7 Das Reaktionssystem $Co_2(CO)_8/[Et_4N][Co_2(Se^iC_3H_7)_5]/Ph_4PCI$

Der Grund für die Untersuchung des Systems $Co_2(CO)_8/[Et_4N][Co_2(Se^iC_3H_7)_5]/Ph_4PCl ist die Prüfung der in unserem Arbeitskreis erstmals synthetisierten Verbindung [Me_4N][Co_2(Se^iC_3H_7)_5] /14g/ auf ihre Eignung als Selenquelle für die Darstellung größerer Cobalt-Selen-Cluster. Das <math>[Co_2(Se^iC_3H_7)_5]^-$ Anion besitzt eine Co_2Se_5 -Baueinheit, die aus zwei verzerrt tetraedrisch koordinierten CoSe_4-Einheiten besteht, die über eine gemeinsame Fläche verknüpft sind. An jedes der Se-Atome ist eine iso-Propyl-Gruppe gebunden, diese besitzt eine mittlere Dealkylierungstendenz. Dazu haben Vorarbeiten gezeigt, daß die Reaktivität des $[Co_2(Se^iC_3H_7)_5]^-$ Anions gegenüber Carbonylen äußerst vielversprechend ist.

Tatsächlich kann bei der Stöchiometrie (4:1:4) im oben genanntem System das $[Co_{11}Se_7(CO)_{10}]^2$ -Anion (**15a**) als $[Ph_4P]_2[Co_{11}Se_7(CO)_{10}]$ synthetisiert werden. Eine Darstellung von **15a** im System $Co_2(CO)_8/Na_2Se_2/Ph_4PCl$ in Analogie zur Synthese von **13a** gelang bisher nicht.

7.1 Synthese der Verbindungen

[Ph₄P]₂[Co₁₁Se₇(CO)₁₀]

Methode a:

In einer Pyrex-Glasampulle (Länge 20 cm, Durchmesser 10 mm) werden 0.040 g (0.05 mmol) $[Me_4N][Co_2(Se^iC_3H_7)_5]$, 0.068 g (0.20 mmol) $Co_2(CO)_8$ und 0.085 g (0.22 mmol) Ph₄PCl sowie 1ml Methanol eingefüllt (s. Abschnitt 3.1). Das Reaktionsgemisch wird im Ofen bei 80 °C drei Tage getempert. Es bilden sich gold-bronze glänzende Nadeln.

Ausbeute: 52 mg (0.024 mmol); 68% bezogen auf $[Me_4N][Co_2(Se^iC_3H_7)_5]$ Elementaranalyse für $C_{58}H_{40}O_{10}Co_{11}P_2Se_7$: (M=2159.79 g/mol) Berechnet: C 32.25 % H 1.87 % O 7.41 % Gefunden: C 32.23 % H 1.86 % O 7.39 % Schwingungsspektrum:

IR v(CO, in KBr): 1980(w), 1986(vs) cm⁻¹

Methode b:

 $0.200 \text{ g} (0.20 \text{ mmol}) [Me_4N][Co_2(Se^1C_3H_7)_5]$ werden mit 10 ml DMF in einem 50-ml-Kolben suspendiert. Dazu werden $0.272 \text{ g} (0.80 \text{ mmol}) Co_2(CO)_8$ gegeben. Dabei ist eine Gasentwicklung zu beobachten. Die Reaktionslösung wird dann ca. 10 Minuten unter Rückfluß gehalten, bevor

0.340 g (0.88 mmol) Ph₄PCl zugegeben werden. Die Lösung wird 10 Minuten gerührt und das Lösungsmittel anschließend unter Vakuum abdestilliert. Der resultierende Feststoff wird in CH₂Cl₂ aufgenommen und mit Diethylether überschichtet. Nach ca.1-2 Tagen fallen gold-bronze glänzende Kristalle aus.

Ausbeute: 51 mg (0.023 mmol); relative Ausbeute: 60% bezogen auf $[Me_4N][Co_2(Se^1C_3H_7)_5]$ Elementaranalyse für $C_{58}H_{40}O_{10}Co_{11}P_2Se_7$: (M=2159.79 g/mol) Berechnet: C 32.25 % H 1.87 % O 7.41 % Gefunden: C 32.23 % H 1.86 % O 7.39 % Schwingungsspektren: IR v(CO, in KBr): 1980(w), 1986(vs) cm⁻¹ IR v(CO, CH₂Cl₂-Film): 1984(s), 1675(m) cm⁻¹

7.2. Ergebnisse der Röntgenstrukturanalyse

[Ph₄P]₂[Co₁₁Se₇(CO)₁₀]

 $[Ph_4P]_2[Co_{11}Se_7(CO)_{10}]$ kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle. Die Gitterkonstanten wurden zu a=14.686(14), b=23.237(23), c=19.375(18) Å und β =94.30(7)° bestimmt. Das Strukturmodell ließ sich mit einer Güte von R=0.0722 anpassen. Weitere Einzelheiten können Tabelle 7.1 entnommen werden.

Summenformel	$C_{58}H_{40}O_{10}P_2Co_{11}Se_7$	
Formelgewicht	2159.79	
Kristallgröße [mm]	ca. 0.66•0.35•0.32	
Meßtemperatur [K]	150	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/n$	
a [Å]	14.686(14)	
b [Å]	23.237(23)	
c [Å]	19.375(18)	
β [°]	94.30(7)	
V [Å ³]	6593.27	
Ζ	4	
$\mu(MoK\alpha) [mm^{-1}]$	1.65	
$D_x [gcm^{-3}]$	2.175	
Meßgerät	Siemens P4RA-Vierkreisdiffraktometer,	
	(Drehanodengenerator, Graphitmonochromator,	
	Szintillationszähler, $\lambda = 0.71073$ Å (MoK α))	
Meßmethode	ω-Scan	
Absorptionskorrektur	empirisch (y-Scan)	
Transmissionsbereich	0.981 - 0.554	
Meßbereich	$4^{\circ} < 2\theta < 48^{\circ} (\pm h, +k, \pm l)$	
Meßgeschwindigkeit	intensitätsabhängig (6 bis 29° min ⁻¹)	
Strukturlösung	SHELXTL PLUS (direkte Methoden)	
Verfeinerung	Kleinste Quadrate (volle Matrix), alle Schweratome	
	anisotrop, H-Atome berechnet und gruppenweise mit	
	gemeinsamen isotropen Temperaturfaktoren verfeinert, ein	
	Skalierungsfaktor, ein isotroper Extinktionsparameter	
Gewichtsschema	$w = [\sigma^{2} (F_{o}) + (0.01 \cdot F_{o})^{2}]^{-1}$	
Zahl der symmetrieunabhängigen		
Reflexe	14406, davon 8387 beobachtet (I>2•σ(I))	
Zahl der Variablen	796	
$R = (\Sigma F_o - F_c) / \Sigma F_o $	0.0722	
$R_{\rm w} = [\Sigma w (F_{\rm o} - F_{\rm c})^2 / \Sigma w F_{\rm o}^2]^{1/2}$	0.0574	

Tabelle 7.1: Daten zur Kristallstrukturanalyse $[Ph_4P]_2[Co_{11}Se_7(CO)_{10}]$ (15)

Abstände:		Winkel:	
Co(2)-Co(3)	2.571(3)	Co(2)-Co(1)-Co(5)	108.1(1)
Co(4)-Co(5)	2.590(3)	Co(2)-Co(1)-Co(5)	108.0(1)
Mittelwert (Co-Co) (Innerhalb der pentagonalen Flächen)	2.576 Å	Mittelwert (Co-Co-Co) 108.0(1) (Innerhalb der pentagonalen Fläche)	
Co(2)-Co(7)	2.556(3)	Co(3)-Co(2)-Co(7)	89.3(1)
Co(3)-Co(8)	2.584(3)	Co(2)-Co(1)-Co(6)	90.3(1)
Mittelwert (Co-Co) (Innerhalb der viereckigen Fläche)	2.571 Å	Mittelwert (Co-Co) (Innerhalb der 90.0(1) viereckigen Fläche)	
Co(7)-Co(11)	2.520(3)	Co(1)-Co(2)-Co(11)	59.1(1)
Co(2)-Co(11)	2.550(3)	Co(2)-Co(3)-Co(11)	59.9(1)
Mittelwert (Co-Co) (Zum zentralen Co)	2.539 Å	Mittelwert (Co-Co-Co) (Zum zentralen Co)	59.5(1)
Se(2)-Co(8)	2.425(3)	Co(6)-Se(2)-Co(7)	63.0(1)
Se(2)-Co(7)	2.458(3)	Co(1)-Se(1)-Co(2)	64.0(1)
Mittelwert µ ₆ Se-Co	2.442 Å		
		Co(1)-Se(1)-Co(3)	116.6(1)
Se(4)-Co(3)	2.334(3)	Co(6)-Se(2)-Co(8)	116.8(1)
Se(5)-Co(4)	2.370(3)		
Mittelwert µ₄Se-Co	2.350 Å	Co(1)-Se(1)-Co(11)	63.5(1)
		Co(6)-Se(2)-Co(11)	63.8(1)

Tabelle 7.2: Ausgewählte Abstände [Å] und Winkel [°] im $[Co_{11}Se_7(CO)_{10}]^{2-}$ Anion (15a)

7.3 Strukturbeschreibung und -diskussion

2.367(3)

2.371(3)

[Ph₄P]₂[Co₁₁Se₇(CO)₁₀]

Mittelwert μ_6 Se-Co(11) 2.369 Å

Se(1)-Co(11)

Se(2)-Co(11)

Die Verbindung $[Ph_4P]_2[Co_{11}Se_7(CO)_{10}]$ (15) besteht aus isolierten $[Co_{11}Se_7(CO)_{10}]^{2-}$ Anionen (15a) und Tetraphenylphosphonium-Kationen im Verhältnis 1:2. 15a ist isostrukturell mit dem tellurhaltigen $[Co_{11}Te_7(CO)_{10}]^{2-}$ Anion (13a), welches in dieser Arbeit in Abschnitt 6.2.3

Co(1)-Se(3)-Co(6)

Co(1)-Se(3)-Co(2)

Co(1)-Se(3)-Co(7)

Co(2)-Se(4)-Co(8)

66.3(1)

67.1(1)

100.9(1)

101.8(1)

beschrieben und diskutiert wird /30/. Ausgewählte Bindungslängen und –winkel von **15a** sind in Tabelle 7.2 aufgeführt.

Das $[Co_{11}Se_7(CO)_{10}]^{2}$ -Anion enthält als Grundgerüst ein innenzentriertes pentagonales Prisma aus elf Cobaltatomen, welches über den zwei pentagonalen und über den fünf quadratischen Flächen mit Selen überbrückt ist. Vervollständigt wird dieses Cobalt-Selen-Gerüst durch terminale Carbonylgruppen, die jeweils an die zehn äußeren Cobaltatome gebunden sind. Jedes der zehn äußeren Co-Atome ist tetraedrisch von zwei μ_4 -Se-, einem μ_6 -Se- und dem CO-Liganden koordiniert. Berücksichtigt man zusätzlich die drei äußeren Se-Atome und das innere Co(11)-Atom, so ist jedes der Co-Atome achtfach koordiniert. Das innere Co(11)-Atom wird von zehn Cobaltatomen umgeben, zusätzlich mit den beiden koordinierenden μ_6 -Se-Atomen hat es die Koordinationszahl 12. Auch im Cobalt-Metall ist die Gesamt-Koordinationszahl 12, allerdings hat hier ein Cobaltatom sechs Nachbarn in gleicher Ebene und je drei in der darüber und darunter liegenden Ebene.

Abbildung 7.1: Das $Co_{11}Se_7$ -Gerüst im $[Co_{11}Se_7(CO)_{10}]^{2^2}$ -Anion (ohne μ_6Se -Atome)

15a ist eine bisher völlig unbekannte Baueinheit und kann nur mit dem in dieser Arbeit neu dargestellten Telluranalogon **13a** verglichen werden (siehe Abschnitt 6.2). Eine Gegenüberstellung der Bindungsabstände und -winkel der Anionen $[Co_{11}Te_7(CO)_{10}]^{2-}$ und $[Co_{11}Se_7(CO)_{10}]^{2-}$ zeigt Tabelle 7.3.

Die Co-Co-Abstände in beiden Metallclustern sind ähnlich lang. Die Differenz des Co-Co(11)-Abstandes in **13a** und **15a** beträgt nur 0.017 Å.

97

Innerhalb der pentagonalen Flächen des Prismas sind die Co-Co-Abstände praktisch gleich (die Differenz 0.006 Å liegt im Fehlerbereich). Dagegen ist innerhalb der quadratischen Flächen der Unterschied der Abstände zwischen **13a** und **15a** durchschnittlich um 0.045 Å am größten. Dies zeigt, daß das $[Co_{11}Se_7(CO)_{10}]^2$ -Anion gegenüber seinem Telluranalogon entlang der fünfzähligen Symmetrieachse gestaucht ist.

Auch der etwas stumpfere Co- μ_4 Se-Co-Winkel (62.7° gegenüber 66.4°) ist eine Folge dieser Stauchung.

Ausgewählte Bindungen	[Co ₁₁ Te ₇ (CO) ₁₀] ²⁻	[Co ₁₁ Se ₇ (CO) ₁₀] ²⁻
und Winkel	13a	15a
Co-Co Innerhalb der pentagonalen Fläche	2.582 Å	2.576 Å
Co-Co Innerhalb der viereckigen Fläche	2.616 Å	2.571 Å
Co-Co* Zentrum	2.556 Å	2.539 Å
Co-Co Durchschnitt	2.581 Å	2.560 Å
Со-µ6-Е	2.579 Å	2.442 Å
Со*-µ6-Е	2.645 Å	2.369 Å
Со-µ4-Е	2.570 Å	2.350 Å
Co-E Durchschnitt	2.582 Å	2.379 Å
Co-C	1.755 Å	1.733 Å
C-O	1.143 Å	1.141 Å
Co-Co-Co Innerhalb der pentagonalen Fläche	108.0°	108.0°
Co-Co-Co Innerhalb der viereckigen Fläche	89.9°	90.0°
Co-Co*-Co	59.6°	59.5°
E-Co*-E	179.7°	179.4°
Co-µ4E-Co"	62.7°	66.4°

Tabelle 7.3: Gegenüberstellung der Bindungslängen und –winkel der Anionen $[Co_{11}Te_7(CO)_{10}]^{2^-}$ und $[Co_{11}Se_7(CO)_{10}]^{2^-}$

Alle Cobalt-Cobalt-Abstände liegen im bindenden Bereich wie auch in $[Co_4Te_2(CO)_{11}]$ (12) (durchschnittlicher Co-Co-Abstand 2.616 Å, zum Vergleich 2.549 Å im $[Co_2(Se^iC_3H_7)_5]^-$ Anion).

Wie zu erwarten ist, unterscheiden sich die Cobalt-Chalcogen-Bindungen in **13a** und **15a** in ihrer Länge erheblich, und zwar durchschnittlich um 0.203 Å, was aus der unterschiedlichen Größe der

Beide Clusteranionen haben einen μ_6 E-Co*- μ_6 E-Winkel von fast 180° (**13a** 179.7(1)°; **15a** 179.4(1)°), der in dieser Form bisher unbekannt ist.