Ergebnisse

5.1 Einführung

In dieser Arbeit wurden insgesamt 17 unterschiedliche Carbon Blacks und eine Graphit-Probe mit Hilfe der ¹²⁹Xe-NMR-Spektroskopie untersucht und charakterisiert. Dazu zählen qualitative Untersuchungen der ¹²⁹Xe-NMR-Signale in Abhängigkeit von Rußstruktur, Druck und Temperatur, sowie quantitative Untersuchungen der Xenon-Adsorption in Carbon Black. Des Weiteren wurde die Xenon-Selbstdiffusion in ausgewählten Rußen untersucht und der Diffusionskoeffizient in Abhängigkeit von Druck und Diffusionszeit bestimmt. Alle Messungen wurden bei 293 K und somit oberhalb der kritischen Temperatur *T_k* des Xenons durchgeführt (*T_k* = 289,75 K).

Für einen qualitativen Vergleich der ¹²⁹Xe-NMR-Spektren untereinander ist die Referenzierung von besonderer Bedeutung. Bei isobaren Messungen ist es ausreichend, das Signal des freien Xenons auf 0 ppm festzulegen. Bei variablen Drücken muss hingegen die Druckabhängigkeit der chemischen Verschiebung berücksichtigt werden. Dabei erweist sich eine Referenzierung auf das freie Xenongassignal bei 0 bar und 0 ppm als sinnvoll (vgl. *Kapitel 4.1*). In *Kapitel 4.3.2* wurde bereits darauf hingewiesen, dass die chemische Verschiebung des freien Xenons $\delta_t(p)$ ist unterhalb von 50 bar linear von der Xenondichte abhängt. Bezogen auf den Xenondruck p_{Xe} ergibt sich daraus folgende Gleichung:

$$\delta_{f}(p) = 0.542 \cdot p_{\chi_{e}} + \delta_{f}(0 \text{ bar})$$
 (5.1-1)

Hierbei wird entsprechend der Referenzierung $\delta_{t}(0) = 0$ gesetzt. Durch Umstellen der *Gleichung 5.1-1* nach dem p_{Xe} kann der Xenondruck einer Probe relativ genau aus der chemischen Verschiebung des Resonanzsignals des freien Xenons bestimmt werden. Der Fehler beträgt ca. $\pm 0,1$ bar, bezogen auf einen Fehler bei der Bestimmung der chemischen Verschiebung von ca. ± 5 Hz.

5.2 ¹²⁹Xe-NMR-Verschiebung in Graphit und Carbon Black

Zunächst werden die ¹²⁹Xe-NMR-Spektren der untersuchten Carbon Blacks vorgestellt. Der Xenondruck der Ruß-Proben beträgt zwischen 8 und 22 bar. In diesem Bereich kann in erster Näherung die Druckabhängigkeit des Adsorptionssignals vernachlässigt werden (vgl. *Kapitel 5.2-3*). Die Akquisition der ¹²⁹Xe-NMR-Spektren erfolgte mit Hilfe eines einfachen Einpuls-Experiments. Anstelle des üblichen 90°-Anregungspulses wurde ein 30°-Puls verwendet, der zwar bei der Aufnahme eines einzelnen Spektrums zu einem schlechteren Signal/Rausch-(S/N)-Verhältnis führt, die Wartezeit aber soweit herabsetzt, dass pro Zeiteinheit mehr Experimente durchgeführt werden können und dadurch im vergleichbaren Zeitraum ein besseres S/N-Verhältnis im Spektrum zu beobachten ist. Die Anzahl der akkumulierten Spektren ist dabei abhängig von der Xenondichte und liegt zwischen 32 und 512 (s. a. *Kapitel 8 Experimenteller Teil*).

In *Abbildung 5.2-1* sind die ¹²⁹Xe-NMR-Spektren einiger Carbon Blacks und von Graphit exemplarisch aufgeführt. Die angegebenen spezifischen Oberflächen wurden über BET-Messungen ermittelt und sind den Produktinformationen der jeweiligen Hersteller entnommen.^[3,7,8,13,14] In den ¹²⁹Xe-NMR-Spektren der Carbon Blacks liegen die Resonanzsignale des freien und adsorbierten Xenons getrennt voneinander vor. Im hohen Feld bis ca. 12 ppm ist das ¹²⁹Xe-NMR-Signal des freien bzw. außerhalb der porösen Strukturen befindlichen Xenons (*extraporöses Xenon*) zu finden, dass sich durch eine geringe Linienbreite von 30 bis 60 Hz hervorhebt.

Die wesentlich breiteren Resonanzsignale im tieferen Feld können hingegen den innerhalb der Porenstruktur befindlichen Xenonatomen (*intraporöses Xenon*) zugeordnet werden. Das Signal des intraporösen Xenons ist, je nach spezifischer Oberfläche und Porenstruktur, im tiefen Feld zwischen 48,4 (N550) und 132 ppm (*Black Pearls 2000*) zu finden, wobei i. A. die chemische Verschiebungen mit der spezifischen Oberfläche zunimmt. Bei *Vulcan P*, *Vulcan PF*, *Corax L*, und *Corax L6* existiert zudem ein weiteres, relativ breites Signal geringer Intensität, dass je nach Druck zwischen 190 und 203 ppm zu finden ist. Bei *Monarch 1300* ist außerdem eine Überlagerung von zwei Signalen bei 121 und 138 ppm zu beobachten (*Abbildung 5.2-1* und *Tabelle 5.2-1*).

Im ¹²⁹Xe-NMR-Spektrum von Graphit, das hier als nichtporöse Referenz dient, ist nur ein einziges, inhomogen verbreitertes Signal um 5 ppm zu finden. Die Dekonvolution liefert eine Überlagerung von mindestens drei Resonanzlinien bei 1,8, 4,6 und 6,5 ppm.

Abb. 5.2-1¹²⁹Xe-NMR-Spektren von Carbon Blacks mit unterschiedlicher spezifischerOberfläche bei Raumtemperatur (s. Tabelle 5.2-1).

Die Ergebnisse der chemischen Verschiebungen und Halbwertsbreiten der Resonanzsignale der Spektren in Abbildung 5.2-1 sind in Tabelle 5.2-1 zusammengefasst, wo sie mit den Ergebnissen von Sperling-Ischinsky verglichen werden können.^[100] Des weiteren sind die jeweiligen spezifischen Oberflächen σ_s , mittleren Primärpartikelgrößen *PG*, sowie Stampfdichte ρ_{SD} und DBP-Wert der Carbon Blacks aufgeführt. Weitere charakteristische Eigenschaften der Carbon Blacks können im Anhang in *Tabelle A.1.1* eingesehen werden.

Tab. 5.2-1 Chemische Verschiebung δ_p und Halbwertsbreiten $\Delta v_{1/2}$ der ¹²⁹Xe-NMR-Verschiebungen adsorbierter und intraporöser Xenonatome in Carbon Black. Vergleich mit den Ergebnissen von Sperling-Ischinsky.^[100] (σ_s : spezifische Oberfläche, PG: mittlere Partikelgröße, ρ_{SD} : Stampfdichte, p_{Xe} : Xenon-Druck, weitere Parameter s. Tabelle A.1-1).

Carbon Black (Abk.)	Abk.	σ _s * /m²g ⁻¹	<i>PG[*]</i> /nm	ρ _{sD} * / g∙dm ⁻³	p _{xe} /bar	Δν _{1/2} /Hz	$\delta_{ ho}$ /ppm	$\delta_{\! m p}{}^{[100]}$ /ppm
Graphit	G	<1	>1000	-	8,4	148/ 110/ 1641	6,5/ 4,6/ 1,8	-
Raven 410	R4	28	-	-	-	-	-	33,2
N 550	N5	30	44	345	15,6	293	48,4	44,7
N 330	N3	83	28	370	16,4	461	65,4	56,8
Vulcan PF	VPF	140	19	190	20,6	822/ 1654	73,3/ 190	-
Vulcan P	VP	140	19	330	15,2	469/ 1621	90,1/ 191	ŀ
N 110	N1	143	-	-	-	-	-	64,0
Corax L	CL	150	23	200	12,6	805/ 1598	77,0/ 190	72,2
Vulcan XC- 72R	VXC	254	30	100	18,8	776/ 1691	62,8/ 189	-
Corax L6	CL6	265	18	120	15,2	1091/ 1644	52,5/ 190	-
Monarch 1300	M13	560	13	260	13,3	340/ 282/ 1587	121,4/ 138,0/ 190	122,1
Ensaco 23	E23	640	-	-	14,0	652	104,2	-
Ensaco 350	E35	804	-	-	11,3	762	108,5	-
Ketjenblack	KB	950	-	110	12,6	366	104,8	-
Printex XE2	PX2	1000	30-35	140	14,4	671	99,8	125,3
Conductex 40-220	CON	1075	-	-	9,2	505	119,4	119,0
Ensaco 52	E52	1100	-	-	15,7	571	80,8	-
Black Pearls 2000	BP	1475	12	150	17,7	502	132,3	-

* Produktdatenblätter der Hersteller^[3,7,8,13,14]

5.3 Druckabhängigkeit der Chemischen Verschiebung

Die Druckabhängigkeit der ¹²⁹Xe-NMR-Verschiebung des intraporösen Xenons wurde bei den Rußen *Vulcan PF*, *Vulcan P, Printex XE2* und *Black Pearls 2000* untersucht. Bei Bis auf *Printex XE2*, einem Gasblack, handelt es sich bei diesen Rußen um Furnace Blacks mit einem geringen Anteil an Heteroatomgruppen, die sich hauptsächlich in ihrer Partikelgröße und der spezifischen Oberfläche unterscheiden (s. *Tabelle 5.2-1*). *Vulcan P* und *Vulcan PF* stellen die Pulver- und Perlenform des selben Rußes dar. Sie besitzen daher mit 140 m²/g die gleiche spezifische Oberfläche, unterscheiden sich aber in ihrer Stampfdichte, die bei *Vulcan P* mit 330 g/dm³ fast doppelt so groß ist wie bei *Vulcan PF* (190 g/dm³).

Die ¹²⁹Xe-NMR-Spektren von *Vulcan PF* und *Black Pearls 2000*, den Rußen mit der kleinsten und größten spezifischen Oberfläche, sind mit steigendem Xenongasdruck in *Abbildung 5.3-1* und *5.3-2* exemplarisch dargestellt. Zur Aufnahme der Spektren wurde ein einfaches Ein-Puls-Experiment mit einem 45°-Puls und einer Relaxationszeit von 60 s verwendet. Die Anzahl der akkumulierten Spektren beträgt jeweils 32. Die chemischen Verschiebungswerte sind unter Angabe des jeweiligen Drucks in *Tabelle 5.3-1* aufgeführt

Vulcan PF		Vulcan P		Printe	x XE2	Black Pearls 2000		
p _{xe} /bar	<i>δ_{p1}</i> /ppm	δ_{p2} /ppm	p _{xe} /bar	$\delta_{ ho}$ /ppm	p _{xe} /bar	$\delta_{ ho}$ /ppm	p _{xe} /bar	$\delta_{ ho}$ /ppm
0,8	36,1	-	1,8	63,2	0,5	48,6	0,9	43,3
0,9	47,3	-	2,2	75,1	0,9	50,4	1,4	51,6
1,2	56,5	-	2,7	78,6	2,4	73,3	1,9	63,0
2,7	65,8	-	2,7	78,3	5,3	89,3	2,0	65,5
3,1	68,4	123,9	6,7	88,1	10,6	97,0	2,3	72,0
4,6	73,1	156,1	7,5	88,5	13,2	99,8	2,7	78,5
5,1	73,5	157,0	9,6	90,0	22,9	101,4	3,1	84,9
6,2	73,1	163,7	11,1	90,1	23,8	100,1	5,5	107,1
7,0	73,4	170,6	12,5	91,7	-	-	7,4	117,4
9,1	72,8	185,0	21,2	89,2	-	-	8,2	123,6
20,6	71,5/ 64,0	203,7	-	-	-	-	17,7	132,5

Tab. 5.3-1¹²⁹Xe-NMR-Verschiebungen von Vulcan P, Vulcan PF, Printex XE2 und
Black Pearls 2000 bei verschieden Xenondrücken p_{xe}.

Vulcan PF

Abb. 5.3-1 ¹²⁹Xe-NMR-Spektren von Vulcan PF (140 m²/g) mit zunehmendem Xenon-Gasdruck (0,9 bis 20,6 bar). Ab ca. 3 bar ist ein zweites Signal (VPF2) im tieferen Feld zu beobachten.

Abb. 5.3-2 ¹²⁹Xe-NMR-Spektren von Black Pearls 2000 (1475 m²/g) mit zunehmendem Xenon-Gasdruck (0,9 bis 17,7 bar).

Bei allen vier Carbon Blacks ist eine deutliche Tieffeldverschiebung des ¹²⁹Xe-NMR-Signals der intraporösen Xenonatome mit steigendem Druck zu beobachten. Im Spektrum von *Vulcan PF* erfolgt zudem ab 3 bar eine Aufspaltung des Resonanzsignals in zwei getrennte Linien (*VPF(1)* und *VPF(2)*, *s. a. Abbildung 5.3-1*).

In *Abbildung* 5.3-3 ist die chemische Verschiebung δ_p als Funktion des Druckes p_{Xe} dargestellt. Im Gegensatz zum freien Xenon verläuft die Zunahme der chemischen Verschiebung nur bis ca. 2 bar annähernd linear. Bei höheren Drücken nimmt die Steigung ab und die jeweiligen Kurven erreichen jeweils ein spezifisches Plateau, das umso höher liegt, je größer die spezifische Oberfläche ist. Der Grenzwert von *Vulcan P* liegt mit 90 ppm trotz gleicher spezifischer Oberfläche über dem von *Vulcan PF (1)* (ca. 73 ppm). Auch das zweite Resonanzsignale bei *Vulcan PF (2)* wandert mit zunehmendem Druck zu tiefem Feld und erreicht ca. bei 20,6 bar annähernd einen Grenzwert bei 203,7 ppm. Oberhalb von 20 bar ist bei allen Rußen eine leichte Abnahme der chemische Verschiebung zu beobachten, die bei *Vulcan PF* von 73 auf 68 ppm am deutlichsten ausfällt. Bei näher Betrachtung der Resonanzlinie ist hier zudem eine inhomogene Verbreiterung zu beobachten.

Abb. 5.3-3 Chemische Verschiebung des adsorbierten Xenons δ_p als Funktion des Xe-Gleichgewichtdrucks für vier verschiedene Carbon Blacks. Black Pearls 2000 (BP, 1475 m²/g), Printex XE2 (PX2, 1000 m²/g), Vulcan P und Vulcan PF (VP bzw. VPF, jeweils 140 m²/g).

5.4 Halbwertsbreiten und T₂-Relaxation

5.4.1 Resonanzlinien des freien und extraporösen Xenons

Die Halbwertsbreite $\Delta v_{1/2}$ der ¹²⁹Xe-NMR-Signale einer reinen Xenongasprobe beträgt bei dem in dieser Arbeit verwendeten Probenkopf, und einer Feldstärke des Magnetfeldes von 4,69 Teslar, 35 – 44 Hz und ist bis 18,7 bar druckunabhängig. Die Xenonkerne außerhalb der Carbon Black Struktur liefern hingegen Resonanzlinien, deren Halbwertsbreiten zwischen 40 (*Ensaco 350*) und 130 Hz (*Vulcan PF*) liegen. Eine deutliche Druckabhängigkeit ist zudem bei *Vulcan PF* zu beobachten, bei dem eine Zunahme der Linienbreite von 80 auf 130 Hz im Bereich von 3 bis 20,6 bar erfolgt.

5.4.2 Resonanzlinien des intraporösen Xenons

Im Vergleich zum Signal des freien bzw. extraporösen Xenons ist die Halbwertsbreite der intraporösen Xenonatome mit 297-1091 Hz um ein Vielfaches größer und variiert deutlich mit dem Carbon Black Typ. Die ¹²⁹Xe-NMR-Signale bei Rußen mit kleinen spezifischen Oberflächen und geringen Stampfdichten besitzen besonders hohe Halbwertsbreiten (> 500 Hz) (s *Tabelle 5.2-1*). Die größte Linienbreite ist mit 1091 Hz im ¹²⁹Xe-NMR-Spektrum von *Corax L6* zufinden, die kleinste hingegen bei *N 550* mit 293 Hz. Das bei einigen Carbon Blacks auftretende zweite Signal im tieferen Feld um 200 ppm zeigt Linienbreiten zwischen 1587 und 1691 Hz.

5.4.3 Druckabhängigkeit der Halbwertsbreite

Die Druckabhängigkeit der Halbwertsbreite wird ebenfalls exemplarisch an *Vulcan PF*, *Vulcan P, Printex XE2* und *Black Pearls 2000* untersucht. Bei allen vier Carbon Blacks ist, wie bei der chemischen Verschiebung, eine Zunahme der Halbwertsbreite mit steigendem Druck zu beobachten (*Abbildung 5.4-1* und *Tabelle 5.4-1*). Bereits bei kleinen Drücken unter 3 bar sind deutliche Unterschiede in den Linienbreiten der verschiedenen Carbon Blacks zu erkennen, wobei bei *Printex XE2* und *Black Pearls 2000* mit < 230 Hz zunächst die kleinsten Werte gefunden werden. Die Resonanzlinien von *Vulcan P* und *PF* zeigen hingegen bis 4 bar innerhalb eines Fehlerbereiches gleichgroße Halbwertsbreiten, die durchschnittlich 50 Hz oberhalb der anderen Rußen liegen.

Abb. 5.4-1 Halbwertsbreite $\Delta v_{1/2}$ als Funktion des Xenondrucks für die Carbon Blacks Vulcan PF (140 m²/g), Vulcan P (140 m²/g), Printex XE2 (1000 m²/g) und Black Pearls 2000 (1475 m²/g).

Oberhalb von 8 bar erreichen die Halbwertsbreiten einen Grenzwert, der bei *Printex XE2* mit ca. 660 Hz über dem von *Vulcan P* (452 Hz) liegt. Bei *Vulcan PF* erfolgt durch eine inhomogene Verbreiterung der Resonanzsignal bei 20,6 bar eine sprunghafte Zunahme der mittleren Linienbreite auf 804 Hz. In *Black Pearls 2000* nimmt die Linienbreite auch oberhalb von 8 bar weiter zu und erreicht bei 17,2 bar einen Wert von 502 Hz (s. *Tabelle 5.4-1*). Die Halbwertsbreite des zweiten Adsorptionssignals bei *Vulcan PF* ist mit durchschnittlich 1600 Hz in dem beobachteten Druckbereich druckunabhängig.

Vulcan PF Vulcan I		an P	n P Printex XE2			Black Pearls 2000	
<i>p_{xe} /bar</i>	<i>∆ν</i> 1/2 /Hz	<i>p_{xe} ∕ba</i> r	<i>∆ν</i> 1/2 /Hz	<i>p_{xe} /ba</i> r	<i>∆ν</i> 1/2 /Hz	<i>p_{xe} ∕ba</i> r	⊿ν _{1/2} /Hz
0,8	150	1,8	256	0,5	131	0,9	103
0,9	279	2,2	271	0,9	161	1,4	103
1,2	231	2,7	322	2,4	227	1,9	139
2,7	313	2,7	310	5,3	314	2,0	147
3,1	349	6,7	396	10,6	659	2,3	169
4,6	501	7,5	449	13,2	642	2,7	183
5,1	517	9,6	439	22,9	671	3,1	234
6,2	493	11,1	448	23,8	663	5,5	300
7,0	506	12,5	460	-	-	7,4	373
9,1	584	21,2	452	-	-	8,2	461
20,6	804	-	-	-	-	17,7	502

Tab. 5.4-1Halbwertsbreiten der 129 Xe-NMR-Signale bei verschieden Xenondrücken p_{Xe} der Ruße Vulcan P, Vulcan PF, Printex XE2 und Black Pearls 2000.

5.4.4 T₂-Relaxation

Die Frage, ob die Resonanzlinien der mit der Carbon Black Oberfläche wechselwirkenden Xenonatome homogen oder inhomogen verbreitert sind, lässt sich über die Bestimmung der transversalen Relaxationszeit T_2 beantworten (vgl. *Kapitel 4.1.2*). Dazu wurden die T_{2^-} Zeiten mit Hilfe der Carr-Purcell-Meiboom-Gill (CPMG)-Pulssequenz bestimmt.^[115] Bei der Verwendung dieser Methode können zusätzliche Relaxationseffekte, wie sie z. B. durch Anisotropie- oder Austauscheffekte hervorgerufen werden können, eliminiert werden. Eine ausführliche Beschreibung der Pulssequenz erfolgt im experimentellen Teil dieser Arbeit in *Kapitel 8.5.3*.

In *Tabelle 5.4-2* sind die T_2 -Zeiten aus dem CPMG-Experiment für zwei verschiedene Carbon Blacks exemplarisch aufgeführt. Neben der Druckabhängigkeit erfolgt zudem ein Vergleich mit der aus der Halbwertsbreite ermittelten T_2^* -Zeit, die alle Relaxationseffekte berücksichtigt.

$$T_2^* = \frac{1}{\pi \, \Delta \nu_{1/2}} \tag{5.4-1}$$

Unter isobaren Bedingungen unterscheiden sich die transversalen Relaxationszeiten der intraporösen Xenonatome bei den hier untersuchten Carbon Blacks nur wenig voneinander. Bei ca. 3 bar beträgt sie für *Vulcan PF* und *Black Pearls 2000* jeweils 5,5 ms. Mit zunehmendem Druck nimmt sie bei *Vulcan PF* bis auf 1,2 ms ab. Für *Black Pearls 2000* ist hingegen eine Abnahme von 19,5 auf 3,8 ms bei einer Druckerhöhung von 1,4 auf 7,4 bar zu beobachten.

Unter 3 bar sind die transversalen Relaxationszeiten T_2^* bei beiden Carbon Blacks um den Faktor sechs bis sieben kleiner als T_2 . Oberhalb von 3 bar sind sie nur noch um den Faktor drei kleiner und nehmen mit steigendem Druck prozentual in gleichem Maße wie T_2 ab (*Tabelle 5.4-2*).

Probe	<i>p_{xe} /ba</i> r	T ₂ (CPMG) /ms	$T_2^* = (\pi \Delta v_{1/2})^{-1} \pm 0,02 \text{ /ms}$
Vulcan PF	2,9	$5{,}5\pm0{,}6$	1,14
(140 m²/g)	9,1	$\textbf{1,7}\pm\textbf{0,3}$	0,52
	20,6	$\textbf{1,2}\pm\textbf{0,3}$	0,36
Black Pearls 2000	1,4	19,5 ± 1,5	3,00
(1475 m²/g)	3,1	$5,5\pm0,7$	1,74
	7,4	$\textbf{3,8} \pm \textbf{0,2}$	1,24

Tab. 5.4-2 T_2 - und T_2^* -Relaxationszeiten aus den CPMG-Experimenten bzw. der Halbwertsbreite $\Delta v_{1/2}$ des Adsorptionssignals.

5.5 T_1 -Relaxation

Insbesondere bei der quantitativen Auswertung der ¹²⁹Xe-NMR-Spektren ist eine genaue Kenntnis der Spin-Spin-Relaxationszeit T_1 notwendig. Sie bestimmt im NMR-Experiment die Wartezeit zwischen Akquisition und erneuter Anregung, die üblicherweise im Bereich von 5· T_1 liegen soll. Die T_1 -Relaxationszeiten der intra- ($T_{1,p}$) und extraporösen ($T_{1,f}$) Xenonatome wurden exemplarisch für die Ruße *Vulcan PF* und *Black Pearls 2000* mit Hilfe der sog. *Inversion Recovery-(IR)*–Methode bestimmt (s. *Kapitel 8.5.2*). Die Länge des 90°-Pulses betrug 12 – 15 µs und die Wartezeit zwischen Akquisition und Start einer erneuten Pulsfolge betrug maximal 10 min (ca. 5· T_1). Die Ergebnisse sind in *Tabelle 5.4-1* zusammenfassend aufgeführt.

In einer reiner Xenongasprobe kann T_1 auch bei hohen Drücken mehrere Minuten oder sogar Stunden betragen (s. *Kapitel 4.3*). Im Vergleich dazu sind die Relaxationszeiten der extraporösen Xenonkerne wesentlich kürzer und liegen z. B. für *Vulcan PF* und *Black Pearls 2000* bei 14,7 und 97 s. Die T_1 -Zeiten des intraporösen Xenons sind nochmals etwa um einen Faktor zehn kleiner. Sie zeigen zudem eine Druckabhängigkeit, die sich bei *Vulcan PF* in einer leichten Abnahme von 3,26 auf 1,87 s, und bei *Black Pearls 2000* in einer deutlichen Zunahme von 1,23 auf 9,5 s äußert (*Tabelle 5.5-1*).

Probe	р /bar	Т _{1,р} /s	Т _{1,f} /s
Vulcan PF	9,1	$\textbf{3,26} \pm \textbf{0,10}$	$16,32\pm2,18$
	20,6	1,87 ± 0,31	$14,71\pm2,77$
Black Pearls 2000	7,4	$\textbf{1,23}\pm\textbf{0,18}$	94,73 ± 5,87
	17,7	$9{,}50\pm0{,}52$	97,23 ± 6,08

Tab. 5.5-1 T_1 -Relaxationszeiten aus Inversion-Recovery-Experimenten derXenonatome innerhalb ($T_{1,p}$) und außerhalb ($T_{1,f}$) der Porenstruktur.

5.6 Xenon-Diffusion in Carbon Black

5.6.1 Einführung

Die freie Selbstdiffusion der Xenonatome außerhalb und die gehinderte Diffusion innerhalb der porösen Carbon Black Struktur wurde mit Hilfe der PFG-NMR-Spektroskopie untersucht und die jeweiligen Diffusionskoeffizienten in Abhängigkeit von Druck, Porengröße und Diffusionszeit bestimmt. Der Diffusionskoeffizient wurde über die relative Intensitätsänderung E(G)/E(0) des ¹²⁹Xe-NMR-Signals mit steigender Gradientenfeldstärke *G* ermittelt (vgl. *Kapitel 3.2*).

$$\ln \frac{E(G)}{E(0)} = -\gamma^2 \delta_G^2 G^2 D \left(\Delta - \frac{\delta_G}{3} \right)$$
(5.6-1)

Die PFG-NMR-Untersuchungen an Carbon Black Proben mit geringen Xenon-Drücken und großen Halbwertsbreiten der ¹²⁹Xe-NMR-Signale lieferten keine Ergebnisse, da auch bei kurzen Diffusionszeiten Δ und kleinen Gradientenpulsen δ_G eine zu schnelle Intensitätsabnahme der Resonanzsignale erfolgte. Nur bei *Black Pearls 2000* konnten druck- und diffusionszeitabhängige Messungen erfolgreich durchgeführt werden.

5.6.2 Diffusion des freien und extraporösen Xenons

Die freie Selbstdiffusion des Xenons wurde sowohl in einer reinen Xenongas-Probe, als auch in Gegenwart eines Carbon Blacks untersucht und jeweils der Diffusionskoeffizient bestimmt. Bei einer reinen Xenonprobe mit einem Innendruck von 21,2 bar beträgt der Diffusionskoeffizient der freien und ungehinderten Diffusion 2,6·10⁻⁸ m²/s. Ein Vergleich mit der Literatur zeigt, dass D_f bei einer Druckerhöhung von 1 auf 21,2 bar um mehr als zwei Größenordnungen abnimmt (*Abbildung 5.6-1a* und *Tabelle 5.6-1*).

Der Diffusionskoeffizient des extraporösen Xenons im heterogenen System Xenon– Carbon Black ist im vergleichbaren Druckbereich um ca. eine Größenordnung kleiner als der des freien Xenons (*Black Pearls 2000* bei 10,9 bar: 6,6·10⁻⁸ m²/s, Xenongas: 72,4·10⁻⁸ m²/s bei 12 bar). Hierbei ist ebenfalls ein Abnahme mit steigendem Druck bzw. Dichte zu beobachten, allerdings ist die Änderung weniger stark ausgeprägt als bei der reinen Xenonprobe. So nimmt der Diffusionskoeffizient in *Black Pearls 2000* bei 17,7 bar einen Wert von $1,9\cdot10^{-8}$ m²/s an und liegt damit, wie auch bei *Vulcan PF* mit $1,7\cdot10^{-8}$ m²/s (20,6 bar), nur geringfügig unter dem gefunden Wert der freien Diffusion bei 21,2 bar (2,6·10⁻⁸ m²/s, *Tabelle 5.6-1*).

Die jeweils zurückgelegte mittlere freie Weglänge $\sqrt{< r^2 >}$ der Xenonatome lässt sich mit Hilfe von *Gleichung 5.6-2* bestimmen (vgl. *Kapitel 3.3*).

$$\sqrt{\langle r^2 \rangle} = \sqrt{6\Delta D} \tag{5.6-2}$$

In *Tabelle 5.6-1* sind die mittleren freien Weglängen der freien und extraporösen Xenonatome bei einer Diffusionszeit von 10 ms exemplarisch aufgeführt. In *Abbildung 5.6-1* ist $\sqrt{\langle r^2 \rangle}$ der freien Xenonatome gegen den Druck aufgetragen. Hier zeigt sich eine annähernd lineare Abnahme der Weglänge mit zunehmendem Xenondruck.

Abb. 5.6-1 (a) Diffusionskoeffizient D_f und **(b)** relative freie Weglänge $\sqrt{\langle r^2 \rangle}$ des freien Xenons bei Raumtemperatur als Funktion des Druckes. Vergleich mit den Ergebnissen von Mair et al. ^[116] und Junker. ^[97]

Referenz/ Probe	p D _f /bar /10 ⁻⁸ m ² s ⁻¹		$\sqrt{\langle r^2 \rangle}$ /µm
Reines Xenongas : (Mair, 1998) ^[116]	1,0	571	585
(Junker, 2000) ^[97]	12,0	$72,4 \pm 2,00$	208 ± 34
Diese Arbeit	21,2	2,6 ± 0,17	39 ± 10
Extraporöses Xenon: Black Pearls 2000 Black Pearls 2000	10,9 17,7	6,6 ± 0,38 1,9 ± 0,15	63 ± 15 34 ± 9
Vulcan PF	20,6	$1,7 \pm 0,16$	$\textbf{32}\pm\textbf{10}$
Printex XE2	23,8	2,2 ± 0,13	36 ± 9

Tab. 5.6-1Xenon-Diffusionskoeffizienten und mittlere freie Weglängen (Δ = 10 ms)des reinen sowie des extraporösen Xenons in Carbon Black.

5.6.3 Diffusion des intraporösen Xenons

Die Diffusion des intraporösen Xenons wurde in Abhängigkeit von der spezifischen Oberfläche, dem Druck und der Diffusionszeit Δ untersucht. Dazu wurden die Xenon-Diffusionskoeffizienten von drei Carbon Blacks mit unterschiedlicher spezifischer Oberfläche bestimmt. Um die Ergebnisse miteinander vergleichen zu können, wurden die gleichen Gradientenpulslängen δ_G (0,3 ms) sowie die gleichen Diffusionszeiten Δ (10 ms) verwendet. Die Diffusionskoeffizienten und die nach *Gleichung 5.6-2* erhaltenen mittleren, freien Weglängen sind für *Vulcan PF*, *Ketjen Black* und *Black Pearls 2000* in *Tabelle 5.6-2* aufgeführt.

Tab. 5.6-2	Ergebnisse der Xenon-Diffusionsmessungen an Carbon Black (δ_{G} = 0,3 ms,
	$\Delta = 10 \text{ ms}$).

	$\sigma_{ m S}$	р _{Хе}	D_p	$\sqrt{\langle \mathbf{r}^2 \rangle}$
Carbon Black	/m²g⁻¹	/bar	/10 ⁻⁹ m ² s⁻¹	/μ m
Vulcan PF	140	14,0	28,30 ± 0,9	41,2 ± 0,7
Ketjen Black	950	12,6	$10,20 \pm 0,7$	$24,7\pm0,8$
Black Pearls 2000	1475	10,9	$8,62 \pm 0,3$	22,7 ± 0,8

Kapitel 5

Die Diffusionskoeffizienten D_p des intraporösen Xenons sind im Vergleich zu D_f um einen Faktor 1,5 bis 2 kleiner. Zudem zeigt sich eine deutliche Abnahme in D_p mit zunehmender spezifischer Oberfläche (*Abbildung 5.6-2*). So wurde für *Vulcan PF* (140 m²/g) ein Wert von 2,8·10⁻⁸ m²/s ermittelt. *Ketjen Black* besitzt hingegen mit 950 m²/g eine fast siebenmal so große spezifische Oberfläche, wobei der Diffusionskoeffizient mit 1.01·10⁻⁸ m²/s etwa ein Drittel kleiner ist. *Black Pearls 2000*, der Ruß mit der größten spezifischen Oberfläche, (1475 m²/g) liefert mit 8,71·10⁻⁹ m²/s den kleinsten Wert. Über *Gleichung 5.6-2* ist eine Abnahme der mittleren freien Weglänge mit zunehmendem σ_s verbunden (*Tabelle 5.6-2*).

Abb. 5.6-2 Xenon-Diffusionskoeffizient D_p in Carbon Blacks mit unterschiedlicher spezifischer Oberfläche σ_s . Vulcan PF (VPF, 14,0 bar), Ketjen Black (KB, 12,6 bar) und Black Pearls (BP, 10,9 bar) (δ = 0,3 ms, Δ = 10 ms).

5.6.4 Druckabhängige Xenon-Diffusionsmessungen

Die im letzten Kapitel vorgestellten Ergebnisse sind nur bedingt repräsentativ, da die Diffusionskoeffizienten nur von drei verschieden Carbon Blacks ermittelt wurden, und zudem die Xenongasdrücke zwischen 10,9 - 14 bar variieren. Es ist aber zu erwarten, dass die Kollisionswahrscheinlichkeit der Xenonatome mit der Porenwand, sowie die der Xenonatome untereinander, druck- bzw. dichteabhängig ist. Um dies zu untersuchen wurde der Diffusionskoeffizient von *Black Pearls 2000* bei verschiedenen Drücken im Bereich von 1,9 - 17,7 bar bestimmt.

Das Diagramm in *Abbildung* 5.6-3 zeigt den Diffusionskoeffizienten der intraporösen Xenonatome D_p als Funktion des Xenondrucks p_{Xe} . Zunächst nimmt D_p im Bereich von 2 bis 8 bar von 10,7·10⁻⁹ auf 6,3·10⁻⁹ m²/s ab. Bei einer weiteren Druckerhöhung auf über 10 bar wird D_p druckunabhängig und erreicht mit 5,56·10⁻⁹ m²/g annähernd einen Grenzwert. Gleichzeitig nimmt die von den Xenonatome zurückgelegte mittlere freie Weglänge während Δ zunächst linear von ca. 57 auf 43 µm ab und erreicht bei 17,7 bar einen Wert von 40,8 µm (*Tabelle* 5.6-3).

Abb. 5.6-3 Xenon-Diffusionskoeffizient der gehinderten Diffusion als Funktion des Xenongasdrucks von Black Pearls 2000 (δ = 0,3 ms, Δ = 50 ms).

Tab. 5.6-3 Der Xenon-Diffusionskoeffizient D_p von Black Pearls 2000 und die zurückgelegte freie Weglänge in Abhängigkeit vom Xenongasdruck p ($\delta = 0,3 \text{ ms}, \Delta = 50 \text{ ms}$).

p _{Xe}	D_p	$\sqrt{\langle \mathbf{r}^2 \rangle}$
/bar	no m s	/μ m
1,9	10,71 ± 0,51	56,7 ± 1,33
3,1	$10,41 \pm 0,50$	55,9 ± 1,33
5,5	$8,82\pm0,74$	51,4 ± 2,11
8,2	$6,36\pm0,83$	43,7 ± 2,76
10,9	$6,01 \pm 0,62$	42,5 ± 2,14
17,7	5,56 ± 0,25	40,8 ± 0,91

5.6.5 Diffusionszeitabhängige Xenon-Diffusionsmessungen

Diffusionszeitabhängige Messungen des Diffusionskoeffizienten wurden unter isobaren Bedingungen an *Black Pearls* 2000, dem Ruß mit der kleinsten Poren- und Partikelgrößen, bei 10,9 bar durchgeführt. Die Diffusionszeit Δ wurde im Bereich von 4 bis 200 ms variiert und $D_p(\Delta)$ über *Gleichung* 5.6-1 bestimmt. Die Ergebnisse sind in *Tabelle* 5.6-4 zusammengefasst und in *Abbildungen* 5.6-4 graphisch dargestellt.

Abb. 5.6-4 Xenon-Diffusionskoeffizient D_p als Funktion der Diffusionszeit Δ . Probe: Black Pearls 2000 (p_{Xe} =10,9 bar, δ_G = 0,3 ms).

 D_p nimmt bei einer Erhöhung der Diffusionszeit von 4 auf 200 ms fast um eine Größenordnung ab und erreicht bei 200 ms einen Wert von 3,27·10⁻⁹ m²/s. Die mittlere freie Wegstrecke nimmt entsprechend mit $\sqrt{6D\Delta}$ zu. Experimentell konnten Diffusionsmessungen mit Diffusionszeiten über 200 ms aufgrund eines starken Intensitätsverlustes der ¹²⁹Xe-NMR-Signale und der damit verbundenen geringeren Anzahl an Datenpunkten nicht mehr erfolgreich durchgeführt werden.

⊿ /ms	<i>D_p</i> /10 ⁻⁹ m²/s	√< r² > /µm
4	10,80 ± 0,76	16,1 ± 0,57
10	8,62 ± 0,31	22,7 ± 0,41
16	8,12 ± 0,19	27,9 ± 0,33
30	8,00 ± 0,44	37,9 ± 1,04
50	6,01 ± 0,62	42,5 ± 2,19
100	4,73 ± 0,75	53,3 ± 4,22
200	$3,27 \pm 0,70$	62,6 ± 6,71

Tab. 5.6-4Xenon-Diffusionskoeffizienten der gehinderten Diffusion in Black Pearls2000 (10,9 bar) für verschiedene Diffusionszeiten Δ (δ_{G} = 0,3 ms).

5.7 Quantitative Untersuchung der ¹²⁹Xe-NMR-Signale

Die Integrale der ¹²⁹Xe-NMR-Linien liefern die relativen Xenonanteile im intra- und extraporösen Bereich der Carbon Black Strukturen. Voraussetzung ist, dass sich die Xenon/Carbon Black - Probe vollständig im Spulenraum des NMR-Messkopfes befindet (s. *Kapitel 8.1*). In *Abbildung 5.7-1* ist die Zunahme der relativen Signalintensität der intraporösen Xenonatome, bezogen auf die Masse der Carbon Blacks *m*_{CB}, von *Vulcan PF*, *Printex XE2* und *Black Pearls 2000* dargestellt.

Bei allen drei Rußen ist ein Anstieg der relativen Signalintensität mit steigendem Druck zu beobachten. Dabei sind die Werte von *Printex XE2* und *Black Pearls 2000* im vergleichbaren Druckbereich stets größer als die von *Vulcan PF* und zeigen bis ca. drei bar einen ähnlichen Verlauf. Zwischen 8 und 10 bar erreichen die Kurven annähernd

einen Grenzwert, der bei *Black Pearls 2000* entsprechend der höheren spezifischen Oberfläche über dem von *Printex XE2* liegt. Bei *Vulcan PF* ist hingegen bis 20,6 bar ein nahezu linearer Verlauf zu beobachten.

Abb. 5.7-1 Relative Integrale der ¹²⁹Xe-NMR-Signale intraporöser Xenonatome mit zunehmendem Xenondruck.

5.8 Temperaturabhängigkeit der chemischen Verschiebung

Die temperaturabhängigen ¹²⁹Xe-NMR-Experimente an Carbon Black wurden von Frau Sperling-Ischinsky im Rahmen ihrer Dissertation ^[100] durchgeführt und sollen hier nur zur vollständigen Darstellung der ¹²⁹Xe-NMR-Untersuchungen an Carbon Blacks aufgeführt und mit den in dieser Arbeit durchgeführten Experimenten verglichen werden. In *Abbildung 5.8-1* ist hierzu die Chemische Verschiebung $\Delta \delta = \delta_p - \delta_r$ als Funktion der Temperatur für verschiedene Carbon Blacks dargestellt. Die dazugehörigen Zahlenwerte sind in *Tabelle 5.8-1* aufgelistet.

Insgesamt ist für alle Carbon Blacks ein Anstieg der Chemischen Verschiebung mit abnehmender Temperatur zu beobachten. In dem hier untersuchten Temperaturbereich von 298 - 243 K kann sie dabei um bis zu 100 ppm zunehmen. Auffällig ist, dass die Kurve für *Monarch 1300* nahezu parallel zu denen von *Printex XE2* und *Conductex 40-220* verläuft, obwohl die spezifische Oberfläche mit 560 m²/g jeweils nur halb so groß ist.

Abb. 5.8-1 Chemische Verschiebung des intraporösen Xenons als Funktion der Temperatur für Carbon Blacks mit unterschiedlichen spezifischen Oberflächen (in m²/g).^[100]

Tab. 5.8-1	Chemische	Verschiebungs	swerte $\Delta \delta = \delta_p$	- $\delta_{\rm f}$ (in p	pm) voi	n Carbon	Blacks	mit
unterschied	licher spezifi	scher Oberfläcl	he in Abhängi	gkeit von	der Ter	nperatur. [[]	100]	

Temp. /K	Raven 410	N 550	N 330	N 110	Corax L	Monarch 1300	Printex XE2	Conductex 40-220
	28 m²/g	30 m²/g	83 m²/g	143 m²/g	150 m²/g	560 m²/g	1000 m²/g	1075 m²/g
298	33,2	44,7	56,8	64,0	72,2	122,1	125,3	119,0
283	40,2				79,4	134,4	134,4	132,8
273	48,7	68,2	77,2	89,7	92,7	144,0	144,0	145,1
263	58,6	79,0	91,4	102,6	101,1	153,9	153,9	160,2
253	75,5	96,1	111,2	116,9	123,6	174,2	174,2	178,9
243	97,0	142,4	157,4	131,6	166,3	185,7	185,7	192,3