# 1 Einleitung

Die Synthese und Charakterisierung neuer anorganischer Festkörperverbindungen ist ein wichtiger Weg zur Entdeckung bisher noch unbekannter chemischer und physikalischer Phänomene. In der Vergangenheit hat die Untersuchung schwefel-, selen- und tellurhaltiger Festkörperverbindungen nicht nur zu fundamentalen Entdeckungen, sondern auch zu bemerkenswerten technischen Anwendungen und technologischem Wandel geführt /1/ wie z.B.

- Supraleitfähigkeit (PbMo<sub>6</sub>S<sub>8</sub>)
- Photovoltaik (CdTe, CuInSe<sub>2</sub>)
- Elektrolumineszenz (ZnS, CdS)
- Infrarot-Detektoren (Hg<sub>1-x</sub>Cd<sub>x</sub>Te, PbS)
- Thermoelektrik (Bi<sub>2</sub>Se<sub>3</sub>)
- Nichtlineare Optik (AgGaS<sub>2</sub>)
- Materialien für die optische Datenspeicherung (CuTe $_x$ )
- Wiederaufladbare Batterien (MoS<sub>2</sub>, TiS<sub>2</sub>)
- Feststoff-Laser (CdSe)

Solche Verbindungen können in entscheidender Weise zum grundlegenden Verständnis der Zusammenhänge zwischen Kristallstrukturen, spezifischen Bindungsmustern und verschiedenen anderen Eigenschaften beitragen. Clusterkomplexe mit neuartigen Metall-Chalcogen-Gerüsten sind nicht nur als neuartige Ausgangsmaterialien in der Feststoffsynthese von großem Interesse /2a/, sondern auch, weil sie eine Brücke zwischen molekularer Chemie (Organometallischer Chemie, Komplexchemie) und anorganischer Festkörperchemie bilden /2b/.

Lange Zeit wurden die selen- und tellurhaltigen Komplexe vernachlässigt, sie gewinnen aber zunehmend an Bedeutung, weil ihre Chemie grundlegend von der der Sulfide abweichen kann /2c/.

Deshalb gilt das Hauptinteresse dieser Arbeit den polynuclearen selen- und tellurhaltigen Clusterkomplexen des Cobalts, Eisens und Mangans mit dem elektroneutralen Donorliganden Kohlenmonoxid. Die folgende Übersicht (Tabelle 1.1) ist auf bekannte Clusterkomplexe und Komplexionen der allgemeinen Zusammensetzung  $[M_xE_yL_z]$  (M=Co, Fe, Mn; E=S, Se, Te und L=CO, PR<sub>3</sub>) beschränkt. Sie sind nach Größe und Geometrie der Metall-Chalcogen-Baueinheiten, die sie enthalten, unterteilt.

Tabelle 1.1: Bekannte Metall-Chalcogen-Baueinheiten mit der Zusammensetzung  $[M_x E_y L_z]$ mit M = Co, Fe, Mn; E = S, Se, Te und L = CO, PR<sub>3</sub> wobei R = Me, Et, *n*Bu, Ph

#### Metall-Chalcogen-Baueinheit Verbindungen mit entsprechenden Baueinheiten



\*Jede Fläche des M4-Tetraeders wird von einem E-Atom überbrückt, so dass das E4-Gerüst auch einen Tetraeder bildet.

 $M_4E_2$ 



$$\begin{split} & [Fe_4E_2(CO)_{11}], E = S/7^\circ/, Se/7^\circ/\\ & [Co_4E_2(CO)_{10}], E = S/7b/, Te/7c/\\ & [Fe_2Co_2S_2(CO)_{11}]/7d/; [Co_4Te_2(CO)_{11}]/7e/\\ & [Co_4Te_2(CO)_6(PEt_3)_4]/7f/ \end{split}$$

Tabelle 1.1 (weiter)

Metall-Chalcogen-Baueinheit Verbindungen mit entsprechenden Baueinheiten

M6E6\*\*



[Fe<sub>6</sub>S<sub>6</sub>(PEt<sub>3</sub>)<sub>6</sub>]<sup>+</sup>/8a/

\*\*Jedes E-Atom überbrückt zwei M-Atome, so dass M2E2-Rhomben entstehen, die eine "basket"-Form bilden

M6E8\*\*\*



$$\begin{split} & [Co_6E_8(PPh_3)_6], \ E = S/9^\circ/, \ Se/9b/\\ & [Co_6Te_8(PPh_3)_6]/9c/\\ & [Co_6E_8(PPh_3)_6]^+, \ E = S/9d/, \ Se/9^\circ/\\ & [Co_6S_8(CO)_6]/9f/; \ [Co_6Se_8(CO)_6]/9g/; \ [Co_6Se_8(CO)_6]^+/9h/\\ & [Fe_6S_8(PEt_3)_6]^{1+,2+}/9i/; \ [Fe_6Te_8(PMe_3)_6]/9j/ \end{split}$$

\*\*\* Die sechs Dreiecksflächen des M6-Oktaeders sind durch acht E-Liganden überbrückt .

M8E8\*\*\*\*



[Co<sub>8</sub>Se<sub>8</sub>(PPh<sub>3</sub>)<sub>6</sub>]<sup>0,+1</sup>/10a/

\*\*\*\*Das M<sub>8</sub>-Gerüst, das aus zwei kantenverknüpften transständigen quadratischen Pyramiden besteht, wird durch zwei μ<sub>4</sub>-E-Liganden (einmal oberhalb, einmal unterhalb der Ebene) zu zwei kantenverknüpften Oktaedern vervollständigt. Weitere sechs μ<sub>3</sub>-E-Liganden überbrücken sechs Dreiecksflächen der Oktaeder.

#### 1.1 Metall-Chalcogen-Baueinheiten

### 1.1.1 Die M<sub>2</sub>E<sub>2</sub>-Baueinheit

Schon in den siebziger Jahren wurden vor allem von Dahl et al. verschiedene elektroneutrale Clusterverbindungen strukturell untersucht. Die einfachste Baueinheit der Übergangsmetallkomplexe mit Carbonyl- und Chalcogen-Liganden ist die  $M_2E_2(CO)_6$ -Einheit (Abbildung 1.1a). Das darin enthaltene  $M_2E_2$ -Fragment besitzt "Schmetterlings"-Struktur (engl. butterfly) und damit die Symmetrie der Punktgruppe  $C_{2v}$ . Beispiele hierfür sind die neutralen Komplexe der Zusammensetzung [Fe<sub>2</sub>E<sub>2</sub>(CO)<sub>6</sub>], E=S /3a/, Se /3b/, Te /3c/.



Abbildung 1.1: a) Struktur des neutralen Komplexes  $[Fe_2Te_2(CO)_6]$  und b) des  $[Mn(CO)_4$ -Fe $_2Te_2(CO)_6]$ -Anions, die beide die "Schmetterlings-Baueinheit" enthalten

Die M<sub>2</sub>E<sub>2</sub>-Baueinheit kann mit identischen, aber auch mit anderen Einheiten verknüpft werden. Dabei kann die Verknüpfung der Chalcogenatome der M<sub>2</sub>E<sub>2</sub>-Einheit an ein und dasselbe Atom oder jeweils an unterschiedliche Atome erfolgen. An ein und dasselbe Metallatom sind die Chalcogenide folgender Verbindungen gebunden: [FePPh<sub>3</sub>(CO)<sub>3</sub>-Fe<sub>2</sub>Te<sub>2</sub>(CO)<sub>6</sub>] /3d/, [Mn(CO)<sub>4</sub>-Fe<sub>2</sub>Te<sub>2</sub>(CO)<sub>6</sub>]<sup>-</sup>/3e/ (siehe auch Abbildung 1.1b)



Abbildung 1.2: Struktur des  $[Fe(CO)_2{Fe_2Te_2(CO)_6}_2]^2$ -Anions

Die Komplexe  $[\underline{Fe}(CO)_2 \{Fe_2Te_2(CO)_6\}_2]^{2-}/3f/$  (Abbildung 1.2) und  $[\underline{Ni}\{Fe_2S_2(CO)_6\}_2]/3g/$  folgen ebenfalls dem oben genannten Bauprinzip, sind aber auch gleichzeitig Beispiele für die Möglichkeit, zwei "Schmetterlings"-Einheiten über ein Metallatom miteinander zu verknüpfen.



Abbildung 1.3: a) Struktur des  $[Fe_2S(CO)_6]_2^{2-}$ -Anions und b) des  $[Fe_2(Te_2)Te(CO)_6]^{-}$ -Anions

Das  $[Fe_2(Te_2)Te(CO)_6]^-$ Anion /3h/ (Abbildung 1.3b) besitzt eine besonders interessante Struktur, wobei ein Chalcogenid-Atom des Fe<sub>2</sub>Te<sub>2</sub>-Fragments formal durch eine Ditellurid-Einheit ersetzt wurde. Solche Dichalcogenidbrücken können nicht nur isoliert vorkommen, sondern auch zwei "Schmetterlings"-Einheiten miteinander verknüpfen wie die folgenden Beispielen zeigen  $[{Fe_2E(CO)_6}_2(E_2)]^{2-}E=S/3i/, Se/3j/ (Abbildung 1.3a).$ 

Eine Kombination dreier "Schmetterlings"-Einheiten ist gleichermaßen möglich, wie es das  $[Fe_8Te_6(CO)_{24}]^{2-}$ -Komplexanion zeigt /3k/. Die mittlere "Schmetterlings"-Einheit des  $[\underline{Fe_2Te_2(CO)_6}-Fe(CO)_3-\underline{Fe_2Te_2(CO)_6}-Fe(CO)_3-\underline{Fe_2Te_2(CO)_6}]^{2-}$ -Anions ist über zwei Metallatome (nicht nur über eines) an die beiden anderen Einheiten gebunden (Abbildung 1.4). Unseres Wissens nach ist es bisher die einzige Eisen-Verbindung, die eine "Schmetterlings"-Einheit besitzt, die über zwei Metallatome an weitere Metall-Chalcogen-Einheiten geknüpft ist.



Abbildung 1.4: Struktur des  $[Fe_8Te_6(CO)_{24}]^{2^-}$ -Anions mit drei "Schmetterlings"-Einheiten (ohne Carbonylgruppen)

Von Cobalt und Mangan sind keine solchen  $M_2E_2$ -"Schmetterlings"-Einheiten bekannt. Cobalt bildet planare  $Co_2E_2$ -Vierringe, die in Verbindungen wie  $[Co_2E_2(PMe_3)_6]$  (E = S, Se, Te) vorliegen /3m/. Mangan-Chalcogen-Verbindungen sind insgesamt nur wenig erforscht. Bisher sind nur wenige Verbindungen mit einer gemischten Chalcogen/Carbonyl-Ligandensphäre bekannt:  $[Mn_2(Se_2)_2(CO)_6]^{2^-}$  und  $[Mn_2(Se_4)_2(CO)_6]^{2^-}/3n/$  (Abbildung 1.5) sind Beispiele die Polychalcogenidionen enthalten. Sowohl von Cobalt wie auch von Mangan existieren Dimere, die linear über eine Dichalcogenidbrücke zwei Metallatome aneinander binden:  $[MnTe(CO)_2(PEt_3)_2]_2$  /3o/ und  $[CoTe(CO)_2(PEt_3)_2]_2$ /3p/.



Abbildung 1.5: Struktur des [Mn<sub>2</sub>(Se<sub>4</sub>)<sub>2</sub>(CO)<sub>6</sub>]<sup>2-</sup>-Anions

#### 1.1.2 Die M<sub>3</sub>E- und die M<sub>3</sub>E<sub>2</sub>-Baueinheit

Klassische Komplexe mit Carbonyl und Chalcogen-Liganden sind die trinuclearen Komplexe der Zusammensetzung  $[M_3E(CO)_9]^x$  (M = Fe, Co; E = S, Se, Te; x = 0, +1) /4a-d/. Sie bestehen aus drei M(CO)<sub>3</sub>-Einheiten, die die Ecken eines Dreiecks mit Metall-Metall-Bindungen besetzen (Abbildung 1.6a). Das Metalldreieck wird durch einen  $\mu_3$ -E-Liganden zu einer trigonalen Pyramide ergänzt.



Abbildung 1.6: Struktur der Komplexe a)  $Co_3S(CO)_9$  und b) [{ $Co_3S(CO)_7$ }<sub>2</sub>(S<sub>2</sub>)]

Werden statt einem zwei  $\mu_3$ -E-Liganden an das Metalldreieck gebunden, kommt man zu der Verbindungsklasse [M<sub>3</sub>E<sub>2</sub>(CO)<sub>9</sub>]. Diese Komplexe unterscheiden sich von denen der Klasse [M<sub>3</sub>E(CO)<sub>9</sub>] formal dadurch, daß eine der drei Metall-Metall-Bindungen geöffnet wird und so ein an einer Seite offenes Metalldreieck entsteht (Abbildung 1.7). Die Chalcogenbrücken ergänzen das Metalldreieck nunmehr zu einer verzerrten trigonalen Bipyramide. Als erster Vertreter dieser Reihe wurde die Verbindung [Fe<sub>3</sub>Se<sub>2</sub>(CO)<sub>9</sub>] von Dahl et al. strukturell untersucht, nachdem die Synthesewege für E = S /5a/, Se /5b/ und Te /5c/, /5d/ bereits 1958 von Hieber et al. erforscht wurden.

Bei der Öffnung einer weiteren Metall-Metall-Bindung, z. B. wenn statt einer  $Fe(CO)_3$ -Einheit eine  $Fe(CO)_4$ - oder Mn(CO)\_4-Einheit in der Verbindung eingebaut wird, also die Valenzelektronenzahl von 50 auf 52 ansteigt, kommt es formal zu den in Abschnitt 1.1.1 beschriebenen M<sub>2</sub>E<sub>2</sub>-,,Schmetterlings"-Einheiten.



Abbildung 1.7: Struktur des Komplexes [Fe<sub>3</sub>Se<sub>2</sub>(CO)<sub>9</sub>]

Weitere Arbeiten zu trinuclearen Eisen-Komplexen führten zu geladenen Clusterionen  $[Fe_3E(CO)_9]^{2-}$  mit E = S /4e/, Se /4f/ und Te /4f/. Die Strukturen dieser reduzierten Cluster entsprechen denen der oben beschriebenen M<sub>3</sub>E(CO)<sub>9</sub>-Verbindungen. Interessant ist, daß zum Beispiel die Synthese des  $[Fe_3Te(CO)_9]^{2-}$ -Anions über das Zwischenprodukt  $[{Fe(CO)_4}_3Te]^{2-}$  verläuft, welches keine einzige Metall-Metall-Bindung enthält.

Die dreikernigen Baueinheiten  $[M_3E(CO)_9]^x$  können auch miteinander oder mit anderen Einheiten verknüpft werden, wie die Clusterkomplexe  $[{Co_3S(CO)_7}_2(S_2)]/4g/$  und  $[{Co_3Se(CO)_7}_2(Se_2)]/4h/$  (Abbildung 1.6b) zeigen. In diesen Clustern sind die Co<sub>3</sub>S- bzw. Co<sub>3</sub>Se-Fragmente durch eine Dichalcogenid-Brücke miteinander verbunden.

Von Mangan sind weder  $M_3E_2$ -noch  $M_3E_2$ -Baueinheiten mit E = Se bzw. Te bekannt. Nur über die Synthese einer schwefelhaltigen Verbindung wurde bisher berichtet [PPh<sub>3</sub>Me][Mn<sub>3</sub>S<sub>2</sub>(CO)<sub>9</sub>]/5e/.

#### 1.1.3 Die M<sub>4</sub>E<sub>2</sub>- und die M<sub>4</sub>E<sub>4</sub>- Baueinheit

Stehen vier Metallatome zum Aufbau eines Clusters zur Verfügung, können sie - je nach Anzahl der Valenzelektronen in der Baueinheit - Polyeder oder Polygone ausbilden, z. B. Tetraeder, Quadrate, Rechtecke oder Rauten. Besonders interessant aus bioanorganischer Sicht sind Clusterkomplexe mit cubanartigen  $M_4E_4$ -Gerüsten wie z.B.  $[Co_4Se_4(PPh_3)_4]$  /6a/ und  $[Fe_4Te_4(PEt_3)_4]$ /6b/ (Abbildung 1.8). Einen ähnlichen Aufbau besitzt das aktive Zentrum der 4Fe-4S-Ferredoxine, die an nahezu allen komplexen biologischen Redoxreaktionen beteiligt sind, die starke Reduktionsmittel benötigen wie z. B. Photosynthese, Atmung oder Stickstoff-Fixierung.



Abbildung 1.8: Struktur des  $[Fe_4Te_4(PEt_3)_4]$ -Komplexes (ohne Phosphan-Reste)

Mit dem  $[{Fe_4Te_4(CO)_{10}}_2(Te_2)]^{2-}$ -Anion /6c/ existiert eine Verbindung, die aus zwei Fe\_4Te\_4-Einheiten aufgebaut ist. Diese werden durch ein Ditelluridion aneinander gebunden (siehe Abbildung 1.9). Üblicherweise besitzen die M<sub>4</sub>E<sub>4</sub>-Baueinheiten nicht die perfekte Cubansymmetrie, Punktgruppe T<sub>d</sub>, sondern sind verzerrt und haben eher die D<sub>2d</sub>-Symmetrie. Die genaue Größe der Fe-Fe-Wechselwirkung ist nicht bekannt, jedoch konnten magnetische Messungen dieser Cluster wesentliche Anteile antiferromagnetischer Kopplung zeigen, die eine Wechselwirkung zwischen den Eisenatomen bestätigen /6e/.



Abbildung 1.9: Struktur des  $[{Fe_4Te_4(CO)_{10}}_2(Te_2)]^2$ -Anions (ohne Carbonylgruppen)

Falls die vierkernigen Clusterkomplexe mehr als 62 Gerüstelektronen besitzen, enthalten sie zumeist ebene Metallrechtecke. Das zentrale Gerüst der vierkernigen Komplexe  $[M_4E_2(CO)_{10}]$  bzw.  $[M_4E_2(CO)_{11}]$  besteht aus einem Metallrechteck, das oberhalb und unterhalb von je einem  $\mu_4$ -E-Liganden überbrückt wird. In Abhängigkeit von den Liganden und der Elektronenbilanz ist das Quadrat zum Rechteck gestreckt oder zu einem Trapez verzerrt. Ein Beispiel für eine trapezähnliche Verzerrung durch drei Carbonylbrücken findet man in  $[Fe_4(CO)_{11}(\mu_4-E)_2](E=S/7a/, Se/7a/)$  (Abbildung 1.10). Weitere Beispiele mit einer  $M_4E_2$ -Baueinheit sind die Komplexe  $[Co_4(CO)_{10}(\mu_4-E)_2](E=S/7b/, Te/7c/)$  sowie der Gemischtmetall-Cluster  $[Fe_2Co_2(CO)_{11}(\mu-S_2)]/7d/.$ 

Solche M<sub>4</sub>E<sub>2</sub>-Baueinheiten sind in Mangan-Komplexen bislang nicht bekannt.



Abbildung 1.10: Struktur des Clusterkomplexes [Fe<sub>4</sub>(CO)<sub>11</sub>( $\mu$ <sub>4</sub>-S)<sub>2</sub>]

#### 1.1.4 Die M<sub>6</sub>E<sub>6</sub>-Baueinheit

Der  $[Fe_6S_6(PEt_3)_6]^+$ -Komplex ist der einzige M<sub>6</sub>E<sub>6</sub>-Komplex mit reiner Phosphanumgebung /8a/, dabei nehmen die Eisen- und Schwefelatome eine Art "basket"-Struktur ein. Dagegen sind Verbindungen, die Thiolat und Halogenid neben Phosphanen als terminalen Liganden enthalten, sehr weit verbreitet. Solche Prisman-Cluster des Typs  $[Fe_6S_6L_6]^{2-,3}$  /8b/ sind topologisch mit dem  $[Fe_6S_6(PEt_3)_6]^+$ -Komplex (schematischer Aufbau siehe Tabelle 1.1) verwandt.

Weder Mangan noch Cobalt bilden solche "basket"-Cluster.

### 1.1.5 Die M<sub>6</sub>E<sub>8</sub>-Baueinheit

Die chevrelähnlich aufgebauten Clusterkomplexe mit  $M_6E_8$ -Gerüsten haben Oktaedersymmetrie  $O_h$ . Die Dreiecksflächen eines  $M_6$ -Oktaeders sind durch acht  $\mu_3$ -E-Liganden überbrückt. Zur Vervollständigung der verzerrt tetraedrischen Koordinationssphäre ist an jedes Metallatom terminal ein PR<sub>3</sub>-Ligand gebunden (Abbildung 1.11). Beispiele für neutrale und ionische Verbindungen sind  $[Co_6E_8(PPh_3)_6](E=S/9a/, Se/9b/, [Co_6Te_8(PEt_3)_6]/9c/, bzw. <math>[Co_6E_8(PPh_3)_6]^+$  (E=S/9d/, Se/9°/. Allerdings sind bisher nur zwei Komplexe mit Carbonylliganden publiziert:  $[Co_6S_8(CO)_6]/9f/$ , und  $[Co_6Se_8(CO)_6]^x$  (x=0 /9g/, +1/9h/. Anionische Komplexe mit Co<sub>6</sub>E<sub>8</sub>-Gerüsten und terminalen Carbonylliganden sind in der Literatur nicht erwähnt.

Eisen bildet keine  $M_6E_8$ -Komplexe mit Carbonylliganden, aber solche mit Phosphanliganden (siehe Tabelle 1.1). Von Mangan sind keine chevrelähnlich aufgebauten Clusterkomplexe bekannt.



Abbildung 1.11: Struktur des Komplexes  $[Co_6Te_8(PEt_3)_6]$  (ohne Ethylgruppen)

#### 1.1.6 Die M<sub>8</sub>E<sub>8</sub>-Baugruppe

Achtkernige Komplexe mit geschlossenen Fe<sub>8</sub>E<sub>6</sub>- und Co<sub>8</sub>E<sub>6</sub>-Käfiggerüsten und terminalen Neutralliganden sind bis heute noch unbekannt, obwohl diese Baueinheit beim Nickel gefunden wird/10b/. In der Eisen- und Cobalt-Komplexchemie konnten jedoch verwandte Verbindungen mit terminalen Iod- (Fe) bzw. Thiolatresten (Co) /10c/ synthetisiert werden. Die bekannten achtkernigen Chalcogen-Neutralligand-Verbindungen des Cobalts enthalten dagegen M<sub>8</sub>-Polyeder, die aus zwei kantenverknüpften, transständigen quadratischen M<sub>5</sub>-Pyramiden bestehen (Abbildung 1.12). Beispiele sind [Co<sub>8</sub>Se<sub>8</sub>(PPh<sub>3</sub>)<sub>6</sub>][Co<sub>6</sub>Se<sub>8</sub>(PPh<sub>3</sub>)<sub>6</sub>] und [Co<sub>8</sub>Se<sub>8</sub>(PPh<sub>3</sub>)<sub>6</sub>]<sup>+</sup>/10a/.



Abbildung 1.12: Struktur des Cobaltgerüstes im [Co<sub>8</sub>Se<sub>8</sub>(PPh<sub>3</sub>)<sub>6</sub>]<sup>-</sup>Anion

## 1.1.7 Weitere bekannte Baueinheiten

Chalcogenkomplexe des Eisens, Mangans und Cobalts mit einer Nuklearität größer als acht sind bis auf [Co<sub>9</sub>Se<sub>11</sub>(PPh<sub>3</sub>)<sub>6</sub>] /11a/ bisher nicht synthetisiert worden. Diese neunkernige Verbindung enthält zwei flächenverknüpfte Metalloktaeder (Abbildung 1.13).



Abbildung 1.13: Cobaltgerüste im Vergleich : a) Flächenverknüpfte Cobaltoktaeder im [Co<sub>9</sub>Se<sub>11</sub>(PPh<sub>3</sub>)<sub>6</sub>]-Cluster b) Cobaltoktaeder im [Co<sub>6</sub>Te<sub>8</sub>(PEt<sub>3</sub>)<sub>6</sub>]-Cluster

## **1.2 Metallcarbonyle**

Ausgangsverbindungen für die Synthesen neuer Clusterkomplexe sollen die entsprechenden Metallcarbonyle sein. Deshalb soll hier kurz auf bekannte Metallcarbonyle des Mangans, Eisens und Cobalts eingegangen werden, nicht nur weil sie als Startmaterialien für die Synthesen neuer Clusterkomplexe dienen, sondern auch weil sie als Nebenprodukte anfallen können. Die folgende Tabelle stellt die bekannten neutralen Metallcarbonyle neben den dazugehörigen Carbonylmetallat-Anionen und Metallwasserstoffverbindungen vor.

| Metallcarbonyle,                   | Lit.  | Carbonylmetallate      | Lit.  | Carbonylhydride                      | Lit.  |
|------------------------------------|-------|------------------------|-------|--------------------------------------|-------|
| Mn <sub>2</sub> (CO) <sub>10</sub> | /12a/ | $[Mn(CO)_{r}]^{r}$     | /12i/ | [HMn(CO) <sub>2</sub> ]              | /101/ |
| 11112(00)10                        | /124/ | $[Mn(CO)_{l}]^{3}$     | /12y/ |                                      | /12K/ |
|                                    |       | $[Mn_2(CO)_9]^{2-}$    | /12x/ |                                      |       |
| Fe(CO) <sub>5</sub>                | /12b/ | $[Fe(CO)_4]^{2-}$      | /12x/ | [HFe(CO) <sub>4</sub> ] <sup>-</sup> | /12x/ |
| Fe <sub>2</sub> (CO) <sub>9</sub>  | /12c/ | $[Fe_2(CO)_8]^{2-}$    | /12x/ | $[H_2Fe(CO)_4]$                      | /12x/ |
| $Fe_3(CO)_{12}$                    | /12d/ | $[Fe_3(CO)_{11}]^{2-}$ | /12i/ | $[HFe_3(CO)_{11}]^{2-}$              | /12x/ |
|                                    |       | $[Fe_4(CO)_{13}]^{2-}$ | /12x/ |                                      |       |
|                                    |       | $[Fe_6(CO)_{18}]^{2-}$ | /12x/ |                                      |       |
| Co <sub>2</sub> (CO) <sub>8</sub>  | /12e/ | $[Co(CO)_4]^-$         | /12x/ | [HCo(CO) <sub>4</sub> ]              | /12x/ |
| Co <sub>4</sub> (CO) <sub>12</sub> | /12f/ | $[Co(CO)_3]^{3-}$      | /12x/ |                                      |       |
| Co <sub>6</sub> (CO) <sub>16</sub> | /12g/ | $[Co_3(CO)_{10}]^{-1}$ | /12h/ |                                      |       |
|                                    |       | $[Co_6(CO)_{15}]^{2-}$ | /12x/ |                                      |       |
|                                    |       | $[Co_6(CO)_{14}]^{4-}$ | /12x/ |                                      |       |

Tabelle 1.2: Bekannte Metallcarbonyle des Mangans, Eisens und Cobalts, sowie entsprechende Carbonylmetallate und Carbonylwasserstoffverbindungen (Carbonylhydride)

### 1.3 Metall-(Poly-)Chalcogenide

Bei der Synthese neuer Metall-Chalcogenid-Verbindungen mit Carbonylliganden können auch bereits bekannte Verbindungen der entsprechenden Metalle mit reiner Polychalcogenidumgebung entstehen. Bisher sind aber nur wenige solcher Anionen bekannt.

Nur ein einziges Mangan-Polyselenid-Anion  $[Mn(Se_4)_2]^{2-/13a/}$  ist bisher veröffentlicht. Es besteht aus zwei Se<sub>4</sub>-Ringen, die an das Manganatom gebunden sind (siehe Abbildung 1.14). Mit Cobalt ist ebenfalls nur ein  $[Co_3(Se_4)_6]^{3-}$ -Anion /13b/ bekannt.



Abbildung 1.14: Struktur des [Mn(Se<sub>4</sub>)<sub>2</sub>]<sup>2-</sup>-Anions

Eisen bildet zwei bekannte (Poly-)selenide. Einerseits das  $[Fe_2(Se)_2(Se_5)_2]^{2-}$ -Anion/13c/, in welchem zwei Fe(III)-Zentren tetraedrisch durch Selenide koordiniert sind, zu diesem Anion existiert auch ein Schwefel-Analogon/13d/. Andererseits bildet Eisen das Riesencluster-Anion  $[Na_9Fe_{20}Se_{38}]^{9-}$ /13e/, welches aus aneinander geketteten Fe<sub>2</sub>Se<sub>2</sub>-Einheiten aufgebaut ist.

Nur ein einziges eisenhaltiges (Poly-)tellurid wird in der Literatur erwähnt, das  $[Fe_{14}Te_{22}]^{6}$ -Anion /13f/. Weder Mangan noch Cobalt bilden bisher Polytelluride.