Ortsaufgelöste Charakterisierung von Entmischungsphänomenen in Ga_xIn_{1-x}As_yP_{1-y}-Halbleiter-Heteroschichten im Raster-Transmissionselektronenmikroskop

Vom Fachbereich Elektrotechnik der

Gerhard-Mercator-Universität - Gesamthochschule Duisburg

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigte Dissertation

von

Diplom-Ingenieurin Christina Mendorf

aus

Ratingen

Referent:Professor Dr.-Ing. E. KubalekKorreferent:Professor Dr. rer. nat. K. Heime

Tag der mündlichen Prüfung: 7. Dezember 2001

INHALTSVERZEICHNIS

н	L
	L

Verzeichnis der Bilder und Tabellen	V
Liste der Abkürzungen	VIII
Liste der Formelzeichen	IX

1		1
2		4
2.1	Elektronenmikroskopische Grundlagen	4
2.1.1	Wechselwirkungen zwischen Elektronen und Festkörper	4
2.1.1.1	Elastische Streuung an einzelnen Atomen	4
2.1.1.2	Inelastische Streuung an einzelnen Atomen	7
2.1.1.3	Elektronenbeugung an idealen Kristallen	9
2.1.1.3.1	Einführung in die Kristallographie	9
2.1.1.3.2	Kinematische Beugungstheorie	12
2.1.1.3.3	Dynamische Beugungstheorie	13
2.1.2	Apparativer Aufbau und Funktionsprinzip des	19
	Raster-Transmissionselektronenmikroskops (RTEM)	
2.1.3	Messtechnische Grundlagen	23
2.1.3.1	Hellfeld- und Dunkelfeldabbildung	24
2.1.3.2	Ordnungszahlkontrastabbildung	26
2.1.3.3	Elektronenenergieverlust-Spektroskopie (EELS)	28
2.1.3.3.1	Funktionsprinzip	28
2.1.3.3.2	Das Elektronenenergieverlust-Spektrum	29
2.1.3.3.3	Quantitative Analyse von EEL-Spektren	31
2.1.3.4	Elektronenbeugungstechniken	32

2.1.4	Maximum-Entropie-Analyse von Hochauflösungs-	. 35
2.2	Thermodynamische Grundlagen zur Mischungslücke	. 39
	im III-V-Halbleitersystem	
2.2.1	Das Delta-Lattice-Parameter-Modell nach Stringfellow	. 39
2.2.1.1	Die freie Energie	. 39
2.2.1.2	Spinodale und binodale Kurve	40
2.2.1.2.1	Spinodale und Binodale im binären System	41
2.2.1.2.2	Spinodale und Binodale im quaternären System	42
2.2.2	Die Mischungslücke des Materialsystems $Ga_xIn_{1-x}As_yP_{1-y}$	44
2.3	Eigenschaften und Herstellung des Materialsystems $Ga_xIn_{1-x}As_yP_{1-y}$. 47
3	BISHERIGER KENNTNISSTAND	. 52
3.1	Ist-Stand bei der Charakterisierung von Entmischungs-	52
	phänomenen in $Ga_xIn_{1-x}As_yP_{1-y}$ -Halbleiter-Heteroschichten	
3.2	Ist-Stand in der Anwendung des Maximum-Entropie-	54
	Verfahrens an Hochauflösungs-Ordnungszahlkontrastabbildungen	
4	Verbesserung der Hochauflösungs-Ordnungszahl-	56
	KONTRASTABBILDUNG DURCH ANWENDUNG DES	
	MAXIMUM-ENTROPIE-VERFAHRENS (MEV)	
4.1	Kritische Prüfung des MEV	56
4.2	Leistungsfähigkeit des MEV	. 64
4.2.1	Qualitativer Nachweis chemischer Zusammensetzungen	. 64
4.2.2	Nachweis struktureller Defekte	. 67

5	EXPERIMENTELLE ERGEBNISSE ZUR ENTMISCHUNG VON	
	Ga _x In _{1-x} As _y P _{1-y} -HALBLEITER-HETEROSCHICHTEN	
5.1	Untersuchung von Ga _x In _{1-x} As _y P _{1-y} -Einzelschichten	
5.1.1	Analyse mittels Hellfeld- und Ordnungszahlkontrastabbildung	
5.1.2	Ortsaufgelöste Elektronenenergieverlust-Spektroskopie der	
	entmischten Ga _x In _{1-x} As _y P _{1-y} -Einzelschichten	
5.1.3	Untersuchung der Ga _x In _{1-x} As _y P _{1-y} -Einzelschichten mittels	
	Elektronenbeugung	
5.1.4	Ergänzende Untersuchungen mittels Rasterkraftmikroskopie	
	(RKM) und Kathodolumineszenz (KL)	
5.2	Untersuchung von Ga _x In _{1-x} As _z P _{1-z} /Ga _y In _{1-y} As _z P _{1-z} -Übergittern	
5.2.1	Strukturelle Eigenschaften der Übergitter	93
5.2.2	Qualitativer Nachweis von Fluktuationen der chemischen	
	Zusammensetzung innerhalb der Heteroschichten mittels	
	der Ordnungszahlkontrastabbildung	
5.2.3	Quantitative Bestimmung der lokalen Verspannung der	101
	Ga _x In _{1-x} As _z P _{1-z} /Ga _y In _{1-y} As _z P _{1-z} -Übergitter	
6	DISKUSSION	104
7	AUSBLICK	107
8		109
9		113

VERZEICHNIS DER BILDER

Bild 2.1	Schematische Darstellung des elastischen Streuprozesses	5
Bild 2.2	Veranschaulichung der Bragg-Beziehung	10
Bild 2.3	Ewald-Konstruktion	11
Bild 2.4	Schematische Darstellung der Blochwellen-Absorption im Zweistrahlfall	16
Bild 2.5	Die Multislice-Methode	18
Bild 2.6	Schematischer Aufbau des Raster-Transmissionselektronenmikroskops	22
Bild 2.7	Ausgangspunkt der Detektion der angewandten Messtechniken	23
Bild 2.8	Detektionsbereich für die Hell- und Dunkelfeldabbildung im RTEM	25
Bild 2.9	Detektionsbereich für die Ordnungszahlkontrastabbildung	26
Bild 2.10	Schematisches Elektronenenergieverlust-Spektrum	30
Bild 2.11	Schematische Darstellung zur Bestimmung der Elementkonzentration	32
Bild 2.12	SAD- und CBED-Beugungsmuster einer InP-Probe entlang der <011>-	33
	Zonenachse	
Bild 2.13	Schematische Darstellung zur Interpretation über die Entstehung der	35
	Z-Kontrastabbildung	
Bild 2.14	Schematische Darstellung der Maximum-Entropie-Trajektorie	36
Bild 2.15	Zur Definition von spinodaler und binodaler Kurve	42
Bild 2.16	Schematischer Verlauf der Fläche der Gibbs'schen Freien Energie eines	43
	quaternären Materialsystems mit Mischungslücke	
Bild 2.17	Spinodale und binodale Kurve im Materialsystem $Ga_xIn_{1-x}As_yP_{1-y}$ bei einer	44
	Temperatur von 640°C	
Bild 2.18	Lage der Gleichgewichtsgeraden für das Materialsystem $Ga_xIn_{1-x}As_yP_{1-y}$ bei	45
	einer Temperatur von 640°C	
Bild 2.19	Temperaturabhängigkeit der Mischungslücke im Materialsystem	46
	Ga _x In _{1-x} As _y P _{1-y}	
Bild 2.20	Zinkblendestruktur des Materialsystems $Ga_xIn_{1-x}As_yP_{1-y}$ und ihre Ansicht in	47
	<110>-Projektion	
Bild 2.21	Bandabstand und Gitterkonstante für das quaternäre Materialsystem	49
	Ga _x In _{1-x} As _y P _{1-y}	
Bild 2.22	Pseudomorphes Wachstum und Relaxation verspannter Schichten	50
Bild 2.23	Prinzipdarstellung einer MOVPE-Anlage	51
Bild 4.1	Testbild zur Bestimmung der optimalen PSF	57
Bild 4.2	Mögliche Intensitätsprofile der Elektronensonde im Programm MAXENT	58
Bild 4.3	Linescan aus Bild 4.1 zur Bestimmung der Halbwertsbreite der PSF	59
Bild 4.4	Einfluss der gewählten Sondenform auf die rekonstruierte Objektfunktion	60
Bild 4.5	Einfluss des Defokus auf die rekonstruierte Objektfunktion	61

Verwendung einer gaußförmigen PSFBild 4.7Einfluss der Sondengröße auf die rekonstruierte Objektfunktion bei der	63
Bild 4.7 Einfluss der Sondengröße auf die rekonstruierte Objektfunktion bei der	63
Verwendung einer lorentzförmigen PSF	
Bild 4.8 Abrupte InGaAs/InP-Grenzfläche	65
Bild 4.9 Nicht abrupte InGaAs/InP-Grenzfläche	66
Bild 4.10 Ungefilterte und fouriergefilterte Hochauflösungs-Ordnungszahlkontrast-	67
abbildung einer ZnS _{0,4} Se _{0,6} -Schicht mit strukturellen Defekten	
Bild 4.11Zweidimensionale Fouriertransformierte von Bild 4.10a und Filtermasken	68
zur Berechnung von Bild 4.12a und 4.12b	
Bild 4.12 Fouriergefilterte Mikrobilder mit den Filtermasken aus Bild 4.11b und	69
Bild 4.11c	
Bild 4.13 Maximum-Entropie-Rekonstruktion aus Bild 4.10	70
Bild 4.14 Hochauflösungs-Ordnungszahlkontrastabbildung einer GaSb-Schicht in	71
<110>-Projektion mit eingebetteter Simulation	
Bild 4.15 Zweidimensionale Fouriertransformierte von Bild 4.14 und ihre	71
schematische Darstellung	
Bild 4.16 Maximum-Entropie-Rekonstruktion aus Bild 4.14	72
Bild 4.17 Superposition von Hochauflösungs-Ordnungszahlkontrastabbildung und	73
Maximum-Entropie-Rekonstruktion	
Bild 5.1 Berechnete Mischungslücke von Ga _x In _{1-x} As _y P _{1-y} für die Temperaturen	75
640°C und 730°C sowie die Zusammensetzungen der untersuchten	
Schichten	
Bild 5.2 Hellfeldabbildung einer Ga _{0,6} In _{0,4} As _{0,22} P _{0,78} -Einzelschicht mit geringem	76
As-Gehalt innerhalb der Mischungslücke	
Bild 5.3 a) Hellfeldabbildung und b) Ordnungszahlkontrastabbildung einer	77
entmischten Ga _{0,6} In _{0,4} As _{0,15} P _{0,85} -Einzelschicht	
Bild 5.4 Intensitätsprofil der Ordnungszahlkontrastabbildung entlang der in	77
Bild 5.3b eingezeichneten Gerade	
Bild 5.5 a) Hellfeldabbildung und b) Ordnungszahlkontrastabbildung einer	78
entmischten Ga _{0,74} In _{0,26} As _{0,5} P _{0,5} -Einzelschicht	
Bild 5.6 Ordnungszahlkontrastabbildung und eingebettetes Intensitätsprofil	79
Bild 5.7 Hellfeldabbildungen einer Ga _{0,74} In _{0,26} As _{0,5} P _{0,5} -Einzelschicht:	79
a) fehlorientiertes Substrat und b) exakt orientiertes Substrat	
Bild 5.8 Elektronenenergieverlust-Spektren der In-M- und P-L-Ionisationskanten	81
einer Ga _{0,6} In _{0,4} As _{0,15} P _{0,85} -Einzelschicht in den hellen bzw. dunklen	
Bereichen der Ordnungszahlkontrastabbildung	
Bild 5.9 Ausschnitt der berechneten Mischungslücke und Lage der Gleich-	82
gewichtsgeraden bei einer Temperatur von 730°C	

Bild 5.10	Elektronenenergieverlust-Spektren der Ga-L- und As-L-Ionisations-	83
	kanten einer Ga _{0,74} In _{0,26} As _{0,5} P _{0,5} -Einzelschicht in den hellen bzw.	
	dunklen Bereichen der Ordnungszahlkontrastabbildung	
Bild 5.11	a) SAD-Beugungsaufnahme von exakt orientiertem GaAs	84
	b) Linescans der Bragg-Reflexe entlang der Markierung in a)	
Bild 5.12	CBED-Beugungsaufnahmen: a) GaAs-Substrat, b) Ga _{0,74} In _{0,26} As _{0,5} P _{0,5} -	86
	Einzelschicht, c) Ausschnitt aus b) mit variiertem Kontrast	
Bild 5.13	RKM-Aufnahmen der Oberflächenmorphologie der Ga _x In _{1-x} As _y P _{1-y} -	88
	Schichten mit geringen As-Gehalten	
Bild 5.14	KL-Spektrum der Ga _{0,74} In _{0,26} As _{0,5} P _{0,5} -Schicht	89
Bild 5.15	KL-Spektren der Ga _x In _{1-x} As _y P _{1-y} -Schichten mit geringen As-Gehalten	90
Bild 5.16	Schichtaufbau der untersuchten Ga _x In _{1-x} As _z P _{1-z} /Ga _y In _{1-y} As _z P _{1-z} -Übergitter	91
Bild 5.17	Berechnete Mischungslücke von Ga _x In _{1-x} As _y P _{1-y} für T=640°C und die	92
	Zusammensetzungen der untersuchten Übergitter	
Bild 5.18	Einfluss des Totaldrucks auf die Oberflächenmorphologie	93
Bild 5.19	Hellfeldabbildungen des Übergitters von Probe C	94
Bild 5.20	Ordnungszahlkontrastabbildung und Linescan des Übergitters von Probe C	95
Bild 5.21	Hellfeldabbildungen von Ga _x In _{1-x} As _z P _{1-z} /Ga _y In _{1-y} As _z P _{1-z} -Übergittern,	96
	hergestellt bei Totaldrücken von 20 hPa, 40 hPa und 60 hPa und gleicher	
	Wachstumstemperatur von 640°C	
Bild 5.22	Ordnungszahlkontrastabbildungen von Ga _x In _{1-x} As _z P _{1-z} /Ga _y In _{1-y} As _z P _{1-z} -	98
	Übergittern, hergestellt bei Totaldrücken von 20 hPa, 40 hPa und 60 hPa	
	und gleicher Wachstumstemperatur von 640°C	
Bild 5.23	Intensitätsprofile der Ordnungszahlkontrastabbildung aus Bild 5.22	99
	a) entlang der Barrieren, b) entlang der Töpfe und c) senkrecht zum	
	Übergitter	
Bild 5.24	Kritischer Totaldruck in Abhängigkeit vom Arsengehalt z	100
Bild 5.25	CBED-Muster aus Barriere, Grenzfläche und Topf sowie das aus 50	102
	Mustern erstellte Verspannungsprofil des Übergitters von Probe B	

VERZEICHNIS DER TABELLEN

Tabelle 5.1	Probenparameter der Ga _x In _{1-x} As _y P _{1-y} -Einzelschichten	75
Tabelle 5.2	Charakteristische Energieverluste der Ionisationskanten	80
Tabelle 5.3	Probenparameter der Ga _x In _{1-x} As _z P _{1-z} / Ga _y In _{1-y} As _z P _{1-z} -Übergitter	92
Tabelle 5.4	Nominelle und experimentell ermittelte Topf- und Barrierenbreiten	97

LISTE DER ABKÜRZUNGEN

AsH₃	Arsin	
CBED	Convergent Beam Electron Diffraction	(konvergente
		Elektronenstrahlbeugung)
CCD	Charged Coupled Device	
CTF	Contrast Transfer Function	(Kontrastübertragungsfunktion)
DLP	Delta Lattice Parameter	
DPOS	Diffraction Pattern Observation Screen	(Beugungsschirm)
EELS	Electron Energy Loss Spectroscopy	(Elektronenenergieverlust-
		Spektroskopie)
EZV	Erzeugungsvolumen	
FOLZ	First Order Laue Zone	(Lauezone erster Ordnung)
FWHM	Full Width at Half Maximum	(Halbwertsbreite)
GSMBE	Gas Source Molecular Beam Epitaxy	(Gas-Quellen-Molekularstrahl-
		Epitaxie)
HAADF	High Angle Annular Dark Field	(ringförmiger Dunkelfelddetektor)
HBT	Hetero-Bipolar-Transistor	
HOLZ	Higher Order Laue Zone	(Lauezone höherer Ordnung)
KFZ	kubisch-flächenzentriert	
KL	Kathodolumineszenz	
LED	Light Emitting Diode	(Leuchtdiode)
LPE	Liquid Phase Epitaxy	(Flüssigphasen-Epitaxie)
MBE	Molecular Beam Epitaxy	(Molekularstrahl-Epitaxie)
MEV	Maximum-Entropie-Verfahren	
MOCVD	Metallorganic Chemical Vapour Deposition	(metallorganische Gasphasen-
		Epitaxie)
MOVPE	Metallorganic Vapour Phase Epitaxy	(metallorganische Gasphasen-
		Epitaxie)
PEELS	Parallel EELS	(parallele EELS)
PH₃	Phosphin	
PL	Photoluminescence	(Photolumineszenz)

PSF	Point Spread Function	(Intensitätsverteilungsprofil der
		Sonde)
RKM	Rasterkraftmikroskopie	
RTEM	Raster-Transmissionselektronen-	
	mikroskop(ie)	
SAD	Selected Area Diffraction	(Feinbereichsbeugung)
SOLZ	Second Order Laue Zone	(Lauezone zweiter Ordnung)
SRV	Signal-Rausch-Verhältnis	
TDS	Thermal Diffuse Scattering	(thermisch diffuse Streuung)
ТЕМ	Transmissionselektronenmikroskopie	
TMG	Trimethylgallium	
тмі	Trimethylindium	
UHV	Ultra-Hoch-Vakuum	
XRD	X-Ray Diffraction	(Röntgenbeugung)
YAG	Yttrium Aluminium Garnet	
ΥΑΡ	Yttrium Aluminium Perovskit	
ZOLZ	Zero Order Laue Zone	(Lauezone nullter Ordnung)

LISTE DER FORMELZEICHEN

Lateinische Kleinbuchstaben

а	Gitterkonstante
a ₀	Bohrscher Atomradius
$\vec{a}_{1}, \ \vec{a}_{2}, \ \vec{a}_{3}$	Basisvektoren eines Kristallgitters
$\vec{a}_{1}^{*}, \ \vec{a}_{2}^{*}, \ \vec{a}_{3}^{*}$	Basisvektoren des reziproken Gitters
b	Bowingparameter
d _{hkl}	Gitterebenenabstand
$d_{\rm min,HF}$	Auflösungsgrenze für Hellfeldabbildungen im Scherzerfokus
$d_{\min,\text{ADF}}$	Auflösungsgrenze für Z-Kontrastabbildungen im Scherzerfokus

е	Elementarladung
$f_{\rm e}(s)$	Elektronenstreuamplitude
$f_x(s)$	Röntgenstreuamplitude
f(heta)	Streuamplitude
ġ	reziproker Gittervektor
h	Planck'sches Wirkungsquantum
h, k, l	Miller'sche Indizes
\vec{k} , \vec{k}_0 , \vec{k}_S , \vec{k}_1	Wellenvektoren
m	Elektronenmasse
p	Impuls
$p(\vec{x})$	Ausbreitungsfunktion
\vec{q}	Impulsübertrag beim Streuprozess
r	Exponent der empirischen Untergrundanpassungsfunktion von EEL-Spektren, Betrag des Ortsvektors des Elektrons
<i>r</i> _g	Ortsvektor des Ursprungs der Einheitszelle
\vec{r}_{j}	Ortsvektor des Elektrons
<i>r</i> _k	Positionsvektoren der Atome in der Einheitszelle
$ec{m{s}}$, $ec{m{s}}_{ m g}$	Anregungsfehler
S _{g,eff}	effektiver Anregungsfehler
\$ _z	Komponente des Anregungsfehlers in Durchstrahlrichtung
t	Probendicke
$t(\vec{x})$	Transmissionsfunktion
V	Elektronengeschwindigkeit
$V_z(\vec{X})$	projiziertes Atompotential
Δz	Scheibendicke beim Multislice-Verfahren

Lateinische Großbuchstaben

A	Vorfaktor der empirischen Untergrundanpassungsfunktion von EEL-Spektren
$B_{j}(\vec{r})$	Blochwellen
C _g	Blochwellenkoeffizient

Cs	sphärische Aberrationskonstante
E	kinetische Energie
E_0	Primärelektronenenergie
E_{g}	Bandabstand
ΔE	Elektronenergieverlust
F	Strukturamplitude
\textit{F}_{Slice}	Fläche der Multislice-Scheibe (Simulationsgebiet)
G	Gangunterschied, Gitteramplitude oder Gibb'sche freie Energie
Н	Enthalpie
Ι	experimentelle Bildintensitäten
I _B	Intensitätsverteilung des Untergrundes unter einer Ionisationskante
Ι _κ	Intensität einer Ionisationskante
l _g	Intensität eines Bragg-Reflexes
I_0 , I_e	Intensität der einfallenden Elektronenwelle
<i>I</i> (<i>R</i>)	Bildsignal
L(h)	Wahrscheinlichkeit
M(h)	Mock-Daten
N(R)	Rauschsignal
N _x	Elementkonzentration
0(R)	Objektfunktion
$P(\vec{k}, \Delta z)$	Fouriertransformierte der Ausbreitungsfunktion
$P_{\rm eff}^2(R)$	Intensitätsverteilungsprofil der effektiven Elektronensonde
Q(h)	erzwungene Entropie
R	Gaskonstante
S, S(h)	Entropie (Thermodynamik bzw. Informationstheorie)
Т	Temperatur
U	Beschleunigungsspannung
V _{EZ}	Volumen der Einheitszelle
$V_z(\vec{k})$	Fouriertransformierte des projizierten Atompotentials
Ζ	Kernladungszahl

Griechische Kleinbuchstaben

α	Regulierungsparameter
$\alpha_{\rm j}$	Anregungsamplituden der Blochwellen $B_j(\vec{r})$
eta_{min} , eta_{max}	minimaler bzw. maximaler Kollektionswinkel des ADF-Detektors
\mathcal{E}_0	Permittivität des Vakuums
$\left \varepsilon_{n}(\vec{q}) \right ^{2}$	inelastischer Formfaktor
$\Delta \phi$	Phasenänderung der Elektronenwelle
γ	relativistischer Korrekturfaktor
$\varphi(\vec{r})$	Kristallpotential
$arphi_{ extsf{g}}$	Fourierkoeffizient des Kristallpotentials
λ	Wellenlänge
μ	chemisches Potential
θ	Streuwinkel
σ_{i}	Standardabweichung
σ	Streuquerschnitt
d $\sigma/d\Omega$	differentieller Streuquerschnitt
${\it d}\sigma_{ m R}/{\it d}\Omega$	Rutherford-Streuquerschnitt
ξ _g	Extinktionslänge

Griechische Großbuchstaben

Δ	Laplace-Operator oder Integrationsbereich der Ionisationskante
ϑ_{B}	Bragg-Winkel
dΩ	Raumwinkelelement
$\Psi(\vec{r})$	Wellenfunktion
Ψ_0	Wellenfunktion für den nicht angeregten Zustand
Ψ_{n}	Wellenfunktion für den angeregten Zustand