Chapter 6

Object-Oriented Techniques and
Numerics

Object oriented techniques have proven to be a good tool for software design and de-
velopment. The first object-oriented programming language is Simula-67. It has been
designed by Dahl, Myhrhaug and Nygaard at the Norwegian Computing Center in Oslo
[25]. Today there are many object-oriented programming languages. Two other popu-
lar examples are Smalltalk and C++ . C++ was introduced by Stroustrup in 1985[26]
and it has been strongly inspired by Simula. The current state of the C++ language is
described in the third edition of Stroustrup’s popular book [27]. Although object ori-
ented software design has been used for a long time, it is only now becoming popular in
the field of numerical simulations. One reason is the bad reputation object oriented lan-
guages had in terms of computational efficiency. With the availability of parameterized
types (templates) in C++ , object-oriented techniques become more and more accepted
in the numerical community. Templates enable the programmer to use a clean and object-
oriented design without the performance problems experienced so far. This chapter tries
to first briefly introduce the object oriented paradigm. The introduction intends to point
out the ideas of object oriented programming. It is not meant to be a comprehensive
explanation of object oriented techniques. More details can be found in the literature, for
example in [28]. The application of those techniques to finite-volume simulation software
shall be sketched. An obvious design, as it would be natural following the object oriented
paradigm will be presented first. This will, however, lead to performance problems. Hence
it is necessary to find a good compromise between good design and high efficiency. There
are a couple of recent developments which allow this performance problem to be overcome.
A good overview of different techniques for object-oriented numerics, using C++ , can
be found in [29]. Templates, as already mentioned above, had a very strong influence on
the design of numerical software. Some of the techniques which can be used to overcome
efficiency drawbacks shall be described in brief. It is not intended to go into details of the
actual design used for the MOUSE library. These details can be found in chapter 7. The
introduction is, however, a little biased towards the C'++ language, because this is the
programming language which has been used to code the finite volume library described
later.

72 Object-Oriented Techniques and Numerics

6.1 Brief Introduction

Object-oriented design models things (objects) from the real world with appropriate
computer-understandable descriptions. Of course not everything what is described as
a computer object corresponds to a real world object. If you think of a window on the
screen, it is certainly not related to any real world object. It is, however, very well de-
scribed as an object in terms of object-oriented programming. In the virtual world of
the computer it is an object and it corresponds with other objects in the system. One
of the major differences of object-oriented programming versus classical programming is
the unification of data structures and functionality. Consider, as an example, graphical
primitives of a drawing program. This could be circles, lines, squares or other graphical
objects. All these objects have things in common. For instance they have a position, and
they can be moved. A classical program would define appropriate data structures to store
those objects. Then functions could be defined to operate on the data structures and
for example move a circle from one position to another. In an object-oriented approach
data and functionality would be combined. This means a graphical object might have a
data-structure to store its position. Furthermore it does 'know’ how to move itself. Data
which is stored within an object is often referred to as attributes, whereas a functionality
is called an operation.

6.2 Classes and Inheritance

Objects can be subdivided into several different classes of objects. This classes can be
refined and more specialized classes of objects can be defined. Consider as an example
fruit. Apples, perches, peaches, mangos and a lot more are objects. All these objects
are fruits and hence belong to the class fruit. They all have properties in common, they
are eatable, they contain a certain amount of sugar and they need a certain time to ripe.
There are of course other properties they might share. It is now possible to refine the class
fruit. For instance it would be possible to talk about tropical fruit, northern fruit and
maybe fruit which grow everywhere. These classes of fruit can be even more specifically
described. Bananas, Mangoes, melons and others are all tropical fruit. Still, there are
different kinds of melons, which all belong to the class melon. All melons, however, are
tropical fruit and of course they are fruit. These classification of objects is a natural and
very convenient way to analyze objects from the real world. The more general the class
used to describe an object is, the more abstraction has been used to describe it. There is,
of course, not one unique and correct way to describe a system. It is a huge part of the
development to find the right abstractions for a system. Instead of dividing the class fruit
into tropical and northern fruit, it might as well be useful to talk about African, Asian,
European, American or Australian fruit.

Another classification example are vehicles. Figure 6.1 illustrates the classification of
vehicles. Of course this is only one possible classification. It also only is a computer model.
Such a model will never contain every aspect of the real thing. To find proper abstractions
is a very important part of object-oriented design. The process of refining the classification

6.3. ENCAPSULATION 73

[\

[TransportVehicle | | PassengerVehicle

| Ship | | Truck | |Airp|ane |

Figure 6.1: Vehicles classification.

is also called inheritance. Every Vehicle has certain properties. For example it can move
and it has a position. If now a new class, for instance TransportVehicle, is derived from
Vehicle it inherits all properties of its base class. Furthermore a TransportVehicle will
have a payload and it can load or unload.

6.3 Encapsulation

A very important issue of object-oriented programming is data encapsulation. An impor-
tant goal of software design is to keep interfaces clean and to minimize the potential to
introduce errors in a code. This becomes particularly important in larger projects where
many individuals work on different parts of one code. It is also crucial for development
libraries. The following small example intends to illustrate data encapsulation. Consider
a struct in traditional C (see listing 6.1). The struct item_t can be used to realize a
linked list of floating point values in the memory. The pointer next defines the next item
in the memory. If it becomes a zero-pointer the list has ended. Now a complete list can be
accessed by knowing its first element. Figure 6.2 illustrates this. The function printall
(see listing 6.1) will print all values on the screen. If used on the example shown in figure

first:item_t second:item_t third:item_t last:item_t
value = 1.0 value = 2.0 value = 3.0 value =4.0
next = &seqond next = &thirg next = &Ia\st next = NULL

Figure 6.2: A linked list.

NNV

74 Object-Oriented Techniques and Numerics

typedef struct item_t
2 {
item_t *next;
4 double value;

b

6
void printall (item_t *item)
s {
do {
10 if (item—>next == NULL) {
printf (" %4.2f_\n”, item—>value);
12 } else {
printf (” %4.2f." | item— >value);
14 H
item = item—>next;
16} while (item != NULL);
b

Listing 6.1: A linked list in C'.

6.2 it will result in the following screen output 1.00 2.00 3.00 4.00 This example can
be seen as four objects which form a list. Each object has one attribute, namely the
floating point value value. It also has an operation, although it has not been explicitly
coded as a function in C. All objects from this example have the operation ’get next’.
The actual use of this operation in a C program is, however, a simple pointer assignment.
The implementation of a linked list shown here has one major drawback. Assume in line
10 of listing 6.1 the comparison operator == would have been mistaken with the assign-
ment operator =. So, that line four of listing 6.1 becomes if (item->next = NULL) {.
The pointer item->next will then have the value NULL, which will lead to unpredictable
program behavior. This sort of memory bugs are very hard to find. It will become espe-
cially painful if it occurs in a part of a large project, which has been written by another
person. Therefore it seems to be essential to provide a strict interface, which does not
allow the underlying data structures to be damaged by ’user’ programmers. A simple
link-entry realized in the C++ programming language can be found in listing 6.2. Now
the operation getNext has been explicitly realized as a function within the class Link.
In terms of object-oriented programming getNext () is called a method of Link. The
value field of Link has been declared to be private. This means it can only be accessed
or modified from methods of the class Link. By doing so it has been ensured that the
linked list cannot be damaged by ’user’ programmers. Now a similar mistyping as above
if (item->getNext () = NULL) would result in a compiler error and not in unpredictable
program behavior. This method of hiding information and providing access methods is
called encapsulation. The advantage of preventing internal structures from damage is very
important in larger software environments.

6.4. POLYMORPHISM 75

class Link
)
private:
4 Link *next;
public:
6 Link* getNext() { return next; };
void insert (Link xlink) {

8 link —>next = next;
next = link;
ok
double value;
12}
14 void printall (item_t *item)
{
16 do {
if (item—>getNext() == NULL) {
18 cout << item—>value << ’.;
} else {
20 cout << item—>value << endl;
};
22 item = item— >next;

} while (item != NULL);
2 };

Listing 6.2: A linked list in C++ .

6.4 Polymorphism

Polymorphism is the ability of an operation to have different forms in different classes.
Going back to the Vehicle-example, any Vehicle can move from one Position to another.
Figure 6.3 shows a more detailed representation of this example. The following pseudo
code example (see listing 6.3) shows how a Cargo can be shipped no matter which type
of TransportVehicle is used. The operations load, move and unload are called wirtual
functions in C++ terminology. The basic idea is to describe an abstract interface, which
can be relied on. In this example every Vehicle has a move method. What actually
happens within this method is described in more specialized derived classes. For instance

void ship(Cargo cargo,
2 Transport Vehicle vehicle,
Position destination)
A
vehicle .load(cargo);
6 vehicle .move(destination);
vehicle .unload();

s };

Listing 6.3: TransportVehicle used as an abstract argument.

76 Object-Oriented Techniques and Numerics

|:P - 1 is located at 1 Vehicle
oston +move(destination: Position):void

i

TransportVehicle

+load(item: Cargo):void ‘ PassengerVehicle
+unload():void

[N

1.* transport

Cargo

- 1.2 drive 1 Truck
Driver

+drive(destination:Position):void

- 2 fl 1 Airplane
+fly(destination:Position):void

1 Ship
+sail(destination:Position):void
1 . |+hire(a_sailor:Sailor):void
+hide(a_captain:Sailor):void

work on 1.* -
® Sailor

navigate 1 -
g Captain

Figure 6.3: Vehicles classification.

would the move method of an Airplane call its £1y method. If such a virtual method is
called, the actual jump-position can only be resolved during run-time, not compile-time.
This might lead to serious performance problems if a method is called very often and
computes relatively little. These issues shall be addressed in detail in the next section.

6.5 A Simple Numerical Example

This section tries to show the usage of object-oriented techniques together with a small
numerical example. Any one dimensional function f(x) shall be integrated in an interval
x € [x1, 25]. Different approaches will be shown here and they will be compared in terms
of computational efficiency. Different functions will be used to test the implementations:

fm(z) = 2™ (6.1)

6.5. A SIMPLE NUMERICAL EXAMPLE 77

f(x)

2

XN-1 Xy X

Figure 6.4: Numerical integration.

Numerical integration, using N,qs sample points {(z1, f(z1)), -, (¥n.), f(zn,..))]} s
performed using a simple formulation (6.2):

[=330 (@ - a7 + Fasa). (62

Figure 6.4 illustrates this. The hatched region is the area computed by the integration
formulation used. x;.;—x; shall be constant in this example, so that the above formulation
can be optimized for computation in the following way:

/f(x)dx - Az (M* > f(xi)> | (6.3)

=1

A small C program has been used as a reference (see listing 6.4). Where FUNC is a macro
and has to be defined before the integrate function. For f(z) = 2* it could look like
this: #define FUNC(x) (x*x*x)

Different object-oriented approaches shall be compared now.

double integrate(double x1, double x2, int n)
.
double x, delta_x, sum;
4 Int i;
deltax = (x2—x1)/(n—1);
6 sum = 0.5%x(FUNC(x1)+FUNC(x2));
for (i =2, x =x1 + deltax; i < n; ++i, x += deltax) {
8 sum += FUNC(x);
b

10 return delta_xxsum,;

Listing 6.4: Simple integration function in C'.

78 Object-Oriented Techniques and Numerics

class Function

2 {
public:
4 virtual double operator()(double x) = 0;
};
6
class Xpow3 : public Function
s {
public:
10 virtual double operator()(double x) { return xxx*x; };
b
12
double integrate(Function &f, double x1, double x2, int n)
14
{
double x, delta_x, sum;
16 int i;

deltax = (x2—x1)/(n—1);
15 sum = 0.5x(f(x1)+1£(x2));

for (i =2, x =x1 + deltax; i < n; i++, x += deltax) {
20 sum += f(x);

};
22 return delta_xxsum;

h

24
int main()
26 {
Xpow3 f;
25 double y = {(2.0);
double F = integrate(f , 0, 1, 100);
30 J;

Listing 6.5: Integration using a virtual method.

6.5.1 Dynamic Polymorphism (Virtual Function)

Listing 6.5 shows a C'++ version of the integration problem. This example is using dy-
namic polymorphism. An abstract class Function (see listing 6.5, line 1) is created,
which then is used as argument for the integrate routine (see listing 6.5, line 13). The
= 0 indicates that the parenthesis operator has to be overwritten in a derived class to be
actually used. As an example of a derived class, consider the implementation of f(x) = 2.
The integrate function, taking a Function as parameter will only slightly change. The
statement in line 29 of listing 6.5 will compute the integral f0+1 x3dx This will compute
the integral, using 100 discrete points. Unfortunately this implementation turns out to
have at most 15-20% of the performance of the original simple C function. This per-
formance penalty can be explained by the runtime resolution of the jump address of
Function: :operator(). The routine integrate (Function&, double, double, int) can
take any object, which is an instance of a derived class from Function, as argument. This
has the advantage that only one routine is needed to integrate various functions. Fur-
thermore different functions can be fed to this routine during run-time. Nevertheless the

6.5. A SIMPLE NUMERICAL EXAMPLE 79

template <class T, int DIM >
2 class Array
{
4 private:
T value[DIM];
6
public:
s T& operator[](int i) { return value[i]; };
};
10
int main()
12 {
Array<int,3> a;
14 al0]=1; a[l] =2; af2] = 3;
Array<string,2> b;
16 b[0] = 7a.first _text”; b[1] = ”a_second_text”;

h

Listing 6.6: A simple template example.

performance penalty is intolerable for larger problems. In this case of a small application
it might not play a big role. Considering a large finite-volume framework, like the one
described in the next chapter, it becomes crucial to got as much out of a computer as
possible. The maintainability of a code should, however, not be too much affected by per-
formance tuning. The next paragraph will introduce a way to overcome the performance
problem, but keeping a clean and object-oriented structure.

6.5.2 Static Polymorphism (Templates)

In the last example it has been shown how a flexible routine for numerical integration
could be realized in C++ . The computational efficiency is, however, intolerably low.
This is mainly due to run-time resolution of jump addresses. A closer look at the example
shows, that in principle every information needed for a sufficient optimization is available
during compile-time. Listing 6.7 shows a version of this integration algorithm, making
use of C++ templates. Templates enable the programmer to code algorithms, using
abstract types. At first templates have been used to write generic container, which can
be used to store a variety of different data. Listing 6.6 shows a small example of such
a parameterized type and how it could be used. The compiler will create two different
classes out of the template Array, namely Array<int,3> and Array<string,2>. These
two classes have exactly the same structure, but they use a different data-type inside. For
numerical applications a slightly different way of using templates proved to be very useful.
Templates can also be used to realize polymorphic objects, similar as it has been done
using a virtual method in the previous example. In listing 6.7 line 19 a template function
is created. Depending on how this function is called in a program, different versions
will be compiled. The function template<class FUNC> integrate (double,double, int)
relies on the existence of FUNC: :operator() (double). If this function is called with a

80 Object-Oriented Techniques and Numerics

struct Xpow3

: {

double operator()(double x) { return xxxx; };

4}
6 struct Sqrt

s double operator()(double x) { return sqrt(x); };
h

10
template <class FUNC>

12 double integrate(double x1, double x2, int n)

{
14 FUNC f;
double x, delta_x, sum;
16 int i;

deltax = (x2—x1)/(n—1);
15 sum = 0.5x(f(x1)+1£(x2));
for (i =2, x =x1 + deltax; i < n; i++, x += deltax) {
20 sum += f(x);
h
22 return delta_xxsum;
b
24
int main()
26 {
cout << integrate<Xpow3>(0, 1, 100) << endl;
25 cout << integrate<Sqrt>(2, 2.5, 50) << endl;
cout << integrate<int>(0, 1, 100) << end; // compiler error!

30 J;

Listing 6.7: Integration using a template function.

template parameter that does not have this operator, a compiler error will occur (see
listing 6.7, line 29). Now different functions can be created (see listing 6.7, line 1 and
6). Please note, that a struct in C++ is simply a class, where all fields and methods
are public. As long as the created functions have a method operator () (double) they
can be integrated. Very important is, that this operator does not have to be declared
virtual. Now everything can be resolved during compile time and the compiler is able to
effectively inline the calls to operator () (double). Thus the performance is significantly
higher as it is with a virtual method. This example has almost no performance loss
compared with the simple €' example. The main disadvantage of this example is, that it
is not possible to select the function to integrate during run-time.

6.5.3 Combination of Static and Dynamic Binding

Here a nice approach how to combine the advantages of both implementations, presented
so far, is shown. The idea is to use the same method as sketched in section 6.5.2 for

6.5. A SIMPLE NUMERICAL EXAMPLE

class Integrator
2 {
public:
4 virtual double operator()(double x1, double x2) = 0;

h

template <class FUNC>
s class Tlntegrator
{
10 private:
int n; // number of sample points
12 FUNC f; // function to integrate

14 public:
TIntegrator(int an.n) { n = an_n; };
16 virtual double operator()(double x1, double x2);

b

template <class FUNC>
20 double TIntegrator<FUNC>::operator()(double x1, double x2)
{
22 double x, delta_x, sum;
int i;
214 deltax = (x2—x1)/(n—1);
sum = 0.5%(f(x1)+1(x2));
26 for (i =2, x =x1 + deltax; i < nj i++, x += deltax) {
sum += f(x);
LI

return delta_x*sum;

30 J;

32 template<int EXP>
struct Pow
34 {

18

double operator()(double x);

36 };

38 template<int EXP>
inline double Pow<EXP>::operator()(double x)

a0 {
double p = 1.0;

42 for (int i = 0; i < EXP; i++4) p*x= x;
return p;

1}

46 int main()

{

as TIntegrator<Pow<3> > fint(100);
cout << fint(0, 1) << endl;

50 };

Listing 6.8: Combination of templates and virtual methods.

82 Object-Oriented Techniques and Numerics

500
|) [) |
8
L A © o 1
®
A
400 — 2 —
. A
| A |
3 300 — e C-function _
T = A virtual function
2, o function template
8 e A template/virtual | |
8]
£ 200F o —
N
g | 1
100 —
A A
i . A 4 4 _
A
A
0 | | | | | | | |
1 2 3 4 5 6 7 8
exponent

Figure 6.5: Performance of different integrate implementations.

the inner integration method. Around this inner, performance critical, part a wrapper
using the virtual mechanism is created. This approach enables run-time selection of
different functions together with efficient numerics. In line 1 an abstract base for function
integrators is defined. The method virtual double operator() (double,double) shall
compute the definite integral of a function.

6.5.4 Comparison

Figure 6.5 shows a comparison between the different implementations. The tests have
been carried out on an AMD Athlon 500MHz processor. It can be clearly observed,
that the pure virtual implementation is very slow compared with the others. The reason
obviously is the run-time binding of the jump address. Furthermore C++ compilers can
inline function calls to completely eliminate jump statements at all. This cannot be done
for virtual functions, since it is not known which version of a method will be called during
run-time.

