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MathML

It is a well known fact that TeX can do a pretty good job on typesetting math. This is one reason
why many scientific articles, papers and books are typeset using TeX. However, in these days of
triumphing angle brackets, coding in TeX looks more and more out of place.

From the point of view of an author, coding in TeX is quite natural, given that some time is spent
on reading the manuals. This is because not only the natural flow of the definition suits the way
mathematicians think, but also because the author has quite some control over the way his thoughts
end up on paper. It will be no surprise that switching to a more restricted way of coding, which also
demands more keystrokes, is not on forehand considered to be better.

There are however circumstances that one wants to share formulas (or formula like specifications)
between several applications, one of which is a typesetting engine. In that case, a bit more work
now, later saves you some headaches due to keeping the different source documents in sync.

As soon as coding math in angle brackets is discussed, those in favour stress that coding can be
eased by using appropriate editors. Here we encounter a dilemma. For optimal usage, one should
code in terms of content, that is, the principles that are expressed in a formula. Editors are not that
strong in this area, and if they would be, editing would be not that much different from traditionally
editing formulas: just keying in ideas using code that at first sight looks obscure. A more graphical
oriented editor can help authors to compose formulas, but the under laying coding will mainly be in
terms of placing glyphs and boxes, and as a result the code will hardly be usable in other
applications.

So either we code in terms of concepts, which permits sharing code among applications, and poses
strong limitations on the influence of authors on the visual appearance. Or we use an interactive
editor to fine tune the appearance of a formula and take for granted that reuse will be minimal or
suboptimal.

In this presentation I will discuss the mathematical language MATHML in the perspective of
typography as well as demonstrate how formulas coded in MATHML can be transformed into
readable output.
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