Verzeichnis der Bilder und Tabellen

Bild 1.1:	Entwicklung des Absatzes in Deutschland produzierter elektrotechni- scher Produkte für den medizinischen Einsatz (Quelle: Statistisches Bundesamt)
Bild 1.2:	Charakteristische Kenngrößen medizinischer Produkte in der Black-Box- Abstraktion
Bild 2.1:	Allgemeine Kommunikations- und Schnittstellenstruktur von Geräten9
Bild 2.2:	Kommunikations- und Schnittstellenstruktur medizinischer Geräte
Bild 2.3:	Verfügbarkeit von Schnittstellendefinitionen im Interaktionsschema Arzt-Gerät-Patient11
Bild 2.4:	Verknüpfung von Biokompatibilität, Biofunktionalität und Sterilisation 15
Bild 2.5:	Risikoklassen und Abgrenzungskriterien nach Richtlinie 93/42/EWG für die Zuordnung von Medizinprodukten
Bild 3.1:	Systemgrenzen-Spezifikation und prinzipielle Topologie27
Bild 3.2:	Bezugssystemkonstellationen für die Kopflagebestimmung29
Bild 3.3:	Rahmenhelm als Sensorträger für die Kopfbewegungsmessung
Bild 3.4:	Wirkungsweise des 2-achsigen Neigungssensors, Sensoransteuerung, Signalverarbeitung und Integration der Systemkomponenten in den Helm33
Bild 3.5:	Signalverhalten des 2D-Inklinometers – Gegenüberstellung von mess- technisch ermittelten Stützstellen und gefundenen Näherungsfunktionen34
Bild 3.6:	Konstellation von Seilzugsensoren in Differentialanordnung zur Dreh- winkelmessung
Bild 3.7:	Drehwinkelkennlinie des Differentialseilzugsensors in Abhängigkeit von der Höhenlage h des Bezugspunktes am Rumpf
Bild 3.8:	Komponenten des Kopfbewegungs-Messsystems
Bild 3.9:	Bedieneroberfläche des Messsystems40
Bild 4.1:	Schematischer Horizontalschnitt durch das Auge mit Iris und Kammer- wasser-Reservoirs
Bild 4.2:	Relative Häufigkeit <i>H</i> der verschiedenen Glaukomtypen bezogen auf die Gesamtzahl aller Glaukomerkrankungen nach [BRO-01],45

Bild 4.3:	Wichtige Stationen und Verfahren in der geschichtlichen Entwicklung der Tonometrie bis ca. 1985 [BAN-22, WEB-67, GOL-57, DRA-65/93]48
Bild 4.4:	Phasen und charakteristische Zustände des Applanationsprozesses
Bild 4.5:	Anwenderbedingte Unterschiede zwischen Applanations-Tonometern in der Ausführung als Selbsttonometer und als Arzttonometer
Bild 4.6:	Funktionsprinzip des Selbsttonometers und Konzepte für die Flächen- und Kraftsensorik
Bild 4.7:	Eigenschwingverhalten des Applanationskolbens bei Pulsanregung64
Bild 4.8:	Unbestimmtheit der Aufsetzgeschwindigkeit des Applanationskörpers auf das Auge aufgrund freier Oszillationen des Feder-Masse-Systems66
Bild 4.9:	Zeitliche Verläufe von Vorschubgeschwindigkeit, Applanationskraft, Detektorsignal und Applanationsfläche während eines Messzyklusses67
Bild 4.10:	Optimiertes Zwei-Phasen-Verfahren zur Unterdrückung systematischer und stochastischer Fehler bei der Augeninnendruckmessung
Bild 5.1:	Aufbau des natürlichen Hüftgelenks und Knochenbau des Femur72
Bild 5.2:	Röntgendarstellungen eines natürlichen Hüftgelenks a) und eines mittels Totalendoprothese wiederhergestellten Hüftgelenks b) im Vergleich77
Bild 5.3:	Gelenkkräfte als Vielfache der Körpergewichtskraft und resultierende Krafttrajektorie, im Condylen-Mittelpunkt angreifend, in der natürlichen Bewegung am Beispiel (Körpergewicht $m_k = 100 \ kg$; zügiges Gehen mit $v_g = 4 \ km/h$)
Bild 5.4:	Volumenmodellierung und FEM-Spannungsanalyse eines Knochen- Prothesen-Verbunds bei simulierter Belastung mit $F_G(30\% \text{ GAZ})/F_K$ gemäß Bild 5.3
Bild 5.5:	Energieversorgungs-Topologien für implantierte Protheseninstrumentie- rungen
Bild 5.6:	Eignung magnetischer Speicherelemente für die Kurzzeit-Energieversor- gung implantierter elektronischer Schaltungen am Beispiel des Pulsdrahtsensors
Bild 5.7:	Rechnergestützte Optimierung der Energienutzung auf der Basis eines mathematischen Quellenmodells
Bild 5.8:	Prinzip a) und aufwandsminimale schaltungstechnische Realisierung b) eines digitalen Funk-Signaltransmitters in Anlehnung an [GRA-89]

Bild 5.9:	Prinzip a) und leistungsoptimierte Realisierung b) eines pulsenergiever- sorgten Funk-Signaltransmitters für die Protheseninstrumentierung
Bild 5.10:	Prinzip der empfangsseitigen transformatorischen Ankopplung an den Pulsdrahtsensor und Beispiel einer Puls-Nachweisschaltung
Bild 5.11:	Vergleich der Anforderungs- und Lösungsprofile bei a) qualitativer Be- wegungserfassung (off-line) und bei b) quantitativer Bewegungsmessung (online)
Bild 5.12:	Grundlegendes Prinzip eines Wegmesswandlers am schematisierten Bei- spiel der Relativbewegungsmessung am Hüftprothesen-Knochen- Interface
Bild 5.13:	Einteilung magneto-elektrischer und magneto-mechanischer Effekte und ausgewählte Sensor-Effekte
Bild 5.14:	Funktionsprinzip einer Sensorkonstellation auf der Basis von Feldplatten zur raumrichtungsgetrennten punktuellen Messung von Relativ- bewegungen
Bild 5.15:	Aufbau und Herstellung von Feldplatten-Wegsensoren spezieller Geo- metrien in Schachtel-, Schicht- und Hybridbauweise
Bild 5.16:	Schaltungstechnische Umsetzung der Puls-Intervall-Modulation (PIM), Signalsequenzierung und Fehlersimulation
Bild 5.17:	Signalfluss und -verarbeitung vom Sensor bis zur Auswertung104
Bild 5.18:	Komponenten der sensorgestützten quantitativen Relativbewegungsmes- sung im Zusammenwirken bei der in vivo Anwendung
Bild 5.19:	Topologien permanentmagnetischer Elemente zur bewegungsabhängigen Auslösung von Pulsdraht-Schaltvorgängen107
Bild 5.20:	Konzept zur qualitativen Überwachung von Relativbewegungsgrenzen am Knochen-Prothesen-Verbund auf der Basis von Pulsdrahtsensoren 109

Tabelle 2.1:	Einteilung von Medizintechnikprodukten nach Zugangsgröße und Zu- gangsart/-ort unter Einbeziehung typischer Produktbeispiele
Tabelle 2.2:	Wirkschema häufiger Fehlerursachen medizintechnischer Sensoren 14
Tabelle 2.3:	Definition von Kompatibilitätsgraden für medizinische Werkstoffe 16
Tabelle 2.4:	Zuordnung von typischen Medizintechnik-Komponenten zu Werkstoff- klassen und Werkstofffunktionen17
Tabelle 2.5:	Konstruktive Problemstellungen bei drei ausgewählten Messtechnikbei- spielen
Tabelle 3.1:	Befestigungsarten am Kopf, Anwendungsbeispiele und Präferenzen aus mechanischer und medizinischer Sicht
Tabelle 4.1:	Typische Verläufe des Augeninnendrucks in Abhängigkeit verschiede- ner Zustandsparameter in Anlehnung an Angaben aus [DRA-93] und [DRE-00]
Tabelle 4.2:	Differenzierung der Krankheitsbilder von Glaukomerkrankungen46
Tabelle 5.1:	Ordnungsschema für die Umsetzung von Hüftgelenkersatzmaßnahmen75
Tabelle 5.2:	Bewertung von Risikofaktoren der elektrischen Sicherheit bei mess- technisch instrumentierten Hüftgelenksendoprothesen
Tabelle 5.3:	Vergleichende Zusammenstellung der wichtigsten Kennparameter und Wirkzusammenhänge von Feldplatte und Pulsdrahtsensor