H. Hagen
PRAGMA ADE

MathML

It is a well known fact that TeX can do a pretty good job on typesetting math. This is one reason
why many scientific articles, papers and books are typeset using TeX. However, in these days of
triumphing angle brackets, coding in TeX looks more and more out of place.

From the point of view of an author, coding in TeX is quite natural, given that some time is spent
on reading the manuals. This is because not only the natural flow of the definition suits the way
mathematicians think, but also because the author has quite some control over the way his thoughts
end up on paper. It will be no surprise that switching to a more restricted way of coding, which also
demands more keystrokes, is not on forehand considered to be better.

There are however circumstances that one wants to share formulas (or formula like specifications)
between several applications, one of which is a typesetting engine. In that case, a bit more work
now, later saves you some headaches due to keeping the different source documents in sync.

As soon as coding math in angle brackets is discussed, those in favour stress that coding can be
eased by using appropriate editors. Here we encounter a dilemma. For optimal usage, one should
code in terms of content, that is, the principles that are expressed in a formula. Editors are not that
strong in this area, and if they would be, editing would be not that much different from traditionally
editing formulas: just keying in ideas using code that at first sight looks obscure. A more graphical
oriented editor can help authors to compose formulas, but the under laying coding will mainly be in
terms of placing glyphs and boxes, and as a result the code will hardly be usable in other
applications.

So either we code in terms of concepts, which permits sharing code among applications, and poses
strong limitations on the influence of authors on the visual appearance. Or we use an interactive
editor to fine tune the appearance of a formula and take for granted that reuse will be minimal or
suboptimal.

In this presentation I will discuss the mathematical language MATHML in the perspective of
typography as well as demonstrate how formulas coded in MATHML can be transformed into
readable output.

7 Welcome
to MathML

how to present

N’ your math content

Hans Hagen

—

more verbose than in TgX,
il and is called MathML.

Math in XML

| Coding math in XML is

ferent from coding in TgX, al-

markup is not so much dif-

Codi
bose.
——

oding in presentational

| You can code in either presenta-
{ tional, or in content MathML.
In content markup, you define a
Il formula in terms of what it means [f|
| (represents).

1

rather natural flow.

more authors are involved.

Math in TEX
n TeX you enter math in a

) . [
|l ment consistent, especially when }
i

I It's non-trivial to make a docu-

=

| TeX permits you to optimize the \
1
Il visual appearance of a formula.

Introduction

also uses funny characters,
<, >, and &, but can look quite i

ultimate solution for cod- |

nks to some good public |
tions, XML is now seen as
ing documents.

thereby also quite old.

-

XML looks like HTML and thereby |

Il itis pretty hip and popular.
if] XML is based on SCML and

v I

What is XML

o ||

I graphic (macro) programming

“ language.

ough TgX can be used to make

utiful documents, it is (no

Many TgX documents sources |

look awful.

.
What is TEX
TeX is a general purpose typ

Il tion for typesetting (complicat-

| ed) math formulas.
and that’s makes its users a

I TeX has a pretty good reputa-
| TeX is almost 20 years old,

=38 |

Altl
be
loi
jol

ot rich

ntent MathML we ||
onceptual editors. |
f

For inline math we need
something different.

Content MathML is n
enough.

ful.

Some observations
resentational MathML is not that

Present
useful

embed MathML in nor-

MathML in ConTEXt

There is a

Processing Instruction

Exploration

Mixed Markup

http://200.1.1.25/codindex.htm
http://200.1.1.25/codindex.htm

