Chapter 8

Numerical Experiments

8.1 Lid Driven Cavity Flow (2D)

A lid driven cavity is a very popular two dimensional test case. Figure 8.1 shows a
sketch of the problem. A square computational domain is used for this test. The left,
right and lower wall of the square represent physical walls. Thus no-slip condition will
be prescribed for the simulation. For the upper boundary the velocity is set to uy. In
1982 Ghia [30] has performed a number of computations on rather fine grids, using the
stream-function vorticity formulation of the Navier Stokes equations. These simulations
shall be used as reference here. All geometric lengths in this paragraph are relativ to the
size of the square cavity, which has the edge length 1. Different resolutions, using hybrid
grids are to be compared. Figure 8.2 shows two grids from this series. Starting from a
Cartesian base grid, all four boundaries have been anisotropically refined. The following
table gives an overview over the grids, which have been used.
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Figure 8.1: Lid driven cavity problem.
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Figure 8.2: Grids for cavity problem (edge-length = 0.05 (left) and 0.02 (right)).

Overview over Grids for Lid Driven Cavity Test-Case

edge length 0.050 | 0.040 | 0.030 | 0.025 | 0.020 | 0.015| 0.010 | 0.005 0.003
elements 1,046 | 1,441 | 2,279 | 2.920 | 4,190 | 6,749 | 13,426 | 47,046 | 123,491
triangles 370 480 746 804 | 1,054 | 1,392 | 2,192 | 4,610 8,477
quads 676 961 | 1,533 | 2,116 | 3,136 | 5,357 | 11,234 | 42,436 | 115,014
nodes 002 | 1,252 | 1,974 | 2,599 | 3.764 | 6,190 | 12,531 | 45,142 | 119,920
edges 1,947 | 2,693 | 4,252 | 5,518 | 7,953 | 12,938 | 25,956 | 92,187 | 243,410
% triangles 35% | 33% | 33% | 28% | 25% 21% 16% 10% ™%
% bd. elem. 62% | 57% | 51% | 45% | 40% 34% 26% 15% 10%
% bd. edges 57% | 52% | 46% | 41% | 36% 30% 22% 13% 8%
edges/nodes 216 | 2.15| 215 | 2.12| 211 2.09 2.07 2.04 2.03
—u(%, %) 10! | 3.486 | 3.597 | 3.744 | 3.818 | 3.824 | 3.803 | 3.754 | 3.739 3.734

All grids have been created, using an equidistant Cartesian mesh as starting point. The
edge length in the above table refers to the edge length of the squares of this initial
grid. The four walls of the cavity have been refined, using six layers of bilinear elements.
The aspect ratio of the finest layer is 20 and it decreases by a factor of 1.5 towards the
inner Cartesian grid. With increasing resolution, the percentage of triangles becomes
significantly smaller. This effect is welcome, since bilinear elements, if properly aligned,
offer a better approximation than triangles. The computational costs of a simulation
are strongly dependent on the total number of edges. A fully triangulated mesh has
approximately three times as many edges as nodes. For a grid consisting entirely of
bilinear elements this ratio would be 2. Thus it is desireable to reduce the amount of
triangles as much as possible. The connection between the boundary grid and the inner
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Figure 8.3: u(0.5,0.2) as function of the mesh-resolution.

Cartesian grid, however, introduces a thin triangular region. In the above tables values for
% bd.elem. and % bd. edges can be found. These values show how many elements/edges
are used in the boundary grid compared to the total number of elements/edges. They
have been computed by differencing the number of elements/edges of the grid and the
number of elements/edges a uniform Cartesian mesh with the same inner edge-length
would have. To illustrate the influence of the resolution on the solution, values for u at
x = 0.5 and y = 0.2 have been investigated. Figure 8.3 shows u(0.5,0.2) as a function of
the mesh resolution. The difference from one grid to the next finer one decreases with an
increasing resolution. This suggests, that the order of the numerical scheme is more than
linear. Unfortunately it is not possible to estimate an order from figure 8.3. Figure 8.4
shows a comparion of the simulated data and the data to be found in [30]. The diagrams
show u and v in a horizontal and a vertical cut through the middle of the cavity. Data
which has been obtained on three different grids is shown. Please note that for grids with
a smaller edge-length than 0.010 no difference could have been observed in the diagram.
Thus the finer resolutions have been left out in order to improve the readability of the
diagrams. Figure 8.5 shows an iso-plot of %U as well as stream-lines for this test-case.
The iso-line levels range from 0 to 1 and they are set apart by 0.05.
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Figure 8.4: Comparison between computed results and [30].

Figure 8.5: Iso-lines of |v| and stream-lines for cavity test-case (Re = 1000).
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Figure 8.6: Two different grids (1.00 and 0.50) for the NACA-0012 tests.

8.2 Two-Dimensional Flow Around Airfoils

8.2.1 Accuracy Tests for Inviscid Flow

In order to test the accuracy of the inviscid part of the discretization, a series of computa-
tions for symmetric flow around a NACA-0012 airfoil have been performed. The quantity,
which has been used as an error-measure, is the drag. Ideally this has to be zero in an
inviscid computation. Four different grids, four different variable reconstructions and two
different Mach-numbers have been investigated. A full upwind discretization with the
following different reconstructions (see also 3.2.4) has been used.

e a simple first order approach (figure 3.14/a)
index 1 in the following tables

e a formal second order approach (figure 3.14/b)
index 2 in the following tables

e the above scheme, limited by van Albada’s limiter
index V A in the following tables

e a formal third order (along an edge) approach (figure 3.14/c)
index 3 in the following tables

It has been tried to keep the grids similar to each other. Starting point was a Cartesian
base grid. The edge length of this base grid, is what is given in the following comparison
table. This base grid has been isotropically refined four times. Around the airfoil a
triangular region can be found. This region has roughly the same size for all the grids.
The leading and trailing edge have been locally refined again. Figure 8.6 shows two grids
from this series.
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Overview over Grids for NACA-0012 Airfoil

edge-length 1.00 | 0.75 0.50 0.25
elements 1,641 | 2,587 | 5,900 | 22,751
triangles 1,054 | 1,587 | 3,106 | 10,356
quads 587 | 1,000 | 2,764 | 12,395
nodes 1,164 | 1,858 | 4,441 | 17,759
edges 2,805 | 4,445 | 10,341 | 40,510
% triangles 64% | 61% 53% 54%
edges/nodes | 2.41 | 2.39 2.33 2.28

Overview over Results for NACA-0012 Airfoil

The two following tables show the different drag coefficients which have been computed.

Ma=0.01
edge-length 1.00 0.75 0.50 0.25 || estimated order
€D, 0.03180 | 0.02699 | 0.01846 0.01030 0.80
CDy 4 0.008356 | 0.004596 | 0.002232 | 0.0005344 1.97
€D, 0.004795 | 0.002857 | 0.001355 | 0.0004037 1.81
CDs 0.003920 | 0.002083 | 0.001150 | 0.0003410 1.89
Ma=0.5
edge-length 1.00 0.75 0.50 0.25 || estimated order
€D, 0.03598 | 0.03055 | 0.02066 0.01141 0.81
CDy 4 0.01017 | 0.005923 | 0.002591 | 0.0006054 1.95
€D, 0.004573 | 0.002263 | 0.001155 | 0.0003355 2.14
CDs 0.003700 | 0.001963 | 0.001002 | 0.0002987 2.01

The order has been estimated with the help of a numerical curve fit, using an
ansatz of the following form:

Cp — a1 h® .

(8.1)

h denotes the edge length and the exponent as gives an estimate for the numerical order.
Figure 8.7 shows a comparison of the results and figure 8.8 a convergence history of the
formal third-order computations (Ma = 0.5). It can be observed, however, that this is
actually second order accurate. Although the values for ¢p are a little better than what

has been obtained with the standard second order scheme.
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Figure 8.7: Drag-coefficients.
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Figure 8.8: Convergence history.
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Figure 8.9: Mesh for an SD8000 airfoil.

8.2.2 Viscous Flow Around a Selig/Donovan SD8000 Airfoil

The flow around a Selig/Donovan SD8000 low Reynolds number airfoil has been computed
for different angles of attack, ranging from —3° to +8°. A Reynolds number of Re = 5,000
and a Mach number of M = 1073 has been used. Figure 8.9 shows the computational
grid, which has been used for the simulations. It is a hybrid grid, which has been created
using the algorithm descibed in chapter 4. In figure 8.11 velocity isolines can be seen for
an angle of attack of 5°. This is roughly the optimum, which results in an approximate
glide ratio of 10. Nevertheless a seperation appears, which can be seen in figure 8.12,
which shows stream lines around the airfoil for an angle of attack of 5°. Please note that
the Reynolds number is fairly low and thus the viscous effects drastically increase the
drag. A polar diagram, resulting from the simulations, can be seen in figure 8.12.
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Figure 8.10: Stream-lines (Re = 5000 and « = 5).
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Figure 8.11: Iso-lines of |v]. Figure 8.12: Polar diagram.

8.2.3 Inviscid, Transsonic Flow Around an RAE2822 Airfoil

Here the results of an inviscid simulation of transsonic flow shall be compared to ex-
perimental data. Flow around an RAE-2822 transsonic airfoil shall be computed. The
free-stream Mach number is 0.729 and the angle of attack 2.31°. Experimental data can
be found in [31] and has been obtained from [32]. As mesh a hybrid grid with 17,883 nodes
and 21,880 elements (8,357 triangles and 13,523 quads) has been used. The discretization
is a full-upwind one, using van Albada’s limiter. Integration has been done, using an FAS
multi-grid iteration and figure 8.15 shows the convergence history.
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Figure 8.13: Iso-lines of p. Figure 8.14: —¢, curves.
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Figure 8.15: Convergence history for 2D /transsonic simulation.
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Figure 8.16: ONERA-M6 wing.
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Figure 8.17: Computational Domain. Figure 8.18: Grid Around Wing-Tip.

8.3 Inviscid, Transsonic Flow Past an ONERA-M6
Wing

As a test for three-dimensional transonic flow, an ONERA-M6 wing has been chosen.
Experimental data for a free-stream Mach-number of Ma = 0.8395 and an angle of attack
of 3.06° can be found in [33]. Like the data for the RAE-2822 airfoil the data can be found
on the web site [32]. The Reynolds-number of the wind-tunnel tests has been 1.17 - 106,
whereas the computational results, which are shown in this work, have been obtained by
an inviscid simulation. For an angle of attack of 3.06° no significant seperations occur
and thus the computed and experimental pressure values show a good compliance. Figure
8.16 shows a sketch of the swept wing. The seven cross-sections, which have been used

Figure 8.19: Upper side pressure iso-lines. Figure 8.20: Lower side pressure iso-lines.
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Figure 8.21: Stream-lines. Figure 8.22: Region of Ma > 1.

to compare the results, are indicated by dashed lines. Figures 8.19 and 8.20 show iso-
plots of the pressure. In figure 8.21 stream-lines can be seen. The experiments, which
are described in [33], used a small plate to terminate the wing on the root-side. For the
computations the root has been modelled as a plane of symmetry (see figure 8.16). The
surface elements of this symmetry-plane can be seen in figure 8.21. Figure 8.22 shows a
small part of the unstructured grid around the tip of the wing. Please note that this mesh
has been derived from a two-dimensional grid. The whole grid consists of 809,731 nodes
and 930,740 elements (285,840 prisms and 644,900 hexahedra). A comparison between
measured and computed values for ¢p can be found in figures 8.23, 8.24, 8.25, and 8.26.
2o represents the x-coordinate of the trailing-edge for a section and [ the chord-length.
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Figure 8.23: Sections 1 and 2 of ONERA-M6 Wing.
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Figure 8.24: Sections 3 and 4 of ONERA-M6 Wing.
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and 6 of ONERA-M6 Wing.
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Figure 8.26: Section 7 of ONERA-M6 Wing.
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