung	
(7,5 g/L)		75
Abb. 5.30: Einfluss der Ca ²⁺ - Io	nenkonzentration auf die Spin - Gitter Relaxationszeit	
T_1 des C-5 Man Sign	als einer EPS- Lösung (7,5 g/L)	76
Abb. 5.31: Änderung der Linien	breite auf halber Signalhöhe (Hz) nach Regenerierung	
der EPS mittels Kati	onenaustauscher DOWEX	77
Abb. 5.32: ¹³ C{ ¹ H}- NMR Spek	tren der Hydroxylgruppenresonanzlinien in einer	
wässrigen EPS- Löst	ung (7,5 g/L) in Abhängigkeit von der Al ³⁺ - Kon-	
zentration $(pH = 4,0)$)	79
Abb. 5.33: ¹³ C{ ¹ H}- NMR Spek	tren der Hydroxylgruppenresonanzlinien in einer	
wässrigen EPS- Löst	ng (7,5 g/L) in Abhängigkeit von der Al ³⁺ - Kon-	
zentration $(pH = 7,0)$)	80
Abb. 5.34: ¹³ C{ ¹ H}- NMR Spek	tren der Hydroxylgruppenresonanzlinien in einer	
wässrigen EPS- Löst	(7,5 g/L) in Abhängigkeit von der Mn ²⁺ - Kon-	
zentration		82
Abb. 5.35: Zeitabhängige Änder	rung der Linienbreite der C-5 Mannuronatlinie im	
Spektrum eines nativ	ven Biofilms von <i>P. aeruginosa</i> SG81 unter Einfluss	
von Stressfaktoren (l	Nährstoff- und Sauerstoffknappheit)	84
Abb. 5.36: ¹³ C{ ¹ H}- NMR Spek	ttren eines 13 C- angereicherten nativen Biofilms von P.	
aeruginosa SG81	~ 	85
Abb. 5.37: ¹³ C{ ¹ H}- NMR Spek	tren eines Biofilms von <i>P. aeruginosa</i> 48 h nach der	
Entnahme	~ 	86
Abb. 5.38: ¹³ C{ ¹ H}- NMR Spek	ttren eines Biofilms von <i>P. aeruginosa</i> nach 150	
Tagen Lagerung unt	er Sauerstoff- und Nährstoffarmut	87
Abb. 5.39: Einzelkolonieausstrie	ch des Biofilms nach Abschluß des Dauerversuchs	87
Abb. 5.40: ${}^{13}C{}^{1}H{}$ - NMR Spek	tren abgebauter Biofilme	88
Abb. 6.1: ¹³ C{ ¹ H}- NMR Spekt	ren eines unmarkierten und eines ¹³ C- markierten	
Biofilms		93
Abb. 6.2: Darstellung der Mono	mereinheiten innerhalb bakteriellen Alginats und ihrer	
Isotopenmarkierung	~ 	94
Abb. 6.3: Gegenüberstellung de	r Hydroxylkohlenstoffresonanzlinien von a) nativem	
Biofilm und b) einer E	EPS- Lösung (7,5 g/L)	96

Abb. 6.4: Schematische Darstellung der "crankshaft motion" anhand eines Ausschnitts	
aus einem Alginatmolekül	97
Abb. 6.5: Gegenüberstellung von intra- und intermolekularen Wechselwirkungen in	
Polymeren	98
Abb. 6.6: Gegenüberstellung experimenteller Alginatspektren mit simulierten Spektren	
der C-5 Mannuronatresonanzlinie	104
Abb. 6.7: Schematische Darstellung der Konformationsänderung eines Alginat-	
moleküls in Abhängigkeit von der Li ⁺ - Ionenstärke	105
Abb. 6.8: Schematische Darstellung zwischen Mg ²⁺ - Ionen und bakteriellem Alginat	107
Abb. 6.9: Vergleich der Hydroxylgruppenresonanzen einer a) undotierten EPS- Lösung	
(7,5 g/L) und b) EPS- Lösung mit 1,6 mmol/L Ca ²⁺	109
Abb. 6.10: Schematische Darstellung zwischen Ca ²⁺ - Ionen und bakteriellem Alginat	110
Abb. 6.11: Darstellung einer möglichen Konformation eines Ca – Man – Gul	
Dimerkomplexes	111
Abb. 6.12: Schematische Darstellung der Lokalisierung des Mn ²⁺ - Ions innerhalb der	
Alginatkette	114
Abb. 6.13: Enzymatischer Abbau von Alginat nach Gacesa [124]	117
Abb. 6.14: Ausschnitt der Methin- und. Methylenkohlenstoffresonanzen eines 25 d	
alten Biofilms	118
Abb. 9.1: Gegenüberstellung experimenteller Alginatspektren (Li^+ - Konzentrations-	
reihe, links) mit simulierten Spektren (isotrope Rotationsdiffusion, rechts)	
der C-5 Mannuronatresonanzlinie	136

Anhang E - Abkürzungsverzeichnis

9.1 NMR- Abkürzungen

α, β	Energiezustände	MF	<u>M</u> olecular <u>F</u> rame
$ec{B}_0$	externes Magnetfeld	N_{lpha}, N_{eta}	Besetzungszahlen des
B_0	z- Komponente des	NMR	<u>N</u> uclear <u>M</u> agnetic <u>R</u> esonance
	Magnetfeldvektors \vec{B}_0		
\vec{B}_1	Magnetfeld, erzeugt durch rf- Puls	PAS	Principal Axis System
B_1	Betrag des Magnetfeldvektors \vec{B}_1	ppm	Einheit der chemischen
			Verschiebung (parts per million)
<i>b</i> _{1/2}	Halbwertsbreite	rf- Puls	Radiofrequenzimpuls
СР	<u>C</u> ross <u>P</u> olarisation	RF	<u>R</u> otor <u>F</u> rame
	(Kreuzpolarisation)		
CPMG	<u>C</u> arr- <u>P</u> urcell- <u>M</u> eiboom- <u>G</u> ill	$\sigma_{_{iso}}$	isotroper Wert des
	Pulssequenz		Abschirmungstensors
DF	Director Frame	$\sigma_{_{ii}}$	Hauptachsenwerte des
			Abschirmungstensors im PAS
ΔE	Energiedifferenz zwischen α - und	τ	Zeitabschnitt
	β- Niveau		
FID	<u>Free</u> Induction <u>D</u> ecay	$ au_{ m c}$	Korrelationszeit
h	Plank'sches Wirkungsquantum	$ au_{ m P}$	Pulslänge
Ι	Kernspinquantenzahl	t	Zeit
I(t)	Intensität zum Zeitpunkt t	Т	Temperatur
I_0	Intensität zum Zeitpunkt t = 0	T_{I}	Spin-Gitter-Relaxationszeit
k _B	Boltzmann- Konstante	T_{1e}	longitudinale
			Elektronenspinrelaxationszeit
LF	<u>L</u> aboratory <u>F</u> rame	T_2	Spin-Spin- Relaxationszeit
$\vec{\mu}$	magnetisches Moment	T_{2e}	transversale
			Elektronenspinrelaxationszeit
\vec{M}	Magnetisierung	ω	Kreisfrequenz [rad/s]
M_0	Maximalwert der Magnetisierung	x´,y´,z´	Koordinatenachsen des
			rotierenden Koordinatensystems

9.2 Andere Abkürzungen

AFM	<u>A</u> tomic <u>F</u> orce <u>M</u> icroscopy	HSL	Homoserinlacton
CF	<u>Cystic F</u> ibrosis	ISP	Intracellular Storage Products
C_{org}	organisch gebundener Kohlenstoff	Man	Mannuronatmonomerbausteine
EDTA	Ethylendiamintetraessigsäure	NBA	Nutrient Broth Agar
EPS	<u>E</u> xtracellular <u>P</u> olymeric	PAS	Polyacrylsäure
	<u>S</u> ubstances		
g _n	Erdbeschleunigung	PIA	Pseudomonas Isolation Agar
Gul	Guluronatmonomerbausteine	PVA	Polyvinylalkohol
η_{app}	apparente Viskosität	THF	Tetrahydrofuran