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3. Magneto-optic Kerr effect (MOKE )       

In this Chapter, after a brief introduction to the magneto-optic Kerr effect (MOKE) a

phenomenological analysis of calibration methods for measuring the Kerr rotation, θK, and Kerr

ellipticity, εK, will be described within the classical Jones matrix formalism. Novel

compensation methods for absolute calibration of both Kerr quantities will be proposed and the

experimental set-up of a polar Kerr spectrometer for ultra-high vacuum operation will be

presented.

3.1. Phenomenology

The magneto-optic Kerr effect [Kerr76, 77] has attracted considerable interest in recent years

because of its wide application in MO recording devices. Thanks to its high accuracy, high

temporal and spatial resolution and very fast response the MO probe has become a powerful

method to study the magnetic properties of ultrathin and multilayer films. Determination of

electronic structure [Ersk73], observation of domains [Schm85], investigation of oscillations in

the coupling between ferromagnetic layers via intercalated non-magnetic metallic layers

[John92] and studies of two-dimensional Ising model behavior of ultrathin layers [Liu88,

Kohl92] are some out of many examples.

The MOKE describes the change of the polarization states of light when reflected at a magnetic

material. Thereby linearly polarized light experiences a rotation of the polarization plane, Kerr

rotation θK, and a phase difference between the electric field components perpendicular and

parallel to the plane of the incident light as described by the Kerr ellipticity, εK. These two

quantities are connected to form the complex Kerr angle

φ θ εK K Ki= + .                                                                                                             (3. 1)

In a phenomenological description of MOKE the interaction of the magnetic sample with the

electromagnetic field is represented by the dielectric tensor (DK) ~ε  [Argy55, Busc88], which

yields
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~εxx  and ~εxy  are diagonal and off-diagonal elements of the DK tensor, respectively. The off-

diagonal elements of the DK tensor are linearly dependent on the magnetization and describe the

magneto-optic contributions, which occur through different absorption of left and right circular

polarized light. They are caused by spin orbit coupling and spin polarization. The diagonal

elements describe optical reflectivity [Ersk73].

Because of the different magnetization directions relative to the plane of the incident light there

are three different configurations for MOKE as depicted in Fig. 3.1 [Nede85]. In the polar Kerr

effect configuration (a) the magnetization M  lies perpendicularly to the sample surfaces. In the

case of longitudinal Kerr effect (b) M  lies parallel to the sample surfaces and to the plane of

incidence. In the equatorial or transverse configuration (c) M  lies parallel to the sample surfaces

and perpendicular to the plane of incidence.

(a)                                    (b)                                        (c)

Fig. 3.1: Illustration of variant configurations for the magneto-optic Kerr effect

3.2. Calibration methods

The set-up for measuring polar Kerr optical quantities is schematically depicted in Fig. 3.2 (see

Fig. 3.3). The optical elements consist of two Glan-Thomson-air polarizing prisms, A (analyzer)

and P(polarizer), a elasto-optic modulator, O, and a calcite-wedge Babinet-Soleil type

compensator, C. Futhermore, the direction of the linear components of the incident and reflected

light vectors, Ei = ( Es
i , Ep

i ) and Er = ( Es
r , Ep

r ), respectively, are depicted. The arrows in Fig.

3.2 represent the axes of the polarizers, A and P, and the neutral lines of the birefringent

 × M  Ö M  Ý M
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elements, O and C, with respect to the s and p directions. These are perpendicular and parallel to

the optical plane of the incident light on the sample S. P is fixed at an angle α = π/4, whereas A

is rotatable by an arbitrary angle β with respect to the p direction.

                  Ei              P               O              C                  S                 A              Er

Fig. 3.2: Schematic description of the set-up for measuring magneto-optic Kerr effects

(see text) and orientations of the light vector components ( Es
i , Ep

i ; Es
r , Ep

r ), the polarizer

axes (A, P) and the neutral directions of modulator (O) and compensator (C), depicted in

planes normal to the light propagation and relative to the s and p directions defined by the

plane of incidence and the sample surface (S).

Light transmission through the optical arrangement shown in Fig. 3.2 is described by the vector

equation

E  = A S C O P Er i⋅ ⋅ ⋅ ⋅ ⋅ ,                                                                                              (3. 3)

where
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are the Jones matrices [Azza79] attributed to the elements A, S, C, O and P, respectively. Here

all depolarization, reflection and absorption effects of the optical elements are neglected and

perpendicular incidence on the optical elements is assumed.

The reflectivity of the sample, Eq. (3. 5), is described in terms of the complex Fresnel

coefficients, ~rp  and ~rs , and the off-diagonal cross terms, ~rps  and ~rsp, which account for the MO

Kerr effect [Nede85]. By distinguishing ~rp  from ~rs  the description holds at arbitrary angles of

incidence. Hence the following treatment includes both polar and the longitudinal Kerr geometry

(see Fig. 3.1). Here we note that

~ exp( ),r r ip p p= δ                                                                                                         (3. 9)

~ exp( )r r is s s= δ                                                                                                          (3. 10)

and, by symmetry,

~ ~ exp( ) exp( )r r r i r ips sp ps ps sp sp= − = = − −δ δ .                                                      (3. 11)

An additional phase shift will be achieved by a Babinet-Soleil type calcite wedge compensator,

which will be used in particular as a λ/4 plate (see below). O and C are hit by the linearly

polarized light at angles of π/4 with respect to their neutral lines. They exhibit temporally

periodic function

ϕ ϕ ω( ) sin( ),t tM= 0                                                                                                 (3. 12)

where the variable t denotes the time and should not be mistaken as a sample thickness as used

in all Chapters except Chap. 3.
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M  is driven at an angular frequency ωM = 2πx50 kHz with an amplitude ϕ0 ≈ 2.41.

Evaluation of Eq. (3. 3) is straightforward by inserting of Eqs. (3. 4 - 3. 8) into Eq. (3. 3):
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The intensity of the reflected light behind A is given by

I I
Ir r
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where Ii is the initial intensity
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For the amplitude ~I  we obtain
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In order to simplify Eq. (3. 17) we define the following substitutions:

A= r + r + r

+ r 2 [ r ( - )- r ( - )],

p
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s
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β β
β δ δ δ δ

+
                                                    (3. 18)
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Hence we obtain the following equation

~
cos sin .I = A+ ( + )B+ ( + )Cϕ γ ϕ γ                                                                    (3. 21)

The terms cos(ϕ + γ) and sin(ϕ + γ) are solved by the trigonometric relations

cos cos cos sin sin( + )= -ϕ γ ϕ γ ϕ γ                                                                         (3. 22)

and

sin cos sin sin cos .( + )= +ϕ γ ϕ γ ϕ γ                                                                        (3. 23)

In view of the lock-in technique employed only the lowest Fourier components of relation Eq.

(3. 21) are of interest. They are deduced from

sin sin sin sin sinϕ ϕ ω ϕ ω ϕ ω= ( t)= J ( ) t +2 J ( ) 3 t +0 M 1 0 M 0 M3 ⋅ ⋅ ⋅                    (3. 24)

and

cos cos sin cosϕ ϕ ω ϕ ϕ ω= ( t)= J ( )+2 J ( ) 2 t + ,0 M 0 0 2 0 M ⋅ ⋅⋅                                   (3. 25)

where Jk(k = 0, 1, 2, xxx) are Bessel’s functions of order k. By use of the relations (3. 22) and (3.

23) we may rewrite Eq. (3. 21) as

~ ~ ~ sin ~ cosI = I + I t + I t +0(3 t)0 M 2 M Mω ωω ω ω2                                                     (3. 26)

with the expansion coefficients
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0 0 0I = A+ J ( )[ B+ C],~ cos sinϕ γ γ⋅ ⋅                                                                      (3. 27)

ω ϕ γ γ~ cos sinI =2 J ( )[ C - B],1 0 ⋅ ⋅                                                                          (3. 28)

2 2 0I =2 J ( )[ B+ C].ω ϕ γ γ~ cos sin⋅ ⋅                                                                        (3. 29)

By choosing specific settings of γ and β the Eqs. (3. 18 - 20) and (3. 27 - 29) can considerably be

simplified. For the general case of oblique incidence, we notice the solutions for two important

cases. They were discussed previously [Nede85] with slight modifications.

(i) p-polarisation: γ = 0, β = 0

0 p
2

sp
2

0 0 sp p p spI = r + r -2 J ( )r r ( - ),~ cosϕ δ δ                                                                 (3. 30)

ω ϕ δ δ~ sinI =4 J ( )r r ( - ),1 0 sp p p sp                                                                               (3. 31)

2 2 0 sp p p spI = -4 J ( )r r ( - )ω ϕ δ δ~ cos ,                                                                          (3. 32)

(ii) s-polarisation: γ = 0, β = π/2
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0 0 sp s s spI = r + r +2 J ( )r r ( - ),~ cosϕ δ δ                                                                  (3. 33)

ω ϕ δ δ~ sinI =4 J ( )r r ( - ),1 0 sp s s sp                                                                                (3. 34)

2 2 0 sp s s spI =4 J ( )r r ( - ).ω ϕ δ δ~ cos                                                                               (3. 35)

The Kerr rotation θK and ellipticity εK are defined by [Klei88]
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Since J0(ϕ0) ≈ 0 at ϕ0 ≈ 2.41, and r r rsp p s
2 2 2<< ,  and taking into account the definitions of θK

and εK, Eqs. (3. 36 - 39), one readily obtains the ratios

(
I

I
) = -4 J ( )

r

r
( - )= -4 J ( ) ,2

0
=0 2 0

sp

p
p sp 2 0 p

ω
β ϕ δ δ ϕ θ

~

~ cos                                           (3. 40)

(
I

I
) =4 J ( )

r

r
( - )=4 J ( ) ,2

0
= / 2 2 0

sp

s
p sp 2 0 s

ω
β π ϕ δ δ ϕ θ

~

~ cos                                            (3. 41)

(
I

I
) =4 J ( )

r

r
( - )=4 J ( ) ,

0
=0 1 0

sp

p
p sp 1 0 p

ω
β ϕ δ δ ϕ ε

~

~ sin tan                                           (3. 42)

(
I

I
) =4 J ( )

r

r
( - )=4 J ( ) .

0
= / 2 1 0

sp

s
s sp 1 0 s

ω
β π ϕ δ δ ϕ ε

~

~ cos tan                                         (3. 43)

We restrict ourselves to the polar Kerr configuration at near perpendicular incidence owing to

the geometry of our experimental set-up (see Fig. 3.3). By setting

p s p sr = r = r, = =δ δ δ ,                                                                                               (3. 44)

Eqs. (3. 18 -20) have to be replaced by

′A = r + r ,2
sp
2                                                                                                                (3. 45)

′B = 2 (r - r )-2r r 2 ( - ),2
sp
2

sp spsin cos cosβ β δ δ                                                          (3. 46)

′C =2r r ( - ).sp spsin δ δ                                                                                                (3. 47)

Hence, apart from numerical factors the normalized lock-in signals at ωM and ω2M directly yield

the Kerr rotations and ellipticities, respectively. In addition, by taking ratios of two light intensity

signals, fluctuations due to instabilities of the light source (intensity Ii, Eq. 3. 15) and of the

optical set-up are very efficiently eliminated. In practice, recording of the signals (3. 40 - 43)

requires two different amplifiers with unknown additional proportionality constants. There are

two calibration methods, which are referred to as the two-angle and the compensation methods

in the following. They are used to determine the absolute values of the Kerr quantities [Kim93].

Here we will discuss only the compensation method, which is applied in all of our further
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investigations. Details of the alternative calibration method, the two-angle method, were

discussed elsewhere [Kim93].

3.2.1. Calibration of the Kerr rotation θK

Inspection of Eq. (3. 29) yields a procedure for a calibrated measurement of θK. Set γ = 0 and β ≈

0, and compensate for ~I w2  by controlling β
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                                 (3. 48)
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This approximation is valid for small angles β. Eq. (3. 50) shows that the orientation β of the

analyzer A immediately yields θK. Absolutely calibrated data, e. g. hysteresis cycles θK vs. H,

may thus be recorded point-by-point. After recording 
~
I w2  data at β = 0, which are proportional

to θK, one simply calibrates 
~
I w2  axis by taking 

~
I w2  values at distinct steps of β with fixed θK (e.

g. at H = 0). According to Eq. (3. 49) the β steps chosen correspond to equally sized steps of θK.

A similar calibration procedure was proposed previously [Sato81].

3.2.2. Calibration of the Kerr ellipticity εK

In order to calibrate the Kerr ellipticity one needs circular polarized light. This can be realized by

inserting a λ/4 plate by virtue of the Babint-Soleil compensator into the optical path.
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Analogously to the Kerr rotation again a compensation method is applied. Inspection of Eqs. (3.

28), (3. 46) and (3. 47) yields a procedure for calibrated measurements of εK.
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Set β = π/4, γ ≈ 0 and compensate for ~I W  by controlling γ
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Hence the phase shift of the compensator C immediately yields 2εK (in radians). Again, Eq. (3.

53) suggests either to record εK by compensating ~I W  point-by-point, or to calibrate the ~I W  scale

with distinct steps of γ at fixed εK (e.g. at H = 0).

One advantage of the compensation methods, Eqs. (3. 50) and (3. 53), is their inherent

insensitivity against fluctuations of the light intensity. As experienced in conventional methods,

Eq. (3. 40 - 43), it is strongly suggested to normalize all data with the dc signal recorded

simultaneously (see Chapter 3. 3). One thus cancels the influence of fluctuations of Ii (see Eq. 3.

14). It has to be noticed, however, that this mode strictly requires ϕ0 = 2.41 in order to obtain

J0(ϕ0) = 0. Only by this measure unwanted dependence of the normalizing factor ~I 0  on

variations of β or γ is avoided.


