Über metallreiche Halogenide und Chalkogenide früher Übergangsmetalle: Synthesen, Strukturen, Eigenschaften

Vom Fachbereich 6 (Chemie–Geographie)

der

Gerhard-Mercator-Universität-GH Duisburg

zur Erlangung der venia legendi im

Lehrgebiet ANORGANISCHE CHEMIE

genehmigte Habilitationsschrift

von

Dr. rer. nat. Martin Köckerling

aus

Olsberg

Genehmigt am:

16. Februar 2001

Die experimentellen und theoretischen Untersuchungen, die zu den in der vorliegenden Arbeit zusammengestellten Ergebnissen geführt haben, wurden in der Zeit von November 1994 bis Januar 2000 im Fachbereich 6, Fachgebiet Festkörperchemie im Institut für Synthesechemie der Gerhard-Mercator-Universität GH Duisburg, sowie während zweier Aufenthalte im Arbeitskreis von Prof. Dr. J. D. Martin an der North Carolina State Unversity (Raleigh NC, USA) im Juni 1996 und November 1998 durchgeführt.

> Meinem verehrten Mentor und Lehrer, Herrn Prof. Dr. G. HENKEL möchte ich herzlichst für all seine Unterstützung, Diskussionsbereitschaft und Hilfe danken.

Inhaltsverzeichnis

1	Μ	otivation und Hintergrund	15
2	A	llgemeines und experimentelle Methoden	17
	2.1	Allgemeines	17
	2.2	Präparative Methoden	17
		2.2.1 Allgemeine Voraussetzungen	17
		2.2.2 Käuflich erworbene Ausgangsverbindungen	18
		2.2.3 Präparation und Reinigung der Ausgangsverbindungen	18
		2.2.4 Festkörperchemische Cluster-Synthesen	21
		2.2.5 Lösungsmittelchemische Cluster-Umsetzungen	22
	2.3	Einkristall-Röntgenstrukturanalysen	22
	2.4	Röntgenpulveruntersuchungen nach der Guinier-Methode	23
	2.5	Chemische Analysen	24
	2.6	Magnetische Untersuchungen	24
	2.7	Berechnung elektronischer Struktur en – Bandstrukturrechnungen $\ . \ .$	25
3	R	eduzierte Zirconiumhalogenide	26
	3.1	Stand der Forschung	26
		3.1.1 Struktursystematik	26
		3.1.2 Bindungsverhältnisse	34
	3.2	Forschungsziele	38
	3.3	$Gemischthalogenid-[(Zr_6Z)(Cl,I)_{12}]-Verbindungen \dots \dots \dots \dots \dots \dots$	39
		3.3.1 Experimentelle Einzelheiten	39
		3.3.1.1 Synthesen	39
		3.3.1.2 Röntgenstrukturanalysen	39
		3.3.2 Ergebnisse und Diskussion	42
	3.4	Gemischthalogenid- $[(Zr_6Z)(Cl,I)_{13}]$ -Verbindungen	51
		3.4.1 $[(\operatorname{Zr}_6 B)(\operatorname{Cl}_{2/2}^{i-i}\operatorname{Cl}_{6/3}^{a-a-a}(\operatorname{Cl},I)_{10}^i]$	51
		3.4.1.1 Experimentelle Einzelheiten	51
		3.4.1.1.1 Synthesen	51
		3.4.1.1.2 Röntgenstrukturanalysen	51
		3.4.1.2 Ergebnisse und Diskussion	52
		3.4.2 $[(\mathbf{Zr}_{6}\mathbf{B})\mathbf{Cl}_{2/2}^{i-i}\mathbf{I}_{6/3}^{a-a-a}(\mathbf{Cl},\mathbf{I})_{10}^{i}]$	62

3.4.2.1	Experim	entelle Einzelheiten	. 62
3.4.2	2.1.1 Sy	$\operatorname{vnthesen}$. 62
3.4.2	2.1.2 Rö	${ m bintgenstrukturanalysen}$. 62
3.4.2	2.1.3 Cl	hemische Analyse	. 66
3.4.2.2	Ergebnis	se und Diskussion	. 66
3.5 Gemischthal	ogenid-[(Z	Zr_6Z)(Cl,I) ₁₄]-Verbindungen	. 76
3.5.1 A[(Zr _e	$_{6/3}^{B} I_{6/3}^{a-a-a}$	$(\mathrm{Cl},\mathrm{I})_{12}^i]$. 76
3.5.1.1	Experim	entelle Einzelheiten	. 76
3.5.1	l.1.1 Sy	$\operatorname{vnthesen}$. 76
3.5.1	1.1.2 Rö	öntgenstrukturanalyse von $\mathrm{Na}[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{10.9}\mathrm{I}_{3.1}]$. 76
3.5.1	l.1.3 Rö	öntgenstrukturanalyse von $\mathrm{Sr}_{0.5}[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{11.3}\mathrm{I}_{2.7}]$.	. 78
3.5.1	L.1.4 Cl	hemische Charakterisierung	. 78
3.5.1.2	Ergebnis	se und Diskussion	. 81
3.5.2 A[(Zr _e	$_{3}\mathrm{B})\mathrm{I}_{2/2}^{a-i}\mathrm{I}_{2/2}^{i-j}$	${}^{a}_{2}\mathrm{I}^{a-a}_{4/2}(\mathrm{Cl},\mathrm{I})^{i}_{10}]$. 89
3.5.2.1	Experim	$entelle Einzelheiten \dots \dots \dots \dots \dots \dots \dots \dots$. 89
3.5.2	2.1.1 Sy	$vnthesen \ldots \ldots$. 89
3.5.2	2.1.2 Rö	$\label{eq:construction} \begin{tabular}{lll} \beg$. 89
3.5.2	2.1.3 Rö	öntgenstrukturanalyse von	
	\mathbf{Cs}	$S[(Zr_6B)Cl_{2.2}I_{11.8}]$. 91
3.5.2.2	Ergebnis	se und Diskussion	. 91
3.6 Gemischthal	ogenid-[(Z	Zr_6Z)(Cl,I) ₁₅]-Verbindungen	. 99
3.6.1 Exper	$\operatorname{imentelle}$	Einzelheiten	. 99
3.6.1.1	Synthese	n	. 99
3.6.1.2	Röntgens	strukturanalyse von $Cs_{1,3}[(Zr_6B)Cl_{15}]$. 100
3.6.1.3	Röntgens	strukturanalyse von $Cs_3[ZrCl_5][(Zr_6B)Cl_{15}]$. 100
3.6.1.4	Röntgens	strukturanalyse von	
	$\mathrm{Cs}_3[\mathrm{ZrCl}$	$_{5}][(\mathrm{Zr}_{6}\mathrm{B})\mathrm{Cl}_{14.6}\mathrm{I}_{0.4}]$. 100
3.6.1.5	Röntgens	strukturanalyse von $\operatorname{Cs}_2[(\operatorname{Zr}_6B)\operatorname{Cl}_{12.1}I_{2.9}]$. 103
3.6.1.6	Röntgens	strukturanalyse von $Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}]$. 103
3.6.1.7	Röntgens	strukturanalyse von $Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}]$. 106
3.6.2 Ergeb	nisse und	Diskussion	. 106
3.6.2.1	$Cs_{1.3}[(Zr)]$	$_{6}\mathrm{B})\mathrm{Cl}_{15}]$. 109
3.6.2.2	$Cs_3[ZrCl$	$_{5}][(Zr_{6}B)Cl_{15}] \text{ und } Cs_{3}[ZrCl_{5}][(Zr_{6}B)Cl_{14.6}I_{0.4}]$. 115

3.6.2.3	$Cs_2[(Zr_6B)Cl_{12.1}I_{2.9}], Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}] $ und	
	$Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}]$	9

4	Ne	eue	molel	kulare	Cluster-Verbindungen	aus	Festkörper-
\mathbf{Pr}		ecurs	orn				127
	4.1	Neue	molek	ulare Ziı	coniumverbindungen		127
		4.1.1	Stand	d der Fo	rschung		127
		4.1.2	Forse	hungszie	le		
		4.1.3	Expe	rimentel	le Einzelheiten		129
		4	.1.3.1	Festkö	rperchemische Cluster-Synthes	sen	129
		4	.1.3.2	Excisio	onsexperimente		130
		4	.1.3.3	Synthe	se von $(1\text{-Et-3-Me-Im})_4[(Zr_6B$	$e)Br_{18}]$	131
		4	.1.3.4	Synthe	se von $(1-\text{Et-}3-\text{Me-Im})_4[(\text{Zr}_6\text{Fe}$	$\mathrm{e})\mathrm{Br}_{18}]$	131
		4	.1.3.5	Synthe	se von $[Ph_4P]_6[(Zr_6C)Br_{18}][Zr]$	Br_6].	131
		4	.1.3.6	Röntge	enstrukturanalyse von		
				(1-Et-3	$B-Me-Im)_4[(Zr_6Z)Br_{18}] (Z = Be_{18})$	e, Fe) .	132
		4	.1.3.7	Röntge	enstrukturanalyse von		
				$[Ph_4P]$	$_{6}[(\mathrm{Zr}_{6}\mathrm{C})\mathrm{Br}_{18}][\mathrm{Zr}\mathrm{Br}_{6}]$		132
		4.1.4	Ergel	bnisse ur	nd Diskussion		132
		4	.1.4.1	Löslich	keitsverhalten von Zr-Cluster-	Verbing	lungen 132
		4	.1.4.2	(1-Et-3	$\text{B-Me-Im})_4[(\text{Zr}_6\text{Z})\text{Br}_{18}], \text{ Z} = \text{Be}$	e, Fe .	135
		4	.1.4.3	$[Ph_4P]$	$_{5}[(\mathrm{Zr}_{6}\mathrm{C})\mathrm{Br}_{18}][\mathrm{Zr}\mathrm{Br}_{6}]$		140
	4.2	Ein r	neuer h	ochsymr	netrischer Eisen-Cuban-Cluste	er	143
		4.2.1	Expe	rimentel	le Einzelheiten		143
		4	.2.1.1	Synthe	se von $[K_4(FeCl_4)(C_{12}H_{24}O_6)$	$_4][\mathrm{Fe}_4\mathrm{S}_4$	Cl_4] 143
		4	.2.1.2	Röntge	enstrukturanalyse von		
				$[K_4(Fe$	$Cl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]$.		143
		4.2.2	Ergel	bnisse ur	d Diskussion		145
5	\mathbf{Se}	ltener	dmeta	allhalog	enide		149
	5.1	Stand	d der F	orschung	ý		149
	5.2	Forse	hungsz	ziele			156
	5.3	Expe	riment	elle Einz	$elheiten \ldots \ldots \ldots \ldots \ldots \ldots$		157

		5.3.1	Berechnung der Elektronenstrukturen monokliner SE_3I_3Z -	
			Verbindungen	. 157
ļ	5.4	Ergeb	onisse und Diskussion	. 159
		5.4.1	Strukturvariationen innerhalb der monoklin kristallisierenden	
			SE_3I_3Z -Verbindungen	. 159
		5.4.2	Bandstrukturuntersuchungen	. 162
		5.4.3	Ausblick	. 173
6	Μ	etallre	iche Sulfide	175
(5.1	Stand	der Forschung	. 175
(5.2	Forscl	hungsziele	. 177
(<u>5.3</u>	Exper	rimentelle Einzelheiten	. 178
		6.3.1	Synthesen	. 178
		6.3.2	Messung der elektrischen Leitfähigkeit	. 179
		6.3.3	Messungen der magnetischen Suszeptibilität	. 179
		6.3.4	Berechnung der elektronischen Bandstruktur	. 181
(3.4	Ergeb	nisse und Diskussion	. 182
		6.4.1	Synthese und Phasenverteilung	. 183
		6.4.2	Strukturelle Eigenschaften	. 184
		6.4.3	Elektrische Leitfähigkeitsmessungen	. 186
		6.4.4	Magnetische Eigenschaften	. 188
		6.4.5	Ergebnisse elektronischer Bandstrukturberechnungen \ldots .	. 190
7	Zu	Isamm	enfassung und Ausblick	195
	7.1	Zusan	nmenfassung	. 195
	7.2	Ausbl	ick	. 201
8	Lis	ste de	r aus diesen Arbeiten bisher hervorgegangenen wisse	n-
	\mathbf{scl}	haftlicl	hen Publikationen	204
9	Lis	ste der	erstmalig im Rahmen dieser Arbeiten synthetisierten un	ıd
	sti	uktur	ell charakterisierten Verbindungen	206
10	Li	teratu	rverzeichnis	208
Da	ank			227

Abbildungsverzeichnis

1	Aufbau eines $[(Zr_6Z)X_{12}^iX_6^a]$ -Clusters mit Z-zentrierter oktaedrischer	
	Metalleinheit	27
2	Schematische Darstellung der möglichen Verknüpfungsmodi von	
	$[(\mathrm{Zr}_6\mathrm{Z})\mathrm{X}_{12}^i]$ -Clustern	29
3	$[001]\mbox{-}Ansicht$ eines Ausschnitts der Struktur von $Rb_5[(Zr_6Be)Br_{15}]$	30
4	MO-Wechselwirkungsdiagramm eines leeren $\mathrm{Zr}_6\mathrm{X}_{18}$ -Clusters mit ei-	
	nem Hauptgruppenelementatom [16]	34
5	MO-Wechselwirkungsdiagramm eines leeren $[Zr_6X_{18}]$ -Clusters mit ei-	
	nem Nebengruppenelementatom [16]	36
6	Ansicht der $[(\mathbf{Zr}_6\mathbf{Z})(\mathbf{Cl},\mathbf{I})_6^i\mathbf{I}_{12}]$ -Cluster in $[(\mathbf{Zr}_6\mathbf{Be})\mathbf{Cl}_{1.7}\mathbf{I}_{10.3}]$ und	
	$[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{1.3}\mathrm{I}_{10.7}].$	43
7	[110]-Ausschnitt der rhomboedrischen $[(Zr_6Z)(X,X')_6^iX_6]$ -Struktur .	45
8	Schematische Darstellung der inter-Cluster-Verknüpfung in der	
	$[(\mathrm{Zr}_6\mathrm{Z})\mathrm{Cl}_{13}]$ -Struktur	54
9	[001]-Projection der Netzwerk-Struktur von $[(Zr_6B)Cl_{11.5}I_{1.5}]$	55
10	Ein einzelner $[(Zr_6Z)(Cl,I)_{18}]$ -Cluster in $[(Zr_6B)Cl_{11.5}I_{1.5}]$	56
11	Schematische Darstellung der Strukturverwandtschaft zwischen der	
	$[(Zr_6Z)Cl_{13}]$ - und der $[Nb_6Cl_{14}]$ -Struktur	60
12	Vergleich des experimentellen mit dem aus der Strukturverfeinerung	
	von $[(Zr_6B)Cl_{6.4}I_{6.6}]$ berechneten Guinier-Diagramms	66
13	Ansicht der $[(Zr_6B)(I,Cl)_{18}]$ -Cluster in Kristallen von $[(Zr_6B)Cl_{6.4}I_{6.6}]$	70
14	Veranschaulichung der relativen Anordnung der Cl^{i-i} -Atome in Clu-	
	stern von $[(Zr_6B)Cl_{6.4}I_{6.6}]$.	71
15	Ansicht der Cluster-Verknüpfung in Kristallen von	
	$[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{6.4}\mathrm{I}_{6.6}].$	72
16	Einzelne $[(Zr_6B)(X,X')_{18}]$ -Cluster in Kristallen von	
	$Na[(Zr_6B)Cl_{10.9}I_{3.1}]$ und $Sr_{0.5}[(Zr_6B)Cl_{11.3}I_{2.7}]$	84
17	Perspektivische Ansicht der Elementarzelle von $Na[(Zr_6B)Cl_{10.9}I_{3.1}]$,	
	in der die I ^{$a-a-a$} -Verknüpfungen hervorgehoben sind	85
18	Umgebung des Na-Kations in Kristallen von $Na[(Zr_6B)Cl_{10.9}I_{3.1}]$	87
19	Änderung des Elementarzellenvolumens mit steigendem Iodanteil auf	
	den X ⁱ -Positionen in Na[(Zr ₆ B)Cl _{10.9} I _{3.1}]	88

20	Ansicht der $[(Zr_6B)(X,X')_{18}]$ -Cluster in $Na[(Zr_6B)Cl_{5.9}I_{8.1}]$ und
	$\mathrm{Cs}[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{2.2}\mathrm{I}_{11.8}] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
21	Ansicht der Cluster-Verknüpfung in der Struktur von
	$Na[(Zr_6B)Cl_{5.9}I_{8.1}]$ (aufgefüllte [Nb ₆ Cl ₁₄]-Variante)
22	Ansicht der Kationenumgebungen in den Kristallstrukturen von
	$Na[(Zr_{6}B)I_{8.1}Cl_{5.9}] \ und \ Cs[(Zr_{6}B)I_{11.8}Cl_{2.2}] \ \ \ldots \ \ldots \ \ldots \ \ldots \ . \ . \ . \ . \ . \$
23	Ansicht der beiden symmetrieunabhängigen Cluster in
	$Cs_{1,3}[(Zr_6B)Cl_{15}]$
24	[010]-Ansicht der Struktur von $Cs_{1,3}[(Zr_6B)Cl_{15}]$
25	Umgebung der drei Cs-Kationen $Cs_{1,3}[(Zr_6B)Cl_{15}]$
26	Ansicht der beiden symmetrieunabhängigen Cluster in
	$Cs_2[(Zr_6B)Cl_{12.1}I_{2.9}].$
27	Ansicht der beiden symmetrieunabhängigen Cluster in
	$Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}] \dots \dots$
28	Ansicht der beiden symmetrieunabhängigen Cluster in
	$Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}] \dots \dots \dots \dots \dots \dots \dots \dots \dots $
29	Ansicht der Strukturen und Atombezeichnungen der isolierten
	$[(Zr_6Z)Br_{18}]^{4\ominus}$ -Cluster in $(1-Et-3-Me-Im)_4[(Zr_6Be)Br_{18}]$ (links) und
	$(1-\text{Et-3-Me-Im})_4[(\text{Zr}_6\text{Fe})\text{Br}_{18}] \text{ (rechts)} \dots \dots$
30	Ansicht der Molekülstrukturen des $[(Zr_6C)Br_{18}]^{4\ominus}$ - und des
	$[ZrBr_6]^{2\ominus}$ -Anions in Kristallen von $[Ph_4P]_6[(Zr_6C)Br_{18}][ZrBr_6]$ 140
31	Anordnung der Atome des $[Fe_4S_4Cl_4]^{2\ominus}$ -Cuban-Clusters in Kristallen
	von $[K_4(FeCl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]$
32	Anordnung der Atome der $[K_4(FeCl_4)(C_{12}H_{24}O_6)_4]^{2\oplus}$ -Ionen in Kri-
	stallen von $[K_4(FeCl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]$
33	[010]-Ansicht zweier Vertreter der Reihe der monoklin kristallisieren-
	den SE_3I_3Z -Verbindungen, welche die beiden Extrema der struktu-
	rellen Variationen repräsentieren: Pr_3I_3Ru (links) mit fast idealer bi-
	oktaedrischer (BO) Anordnung der Metallatome und Y_3I_3Ru (rechts)
	mit flächenverknüpfter bi-quadratisch-pyramidaler Metallatomanord-
	nung (BQP)

34	Seitenansicht entlang $[100]$ der Clusterketten mit ${f BO}$ -	
	Metallatomanordnung in Pr_3I_3Ru (links) und mit BQP -Anordnung	
	in Y_3I_3Ru (rechts)	32
35	Verlauf der 1. Ionisationsenergie der Elemente der 3. Nebengruppe	
	des PSE	33
36	Gesamtzustandsdichte für ${f BO}$ - $\Pr_3 I_3 Ru$ mit projizierten Zustands-	
	dichten für Pr (gestrichelt) und Ru (schwarz ausgefüllt).	35
37	Kristallorbitalüberlappungspopulationskurven für Pr–Pr-, Pr-Ru-,	
	Pr–I- und Ru–Ru-Wechselwirkungen bis zu 4.5 Å in $Pr_3I_3Ru.$ 16	36
38	Gesamtzustandsdichte für \mathbf{BQP} -Y ₃ I ₃ Ru mit projizierten Zustands-	
	dichten für Y (gestrichelt) und Ru (schwarz ausgefüllt)	37
39	Kristallorbitalüberlappungspopulationskurven für Y–Y-, Y–Ru-, Y–	
	I- und Ru–Ru-Wechselwirkungen bis zu 4.5 Å in $Y_3I_3Ru.$ 16	38
40	Schematische Darstellung der Differenz der Orbitalenergien zwischen	
	Seltenerdelement und interstitiellen Element. Links großes und rech-	
	tes kleines ΔE	39
41	[010]-Ansicht der BO - (A) und der BQP -Metallanordnungen (B),	
	welche die Dichtestpackungen der Halogenatome und interstitiellen	
	Atome zeigen	72
42	Ansicht der Struktur von $Nb_{21}S_8$ entlang [001]	35
43	Temperaturabhängigkeit des spezifischen Widerstandes einer mikro-	
	kristallinen Probe von $Nb_{21}S_8$	37
44	Temperaturabhängigkeit der molaren magnetischen Suszeptibilität ei-	
	ner mikrokristallinen Probe von $Nb_{21}S_8$ im Temperaturbereich von 40	
	bis 306 K	38
45	Übergang in den supraleitenden Zustand von $Nb_{21}S_8$, demonstriert	
	durch den diamagnetischen Abschirmungseffekt und den Meissner-	
	Effekt	39
46	Molare Suszeptibilität von $Nb_{21}S_8$ (zfc) im Bereich von 1 – 5 K bei	
	externen Feldstärken von 10, 50 und 100 G.	9 0
47	Die Gesamtzustandsdichte (DOS) von $Nb_{21}S_8$ aus selbst-konsistenten	
	LMTO-Bandstrukturrechnungen	91

48	Fat-band Darstellung der Nb2-d- (links) und Nb6-d-Zustände (rechts)
	in der LMTO-Bandstruktur von $\rm Nb_{21}S_8$ in der Nähe des Fermi-Niveaus. 192
49	Darstellung der Brillouin-Zone von $Nb_{21}S_8$, in welcher die hochsym-
	metrischen Punkte eingezeichnet sind
50	Vergrößerter Ausschnitt der Bandstruktur von $Nb_{21}S_8$ in der Umge-
	bung des X-Symmetriepunktes am Fermi-Niveau.

Tabellenverzeichnis

1	Liste der käuflich erworbenen Ausgangsverbindungen	18
2	Kristalldaten, Datenerfassung und Verfeinerung der Strukturen von	
	$[(Zr_6Be)Cl_{1.7}I_{10.3}]$ und $[(Zr_6B)Cl_{1.3}I_{10.7}]$.	41
3	$[(Zr_6Be)Cl_{1.7}I_{10.3}]$ und $[(Zr_6B)Cl_{1.3}I_{10.7}]$: Atomkoordinaten und Koef-	
	fizienten der äquivalenten isotropen Temperaturfaktoren.	43
4	Ausgewählte Atomabstände in $[(Zr_6Be)Cl_{1.7}I_{10.3}]$.	44
5	Ausgewählte Atomabstände in $[(Zr_6B)Cl_{1.3}I_{10.7}]$.	44
6	Wichtige Volumina $[Å^3]$, Abstände $[Å]$ und Winkel $[^o]$ in den iodrei-	
	chen rhomboedrischen $[(Zr_6Z)X_{12}]$ -Phasen.	47
7	Ergebnisse einiger Reaktionen im $[(Zr_6B)Cl_yI_z]$ -System mit verschie-	
	denen Chlor- zu Iod-Verhältnissen.	49
8	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von	
	$[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{11.5}\mathrm{I}_{1.5}].$	53
9	$[(Zr_6B)Cl_{11.5}I_{1.5}]$: Atomkoordinaten und Koeffizienten der äquivalen-	
	ten isotropen Temperaturfaktoren.	56
10	Ausgewählte Bindungsabstände in $[(Zr_6B)Cl_{11.5}I_{1.5}]$.	57
11	Details der Reaktionen, die im System $[(Zr_6B)(Cl,I)_{13}]$ durchgeführt	
	wurden.	63
12	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von	
	$[(\mathrm{Zr}_6\mathrm{B})\mathrm{Cl}_{6.4}\mathrm{I}_{6.6}].$	67
13	$[(Zr_6B)Cl_{6.4}I_{6.6}]$: Atomkoordinaten und Koeffizienten der äquivalen-	
	ten, isotropen Temperaturfaktoren.	68
14	$[(Zr_6B)Cl_{6.4}I_{6.6}]$: Wichtige Atomabstände	69
15	Einzelheiten der Durchführung der Reaktionen im System	
	$A^{I,II}/Zr/Cl/I/B.$	77
16	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von	
	$Na[(Zr_6B)Cl_{10.9}I_{3.1}].$	79
17	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von	
	$\operatorname{Sr}_{0.5}[(\operatorname{Zr}_6\operatorname{B})\operatorname{Cl}_{11.3}\operatorname{I}_{2.7}].$	80
18	$Na[(Zr_6B)Cl_{10.9}I_{3.1}]$ und $Sr_{0.5}[(Zr_6B)Cl_{11.3}I_{2.7}]$: Atomkoordinaten und	
	Koeffizienten der äquivalenten isotropen Temperaturfaktoren.	82

$Ausgewählte Abstände [\text{\AA}] \text{ in } Na[(\mathrm{Zr}_6B)\mathrm{Cl}_{10.9}I_{3.1}] \text{ und }$
$Sr_{0.5}[(Zr_6B)Cl_{11.3}I_{2.7}]$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Na[(Zr_6B)Cl_{5.9}I_{8.1}]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs[(Zr_6B)Cl_{2.2}I_{11.8}]. \ldots 22$
$Na[(Zr_6B)Cl_{5.9}I_{8.1}]$: Atomkoordinaten und Koeffizienten der äquiva-
lenten isotropen Temperaturfaktoren
$Cs[(Zr_6B)Cl_{2.2}I_{11.8}]$: Atomkoordinaten und Koeffizienten der äquiva-
lenten isotropen Temperaturfaktoren
Interatomare Abstände in $Na[(Zr_6B)Cl_{5.9}I_{8.1}]$ und $Cs[(Zr_6B)Cl_{2.2}I_{11.8}]$. 95
Details der Reaktionen, die im System $A_y^I[(Zr_6Z)(Cl,I)_{15}]$ durch-
geführt wurden
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_{1,3}[(Zr_6B)Cl_{15}].$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_3[ZrCl_5][(Zr_6B)Cl_{15}].$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_{3}[ZrCl_{5}][(Zr_{6}B)Cl_{14.6}I_{0.4}]. \dots \dots$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_2[(Zr_6B)Cl_{12.1}I_{2.9}].$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}].$
Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
$Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}].$
$Cs_{1,3}[(Zr_6B)Cl_{15}]$: Atomkoordinaten und Koeffizienten der äquivalen-
ten isotropen Temperaturfaktoren
Interatomare Abstände in $Cs_{1.3}[(Zr_6B)Cl_{15}]$
$Cs_3[ZrCl_5][(Zr_6B)Cl_{15}]$: Atomkoordinaten und Koeffizienten der äqui-
valenten isotropen Temperaturfaktoren
valenten isotropen Temperaturfaktoren

36	Interatomare Abstände in $Cs_3[ZrCl_5][(Zr_6B)Cl_{15}]$ (I) und
	$Cs_3[ZrCl_5][(Zr_6B)Cl_{14.6}I_{0.4}] (II). \dots \dots$
37	$Cs_2[(Zr_6B)Cl_{12.1}I_{2.9}]$: Atomkoordinaten und Koeffizienten der äquiva-
	lenten isotropen Temperaturfaktoren
38	$Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}]$: Atomkoordinaten und Koeffizienten der äquiva-
	lenten isotropen Temperaturfaktoren
39	$Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}]$: Atomkoordinaten und Koeffizienten der äquiva-
	lenten isotropen Temperaturfaktoren
40	$ {\rm Mittlere} {\rm interatomare} {\rm Abst} \\ \\ {\rm ande} {\rm in} {\rm Cs}_2[({\rm Zr}_6{\rm B}){\rm Cl}_{12.1}{\rm I}_{2.9}], $
	$Cs_2[(Zr_6B)Cl_{10.8}I_{4.2}]$ und $Cs_2[(Zr_6B)Cl_{8.8}I_{6.2}]$
41	Kristalldaten, Datenerfassung und Verfeinerung der Strukturen von
	$(1{\rm -Et}{\rm -3{\rm -Me-Im}})_4[({\rm Zr}_6{\rm Be}){\rm Br}_{18}] \ und \ (1{\rm -Et}{\rm -3{\rm -Me-Im}})_4[({\rm Zr}_6{\rm Fe}){\rm Br}_{18}]. \ . \ . \ . \ 133$
42	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
	$[Ph_4P]_6[(Zr_6C)Br_{18}][ZrBr_6]134$
43	$(1-Et-3-Me-Im)_4[(Zr_6Be)Br_{18}]$: Atomkoordinaten und Koeffizienten
	der äquivalenten isotropen Temperaturfaktoren
44	$(1-Et-3-Me-Im)_4[(Zr_6Fe)Br_{18}]$: Atomkoordinaten und Koeffizienten
	der äquivalenten isotropen Temperaturfaktoren
45	Ausgewählte mittlere Abstände in $(1-\text{Et-}3-\text{Me-Im})_4[(\text{Zr}_6\text{Be})\text{Br}_{18}]$ (I)
	und $(1-Et-3-Me-Im)_4[(Zr_6Fe)Br_{18}]$ (II)
46	$[Ph_4P]_6[(Zr_6C)Br_{18}][ZrBr_6]$: Atomkoordinaten und Koeffizienten der
	äquivalenten isotropen Temperaturfaktoren
47	Kristalldaten, Datenerfassung und Verfeinerung der Struktur von
	$[K_4(FeCl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]. \ldots \ldots$
48	$[K_4(FeCl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]$: Atomkoordinaten und Koeffizien-
	ten der äquivalenten isotropen Temperaturfaktoren
49	Ausgewählte Abstände in $[K_4(FeCl_4)(C_{12}H_{24}O_6)_4][Fe_4S_4Cl_4]$ 146
50	Die unterschiedlichen Strukturtypen der isolierten Seltenerdmetallha-
	logenid-Cluster-Verbindungen mit Alkalimetallkationen
51	Parameter der Atomorbitale, die in den Extended-Hückel Rechnungen
	eingesetzt wurden
52	Strukturparameter der bisher charakterisierten SE_3I_3Z -Verbindungen 160
53	Ergebnisse der Extended-Hückel Rechnungen an Pr_3I_3Ru und Y_3I_3Ru . 164

54	Zusammenstellung der bisher bekannten metallreichen Sulfide der	
	Metalle der Gruppen 4 und 5 des PSE	
55	Details der Reaktionen zur Präparation von phasenreinem $\rm Nb_{21}S_8.$ 180	
56	Radien für $Nb_{21}S_8$, die in den TB-LMTO Rechnungen benutzt	
	wurden	

Liste der verwendeten Abkürzungen und Symbole

А	Alkali- oder Erdalkalikation
ASA	Atomic sphere approximation
BO	Bi-oktaedrisch
BQP	Bi-quadratisch-pyramidal
COOP	Crystal orbital overlap population
	$({ m Kristallorbital}"uberlappung spopulation)$
CZE	Cluster-zentrierte Elektronen
DFSO	Differential Fractional Site Occupation
dopp.	doppelt
DOS	Density of states (Zustandsdichte)
EDX	Energiedispersive Röntgenanalyse
EHMACC	Extended Hückel Molecular and Crystal Calculations
Et	Ethyl
fc	field cooled
НОМО	Highest occupied molecular orbital
LMTO	Lineare Muffin-Tin Orbital Methode
Me	Methyl
МО	Molekülorbital
Ph	Phenyl
PSE	Periodensystem der Elemente
R	Alkyl- oder Arylrest
SE	${ m Seltenerdmetallatom}$
subl.	sublimiert
ТВ	tight binding
W	Woche
Х	Halogenatom
Χ′	Halogenatom ($\neq X$)
Ζ	interstitielles Atom
zfc	zero field cooled
1-Et-3-Me-Im	1- Ethyl-3-methylimidazolylkation
16-Krone-6	$1,4,7,10,13,16$ -Hexaoxacyclooctadecan ($C_{12}H_{24}O_6$)