Integrierte Ansteuerschaltungen für mikromechanische Flächenlichtmodulatoren

Vom Fachbereich Elektrotechnik der Gerhard-Mercator-Universität-Gesamthochschule Duisburg zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

von

Kay-Uwe Kirstein aus Bielefeld

Referent: Prof. Dr. H.-L. Fiedler Koreferent: Prof. B. J. Hosticka, PhD.

Tag der mündlichen Prüfung: 13.12.2001

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Fraunhofer Institut für mikroelektronische Schaltungen und Systeme in Dresden.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Horst-Lothar Fiedler für die Betreuung dieser Arbeit.

Danken möchte ich auch allen Kolleginnen und Kollegen des Instituts, insbesondere Herrn Reinhard Kauert für die zahlreichen fachlichen Diskussionen.

Dieses Forschungsthema deckt viele Bereiche von der Schaltungstechnik über die CMOS- und Mikromechanik-Technologie bis hin zur Optik ab. Entsprechend vielen Kollegen bin ich zu besonderem Dank verpflichtet. Stellvertretend seien hier Herr Dr. Peter Dürr, Herr Dr. Andreas Gehner, Herr Wolfgang Doleschal und Herr Alexander Wolter für die Unterstützung bei der Integration der Spiegeltechnologien und Herr Dr. Arnd Hürrich sowie Frau Nadja Griesbach für die erfolgreiche Zusammenarbeit bei der Weiterentwicklung der Hochvolt-Technologie genannt.

Bedanken möchte ich mich auch bei den Mitarbeitern des Institutsreinraumes, die durch ihre sorgfältige Arbeit wesentlich zur Realisierung der entwickelten Mikrosysteme beigetragen haben.

Nicht zuletzt danke ich meiner Frau für ihre Liebe und Unterstützung.

Inhaltsverzeichnis

1	Einl	eitung	1
2	Syst	semaufbau eines Flächenlichtmodulators	3
	2.1	Anwendungen für Flächenlichtmodulatoren	3
		2.1.1 Displaytechnologie	3
		2.1.2 Belichtungssysteme	3
		2.1.3 Adaptive Optiken	4
	2.2	Anforderungen an die Ansteuerung	5
	2.3	Ansteuerung mikromechanischer Aktoren	7
	2.4	Vergleich von Matrixansteuerkonzepten	9
		2.4.1 Passive Matrixansteuerung	10
		2.4.2 Aktive Matrixansteuerung	14
3	Ana	logbetrieb dynamischer Speicherzellen	19
	3.1	Taktdurchgriff	19
	3.2	Kompensation des Taktdurchgriffes	24
	3.3	Streuung der Ansteuerspannung	27
		3.3.1 Signallaufzeiten	27
		3.3.2 Fehlkompensation	29
4	Lich	tempfindlichkeit des Lichtmodulators	35
	4.1	Der Photoeffekt im Halbleiter	35
	4.2	pn-Übergänge in der CMOS-Technologie	41
	4.3	Abschätzung lichtinduzierter Leckströme	44
	4.4	Maßnahmen zur Verringerung der Lichtempfindlichkeit	52
5	Die	Technologie des Lichtmodulators	55
	5.1	Anforderungen an die Technologie	55
	5.2	Prinzipieller Aufbau der Technologie	56
	5.3	Der Hochvolt-CMOS Prozess	57
	5.4	Maßnahmen zur Verbesserung der Planarität	59
	5.5	Die Mikrospiegel Technologien	70
		5.5.1 Viscoelastic-Control-Layer (VCL)	70
		5.5.2 Cantilever-Beam-Mirrors (CBM)	73
		5.5.3 Moving-Liquid-Mirror (MLM)	76

6	\mathbf{Die}	Schaltungstechnik des Lichtmodulators	81
	6.1	Realisierung der aktiven Adressierung	. 81
		6.1.1 Die Spaltentreiber und das Dateninterface	. 82
		6.1.2 Die Zeilenadressierung	. 84
		6.1.3 Die Steuereinheit	. 85
	6.2	Bestimmung der maximalen Adressiergeschwindigkeit	. 86
	6.3	Abschätzung der Adressiergenauigkeit	. 93
	6.4	Messergebnisse	. 102
7	Zus	ammenfassung und Ausblick	111
${f A}$	Her	stellungsprozesse der Lichtmodulatoren	115
		Die Hochvolt-CMOS Technologie	. 115
		Die Spiegeltechnologien	
		A.2.1 Fertigungsablauf der VCL-Technologie	. 117
		A.2.2 Fertigungsablauf der CBM-Technologie	. 118
		A.2.3 Fertigungsablauf der MLM-Technologie	. 119
	A.3	Entwickelte Algorithmen	. 119
		A.3.1 Der Algorithmus zur Erzeugung von Füllstrukturen	. 119
		A.3.2 Der Algorithmus zur Bestimmung des lokalen Füllgrades	. 125
В	Die	realisierten Flächenlichtmodulatoren	127
	B.1	Technische Daten der realisierten Lichtmodulatoren	. 127
	B.2	Layouts der Pixelzellen	. 130
\mathbf{C}	Defi	initionen optischer Kennwerte	133
D	Abk	türzungsverzeichnis	134
${f E}$	E Symbolverzeichnis		135
\mathbf{F}	Abb	oildungsverzeichnis	138
\mathbf{G}	Tab	ellenverzeichnis	140
Li	terat	ur	141