Symbolverzeichnis

A	m²	Fläche allgemein
$A_{\rm Frei}$	m²	Anteil der Ruderfläche in freier Anströmung
		$A_{\rm Frei} = (b - D \cdot e_{\rm P}) \cdot c_m$
$A_{ m Prop}$	m²	Anteil der Ruderfläche im Propellerstrahl $A_{\text{Prop}} = D \cdot e_{\text{P}} \cdot c_m$
A_{R}	m²	Ruderfläche
A_0	m²	Propellerkreisfläche $A_0 = \boldsymbol{p} \cdot \boldsymbol{D}^2/4$
$a_0, a_7,$	-	Koeffizienten für den Querwiderstandsbeiwert $C_{ m CFD}$
a_{8}, a_{9}		
b	m	mittlere Ruderhöhe
В	m	Schiffsbreite
$B_{ m "ua}$	m	Breite über alles
$C_{\rm CFD}$	-	Querwiderstandsbeiwert bei 4-Quadranten-Modell
$C_{\rm DR}$	-	Ruderwiderstandsbeiwert
$C_{\rm LR}$	-	Ruderauftriebsbeiwert
C_{Q}^{*}	-	Propellermomentenkennwert
		$C^* = \underbrace{Q}_{Q} \underbrace{K_Q \cdot 8/p}_{Q}$
		$C_Q = \mathbf{r}/2 \cdot A_0 \cdot D \cdot (u_P^2 + (0.7 \cdot \mathbf{p} \cdot n \cdot D)^2) = J^2 + (0.7 \cdot \mathbf{p})^2$
C_T^*	-	Propellerschubkennwert
-		$C^* - Q - K_T \cdot 8/p$
		$C_T = \frac{1}{\mathbf{r}/2 \cdot A_0 \cdot (u_P^2 + (0.7 \cdot \mathbf{p} \cdot n \cdot D)^2)} = \frac{1}{J^2 + (0.7 \cdot \mathbf{p})^2}$
C_{Th}	-	Schubbelastungsgrad T
		$C_{\rm Th} = \frac{1}{r/2 \cdot u_P^2 \cdot A_0}$
с, с'	-	Beiwerte für den Hull-Lifting-Effekt im 4-Quadranten-Modell
C_m	m	mittlere Profillänge des Ruders
C_0	-	Tiefwasserbeiwert für die Polynomdarstellung hydro-
		dynamischer Koeffizienten
C_n	-	dynamischer Koeffizienten
c_{P}	m	Umfangsgeschwindigkeit des Propellers bei 0.7 des Radius
		$c_{\rm P} = 0.7 \cdot \boldsymbol{p} \cdot D$
D	m	Propellerdurchmesser
D_{T}	m	Taktischer Durchmesser beim Drehkreis
d	0	Ruderwinkel (teilweise anstelle von $oldsymbol{d}_{ extsf{R}}$ verwendet)
d_0	0	Ruderwinkel bei Beginn des Manövers, neutraler Ruderwinkel
d, d'	-	Beiwerte für den Hull-Lifting-Effekt im 4-Quadranten-Modell
e, e'	-	Beiwerte für den Hull-Lifting-Effekt im 4-Quadranten-Modell

e _P	-	Einschnürungsfaktor für den Propellerstrahl an Rudervorkante	der
F	Ν	Kraft allgemein	
$F_{\rm D}$	Ν	Drag (Widerstand im ruderfesten System)	
$F_{ m L}$	Ν	Lift (Auftrieb im ruderfesten System)	
F _n	-	Froude-Zahl	$F_{\rm n} = \frac{V}{\sqrt{g \cdot L}}$
$F_{\rm nh}$	-	Froude-Tiefenzahl	$F_{\rm nh} = \frac{V}{\sqrt{g \cdot h}}$
$F_{\rm R}$	Ν	Betrag der Ruderkraft im ruderfesten System	
G	-	Gewichtsschwerpunkt	
<i>g</i>	m/s²	Erdbeschleunigung	
h	m	Wassertiefe	
Izz	kgm²	Massenträgheitsmoment um die z-Achse	
J	-	Fortschrittsgrad des Propellers	$J = \frac{u_{\rm P}}{n \cdot D}$
Κ	Nm	Rollmoment um die x-Achse	
K_Q	-	Momentenbeiwert des Propellers	$K_Q = \frac{Q}{\mathbf{r} \cdot n^2 \cdot D^5}$
K _T	-	Schubbeiwert des Propellers	$K_T = \frac{T}{\mathbf{r} \cdot n^2 \cdot D^4}$
$k_{ m DR} \ k_{ m HR}$	-	Verstärkungsfaktor zur Berechnung des Ruder Faktor zur Berücksichtigung der Strömungsbeg Ruderanströmung	widerstandes gradigung bei der
$k_{\rm LR}$	-	Verstärkungsfaktor zur Berechnung der Ruder	auftriebskraft
$k_{ m NR} \ k_{ m PR}$	-	Verstärkungsfaktor zur Berechnung der Rudern Faktor zur Berechnung der Ruderanströmgesc Gutsche	noments hwindigkeit nach
k_{zz}	m	Trägheitsradius um die z -Achse, auch i	
L	m	Schiffslänge	
$L_{\rm pp}$	m	Länge zwischen den Loten	
т	kg	Masse	
М	Nm	Trimmoment um die y-Achse	
M_{x}	Nm	Moment um die x -Achse, auch K	
M_{y}	Nm	Moment um die y-Achse, auch M	
M_{z}	Nm	Moment um die z -Achse, auch N	
Ν	Nm	Giermoment um die <i>z</i> -Achse	
$N_{\rm Ges}$	Nm	Summe der Längskräfte am Schiff	$N_{\text{Ges}} = N_{\text{Hyd}} + N_{\text{T}}$
$N_{ m H}$	Nm	Drehmoment am Schiff (H ull) durch Strömungs Abhängigkeit von v und r	wirkung in

$N_{ m HC}$	Nm	Drehmoment am Schiff durch Hull-Crossflow-Effekt
$N_{\rm HL}$	Nm	Drehmoment am Schiff durch Hull-Lifting-Effekt
$N_{ m Hyd}$	Nm	Summe der hydrodynamischen Momente am Schiff
N_{I}	Nm	Drehmoment am Schiff durch Effekte der "Idealen Flüssigkeit"
$N_{\rm P}$	Nm	Drehmoment am Schiff durch P ropellerwirkung
$N_{ m PT_{vor}}$	-	Faktor zur Berechnung des steuenden Moments des P ropellers bei Vorwärtsfahrt
$N_{ m PT_{zur}}$	-	Faktor zur Berechnung des steuenden Moments des Propellers bei Rückwärtsfahrt
N_{R}	Nm	Drehmoment am Schiff durch R uderwirkung
$N_{\rm S}$	Nm	Drehmoment am Schiff durch S trömungswirkung allgemein
$N_{ m Schaft}$	Nm	Drehmoment am Ruderschaft durch Strömungswirkung
N_{T}	Nm	Summe der Drehmomente am Schiff durch Trägheitwirkung
$N_{ m W}$	Nm	Drehmoment am Schiff durch Strömungswirkung in Abhängigkeit von <i>u</i> (W iderstand)
n	-	Exponent für die Polynomdarstellung hydrodynamischer Koeffizienten
n	1/s	Propellerdrehrate
n _R	-	Anzahl Ruder
n _P	-	Anzahl Propeller
0	-	Ursprung des schiffsfesten Systems (Hauptspant mittschiffs)
O_0	-	Ursprung des erdfesten Systems
$P_{\rm D}$	W	Propellerdrehleistung im Propulsionsversuch
$P_{\rm E}$	W	Schleppleistung im Widerstandsversuch
р	N/m²	Druck
р	°/s	Drehgeschwindigkeit (Rotation um die x-Achse)
q	°/s	Drehgeschwindigkeit (Rotation um die y-Achse)
R	m	Radius des Propellers
R_c	m	Drehkreisradius
$R_{\rm T}$	Ν	Widerstand (Schiffskraft in x-Richtung)
R _n	-	Reynoldszahl $R_{\rm n} = \frac{V \cdot L_{\rm pp}}{n}$
r	°/s	Drehgeschwindigkeit (Rotation um die <i>z</i> -Achse)
ŕ	°/s²	Änderungsrate der Drehgeschwindigkeit (Drehbeschleunigung)
<i>r</i> _{max}	°/s	Maximale Drehgeschwindigkeit beim Z-Manöver, auch $\dot{oldsymbol{y}}_{ ext{max}}$
Т	m	mittlerer Tiefgang
Т	Ν	Propellerschub
$T_{\rm a}$	m	Tiefgang am hinteren Lot
$T_{ m f}$	m	Tiefgang am vorderen Lot
t	-	Sogziffer $t = (T - R_{\rm T})/T$
t	S	Zeit allgemein
		-

- A / 3 -

t _a	S	Anschwenkzeit beim Z-Manöver
t _{c1}	S	Erste Stützzeit beim Z-Manöver
t _{c2}	S	Zweite Stützzeit beim Z-Manöver
t _{hc}	S	Kursschwingungsperiode beim Z-Manöver, auch T
t _r	S	Ausweichzeit beim Z-Manöver
и	m/s	Längsgeschwindigkeit (Translation in -Richtung)
и	m/s	
<i>u</i> _P	m/s	Anströmgeschwindigkeit des Propellers in <i>x</i> -Richtung $u_{\rm P} = u \cdot (1 - w)$
$u_{P^{\infty}}$	m/s	Ansymptotische axiale Zusatzgeschwindigkeit des Propellerstrahls im Unendlichen
<i>u</i> _R	m/s	Anströmgeschwindigkeit des Ruders in x-Richtung außerhalb des Propellerstrahls $u_{\rm R} = u \cdot (1 - w_{\rm R})$
<i>u</i> _{RP}	m/s	Anströmgeschwindigkeit des Ruders in <i>x</i> -Richtung im Propellerstrahl
$\overline{u}_{\mathrm{R}}$	m/s	Mittlere Anströmgeschwindigkeit des Ruders in <i>x</i> -Richtung beim 4-Quadranten-Modell
<i></i> и	m/s²	Änderungsrate der Längsgeschwindigkeit (Längsbeschleunigung)
V	m/s	Geschwindigkeit allgemein
V	m/s	Gesamtgeschwindigkeit des Schiffes $V = \sqrt{u^2 + v^2}$
V_0	m/s	Ausgangsgeschwindigkeit des Schiffes, auch ${m U}_0$
V_{R}	m/s	Gesamtanströmgeschwindigkeit des Ruders
¥	m³	Verdrängung
v	m/s	Seitengeschwindigkeit (Translation in y-Richtung)
v ₀	m/s	Seitengeschwindigkeit bei Beginn des Manövers, neutrale Seitengeschwindigkeit
v _R	m/s	Anströmgeschwindigkeit des Ruders in y-Richtung
<i>v</i>	m/s²	Anderungsrate der Seitengeschwindigkeit (Seitenbeschleunigung)
W	-	Nachstromziffer
W	m/s	Vertikalgeschwindigkeit (Translation in z -Richtung)
W _R	-	Nachstromziffer am Ort des Ruders
X	Ν	Längskraft im schiffsfesten System
X_{Ges}	Ν	Summe der Längskräfte am Schiff $X_{Ges} = X_{Hyd} + X_T$
$X_{\rm H}$	Ν	Längskraft am Schiff (H ull) durch Strömungswirkung in Abhängigkeit von <i>v</i> und <i>r</i>
$X_{_{ m HL}}$	Ν	Längskraft am Schiff durch Hull-Lifting-Effekt
$X_{ m Hyd}$	Ν	Summe der hydrodynamischen Längskräfte am Schiff
X_{I}	Ν	Längskraft am Schiff durch Effekte der "Idealen Flüssigkeit"
X_{P}	Ν	Längskraft am Schiff durch Propellerwirkung

$X_{\rm R}$	Ν	Längskraft am Schiff durch Ruderwirkung
$X_{\rm s}$	Ν	Längskraft am Schiff durch S trömungswirkung allgemein
X_{T}	Ν	Summe der Längskräfte am Schiff durch Trägheitwirkung
$X_{ m W}$	Ν	Längskraft am Schiff durch Strömungswirkung in Abhängigkeit von <i>u</i> (W iderstand)
x	m	Längskoordinate im schiffsfesten System (positiv nach vorne)
x_0	m	Wegkoordinate im erdfesten System (positiv nach Norden)
<i>x</i> ₀₉₀	m	Vorausweg (Kurs 90°) beim Drehkreis
$x_{0 \max}$	m	maximaler Längsweg beim Drehkreis
x _G	m	<i>x</i> -Koordinate des Gewichtsschwerpunktes im schiffsfesten System
$x_{\rm R}$	m	x-Koordinate der Ruderachse im schiffsfesten System
Y	Ν	Seitenkraft im schiffsfesten System
$Y_{\rm Ges}$	Ν	Summe der Seitenkräfte am Schiff $Y_{Ges} = Y_{Hyd} + Y_T$
Y _H	Ν	Seitenkraft am Schiff (H ull) durch Strömungswirkung in Abhängigkeit von <i>v</i> und <i>r</i>
$Y_{\rm HC}$	Ν	Seitenkraft am Schiff durch Hull-Crossflow-Effekt
$Y_{ m HL}$	Ν	Seitenkraft am Schiff durch Hull-Lifting-Effekt
$Y_{\rm Hyd}$	Ν	Summe der hydrodynamischen Seitenkräfte am Schiff
$Y_{\rm I}$	Ν	Seitenkraft am Schiff durch Effekte der "Idealen Flüssigkeit"
$Y_{\rm P}$	Ν	Seitenkraft am Schiff durch Propellerwirkung
$Y_{\mathrm{PT}_{\mathrm{vor}}}$	-	Faktor zur Berechnung der steuernden Seitenkraft des Propellers bei Vorwärtsfahrt
$Y_{\mathrm{PT}_{\mathrm{zur}}}$	-	Faktor zur Berechnung der steuernden Seitenkraft des Propellers bei Rückwärtsfahrt
$Y_{\rm R}$	Ν	Seitenkraft am Schiff durch Ruderwirkung
Y _s	Ν	Seitenkraft am Schiff durch Strömungswirkung allgemein
$Y_{\rm T}$	Ν	Summe der Seitenkräfte am Schiff durch Trägheitwirkung
$Y_{ m W}$	Ν	Seitenkraft am Schiff durch Strömungswirkung in Abhängigkeit von <i>u</i> (W iderstand)
У	m	Seitenkoordinate im schiffsfesten System (positiv nach Steuerbord)
y_0	m	Wegkoordinate im erdfesten System (positiv nach Osten)
$y_{0 \max}$	m	maximaler Querweg beim Z-Manöver
$y_{0 \max}$	m	maximaler Querweg beim Drehkreis
<i>Y</i> ₀₁₈₀	m	Taktischer Durchmesser beim Drehkreis
<i>Y</i> ₀₉₀	m	Querversatz (Kurs 90°) beim Drehkreis
y _G	m	y-Koordinate des Gewichtsschwerpunktes im schiffsfesten System
z	m	Tiefenkoordinate im schiffsfesten System (positiv nach unten)
Z_0	m	Wegkoordinate im erdfesten System (positiv nach unten)

$Z_{ m G}$	m	z-Koordinate des Gewichtsschwerpunktes im schiffsfesten System
b	0	Driftwinkel (positiv gegen den Uhrzeigersinn) $\boldsymbol{b} = \operatorname{atan}(\frac{-v}{u})$
\boldsymbol{b}_0	0	Driftwinkel bei Beginn des Manövers, neutraler Driftwinkel
$oldsymbol{b}_{ ext{RP}}$	0	lokaler Anströmwinkel des Ruders im Propellerstrahl $\pmb{b}_{\rm P}=\pmb{b}_{\rm R}\cdot p_{\rm P}$
$\boldsymbol{b}_{\mathrm{R}}$	0	lokaler Anströmwinkel des Ruders (freie Strömung)
		$\boldsymbol{b}_{\mathrm{R}} = \operatorname{atan}(\frac{-\nu_{\mathrm{R}}}{u_{\mathrm{R}}})$
d	0	Ruderwinkel allgemein
d _e	0	effektiver Ruderwinkel im Nachstromfeld $d_e = d_R + b_R$
d_{e}^{*}	0	effektiver Ruderwinkel im Propellerstrahl $\boldsymbol{d}_{e}^{*} = \boldsymbol{d}_{R} + \boldsymbol{b}_{RP}$
$d_{\rm R}$	0	Ruderwinkel
d_{R0}	0	Ruderwinkel bei Beginn des Manövers, neutraler Ruderwinkel
d _{Rmax}	0	Maximaler Ruderwinkel beim Manöver
\dot{d}_{R}	°/s	Ruderlegegeschwindigkeit
Δu	m/s	Geschwindigkeitsüberschuß, Geschwindigkeitsdifferenz
Δt	S	Simulationstakt
ΔX	Ν	Schubüberschuß, Schubdifferenz
e	0	Propellerfortschrittswinkel
		$\boldsymbol{e} = \operatorname{atan}(\frac{u_{\mathrm{P}}}{0.7 \cdot \boldsymbol{p} \cdot n \cdot D}) = \operatorname{atan}(\frac{J}{0.7 \cdot \boldsymbol{p}})$
\boldsymbol{e}_{\max}	0	Propellerfortschrittswinkel, bei dem $C_T^*=0$ wird
n	m²/s	Kinematische Zähigkeit
У	0	Kurswinkel (positiv gegen den Uhrzeigersinn)
$oldsymbol{Y}_{01}$	0	Erster Überschwinkwinkel beim Z-Manöver
$oldsymbol{y}_{02}$	0	Zweiter Überschwinkwinkel beim Z-Manöver
$\boldsymbol{y}_{\mathrm{S}}$	0	Schaltwinkel (Stützwinkel) beim Z-Manöver
$\dot{m{y}}_{ ext{max}}$	°/s	maximale Drehgeschwindigkeit beim Z-Manöver, auch $r_{ m max}$
r	kg/m³	Dichte

Literaturverzeichnis

- Abkowitz, M.A. (1964): Lectures on Ship Hydrodynamics Steering and Manoeuvrability. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-5, Lyngby / Dänemark
- Ankudinov, V. & Miller, E. & Jakobsen, B. & Daggett, L. (1990): *Manoeuvring Performance of Tug/Barge Assemblies in Restricted Waterways.* Proceedings MARSIM '90, Tokyo / Japan
- Ankudinov, V. (1993): Assessment and Principle Structure of the Modular Mathematical Model for Ship Manoeuvres Prediction and Real-Time Manoeuvring Simulation. Proceedings MARSIM '93, St. John's / Kanada
- Baumgarten, B. (1989): Ermittlung der Ruderkräfte und -momente bei unterschiedlichen Geschwindigkeits-Drehzahl-Relationen für verschiedene Schiffstypen (Nachstromfelder). VBD-Bericht Nr. 1231, Duisburg
- Bech, M.I. (1973): Some Aspects of the Stability of Automatic Course Control of Ships. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-16, Lyngby / Dänemark
- Booth, T.B. & Bishop, R.E.D (1973): *The Planar Motion Mechanism*. Admiralty Experiment Works, Haslar / Großbritannien
- BV 0571 : Richtlinien für die Durchführung von Modellversuchen für Über- und Unterwasserschiffe der Bundeswehr. BWB-SG I 4, Koblenz
- Chislett, M.S. & Smitt, L. (1973): A Brief description of the HyA Large Amplitude PMM System. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-16, Lyngby / Dänemark
- Chislett, M.S. & Strøm-Tejsen, J. (1965): Planar Motion Mechanism Tests and Full Scale Steering and Manoeuvring Predictions for a MARINER Class Vessel. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-6, Lyngby / Dänemark

- Clarke, D. & Gedling, P. & Hine, G. (1983): *The Application of Manoeuvring Criteria in Hull Design using Linear Theory*. TRINA 125
- DUDEN (1991): *Die deutsche Rechtsschreibung*, Bibliographisches Institut, Mannheim
- Fujino, M. (1986): *Experimental Studies on Ship Manoeuvrability in Restricted Waters, Part I & II.* International Shipbuilding Progress, Vol. 15, No. 168
- Gertler, M. (1959): *The DTMB Planar-Motion-Mechanism System.* Symposium on Towing Tank Facilities, Zagreb / Jugoslawien
- Grim, O. & Oltmann, P. & Sharma, S.D. & Wolff, K (1976): CPMC A Novel Facility for Planar motion Testing of Surface Ship Models. Institut für Schiffbau, Bericht Nr. 364, Hamburg
- Goodman, A. (1960): *Experimental Techniques and Methods of Analysis Used in Submerged Body Research.* Proceedings 3rd ONR Symposium on Naval Hydrodynamics, Scheveningen / Niederland
- Gronarz, A. (1986): *Beschaffung und Erprobung einer PMM-Anlage*. VBD-Bericht Nr. 1157, Duisburg
- Gronarz, A. (1988): *Manövrierverhalten völliger Schiffe auf begrenzter Wassertiefe*. VBD-Bericht Nr. 1226, Duisburg
- Gronarz, A. (1989): *PMM-Versuche mit dem Modell eines Motorgüterschiffes auf verschiedenen Wassertiefen*. VBD-Bericht Nr. 1243, Duisburg
- Gronarz, A. (1990): Ermittlung der hydrodynamischen Koeffizienten zur Manövriersimulation von Schubverbänden. VBD-Bericht Nr. 1286, Duisburg
- Gronarz, A. (1992): *Manövrierverhalten schlanker Schiffe auf begrenzter Wassertiefe*. VBD-Bericht Nr. 1322, Duisburg
- Gronarz, A. (1993): A Mathematical Model for Manoeuvring Simulation on Shallow Water. Proceedings MARSIM '93, St. John's / Kanada

- Gutsche, F. (1955): Die Induktion der axialen Strahlzusatzgeschwindigkeit in der Umgebung der Schraubenebene. Heft 12/13, Schiffstechnik
- Hess, F. (1977): Rudder Effectiveness and Course-Keeping Stability in Shallow Water: A Theoretical Model. International Shipbuilding Progress 24, S. 206
- IMO (1993) : Manoeuvrability of Ships and Manoeuvring Standards. International Maritime Organisation, Report of the working group, IMO Document DE 36/Wp.3
- Jiang, T. (1991): Untersuchung nichtlinearer Schiffsdynamik mit Auftreten von Instabilität und Chaos an Beispielen aus der Offshoretechnik. Dissertation am Institut für Schiffbau, Bericht Nr. 512, Hamburg
- Kijima, K. & Nakiri, Y. & Tsutsui, Y. & Matsunaga, M. (1990): Prediction Method of Ship Manoeuvrability in Deep and Shallow Waters. Proceedings MARSIM '90, Tokyo / Japan
- Mandel, P. (1967): *Ship Maneuvring and Control Linear Equations of Motion*. In : Principles of Naval Architecture, SNAME, New York / USA
- Meyer, W. (1990) : *Programm zur Berechnung der Spiralkurve*. Diplomarbeit UNI-GH Duisburg, Fachgebiet Schiffstechnik
- MIT / Newman, J.N. (1991): WAMIT A Radiation-Diffraction Panel Program for Wave-Body Interactions. Massachusetts Institute of Technology, Cambridge / USA
- Morse, R.V. & Price, D. (1961): *Maneuvring Characteristics in the Mariner Class Ship in Calm Seas.* Sperry Gyroscope Company Report, GJ-2233-1019, USA
- Nomoto, K. (1957): Response Analysis of Manoeuvrability and its Application to Ship Design. Society of Naval Architects Japan (SNAJ), 60th Anniversary Series, Vol. 11, Tokyo / Japan
- Norrbin, N. (1970): Theory and Observation on the Use of a Mathematical Model for Ship Maneuvering in Deep and Confined Waters. Proceedings 8th ONR-

Symposium on Naval Hydrodynamics, Pasadena CA/USA, 1970 und SSPA-Publication 68, Göteborg/Schweden

- Oltmann, P. & Wolff, K. (1976): "Computerized Planar Motion Carriage" Anlagenbeschreibung und erste Betriebserfahrungen. Jahrbuch der STG, Band 70, Hamburg
- Oltmann, P. (1978): *Parameterstudie zu den Bewegungsgleichungen für horizontale Schiffsbewegungen*. Institut für Schiffbau der Universität Hamburg, Schrift Nr. 2307, Hamburg
- Oltmann, P. & Sharma, S.D. (1984): Simulation of Combined Engine and Rudder Maneuvers using an Improved Model of Hull-Propeller-Rudder Interactions. 15. ONR-Symposium, Hamburg
- Oltmann, P. (1986a): Untersuchung zur Korrelation von Manövrierversuchen bei völligen Schiffen, HSVA - Bericht Nr. 1551, Hamburg
- Oltmann, P. (1986b): *Rechnersimulation von Schiffsmanövern*. In: Handbuch der Werften XVIII, Manövrierfähigkeit und Steuerorgane, Hamburg
- Oltmann, P. (1986c): *Rechnersimulation von Schiffsmanövern*. S. 79 in: Handbuch der Werften XVIII, Manövrierfähigkeit und Steuerorgane, Hamburg
- Oltmann, P. & Wolff, K. & Müller, E. & Baumgarten, B. (1986): Zur Korrelation Modell-Großausführung bei Manövrierversuchen auf tiefem und flachem Wasser. Jahrbuch der STG Nr. 80
- Oltmann, P. & Wolff, K. (1989): Untersuchung zur Korrelation Modell / Großausführung bei Manövrierversuchen mit einem Containerschiff. HSVA-Bericht Nr. 1566, Hamburg
- Sharma, S.D. & Jiang, T. & Schellin, T.E. (1988): Dynamic Instability and Chaotic Motions of a Single-Point-Moored Tanker. 17. Symposium on Naval Hydrodynamics, Den Haag / Niederland

- SNAME, (1952): Nomenclature for Treating the Motion of a Submerged Body Through a Fluid. The Society of Naval Architects and Marie Engineers, New York / USA
- Smitt, L.W. (1967): *The Reversed Spiral Test*. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-10, Lyngby / Dänemark
- Söding, H. (1986): *Bewegungsgleichungen*. S. 28 in: Handbuch der Werften XVIII, Manövrierfähigkeit und Steuerorgane, Hamburg
- Spalding, D.B. & Pantakar, S.V. (1974) : A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. International Journal for Heat and Momentum Transfer, Vol. 15

Spalding, D.B. (1991) : The PHOENICS Beginners Guide. CHAM TR 100, London

- Strøm-Tejsen, J. (1965): A Digital Computer Technique for Prediction of Standard Maneuvres of Surface Ships. DTMB-Report No. 2130, Washington / USA
- Strøm-Tejsen, J. & Chislett, M.S. (1966): A Model Testing Technique an Method of Analysis for the Prediction of Steering and Manoeuvring Qualities of Surface Vessels. Hydro- og Aerodynamisk Laboratorium, Report No. Hy-7, Lyngby / Dänemark
- VG 81 208 (1986) : *Manövrieren von Schiffen*. Normenstelle der Marine im DIN, Beuth Verlag, Köln
- Wagner, B. (1986): *Ruderentwurf*. In: Handbuch der Werften XVIII, Manövrierfähigkeit und Steuerorgane, Hamburg
- Wolff, K. (1981): Ermittlung der Manövriereigenschaften fünf repräsentativer Schiffstypen mit Hilfe von CPMC-Versuchen. IfS-Bericht Nr. 412, Hamburg
- Zhao, Y.-X. (1986): *Hydrodynamische Kräfte an manövrierenden Schiffen auf flachem Wasser*. IfS-Bericht Nr. 466, Hamburg

Tabellenverzeichnis

Tab. Titel

- 2-1 Gegenüberstellung der verschiedenen Darstellungen für die dimensionslose Wassertiefe
- 3-1 Statische Modellversuche
- 3-2 Dynamische Modellversuche
- 3-3 Gittervariation beim Testschiff
- 3-4 Ergebnisse bei Variation der Randbedingungen am Boden
- 3-5 Dimensionslose Wassertiefen im Modellversuch
- 3-6 Hydrodynamische Massen und Massenmomente für 6 Freiheitsgrade
- 4-1 Beiwerte bei Variation des Exponenten der Potenzfunktion
- 4-2 Umrechnung der Koeffizienten für den Ideal-Fluid-Effekt
- 5-1 Hauptdaten des Containerschiffs
- 5-2 Vor- und Nachteile der unterschiedlichen Methoden zur Berücksichtigung der Wassertiefe
- 6-1 Übersicht über die 4 Beispielschiffe
- 6-2 Hauptdaten und Koeffizienten für das Containerschiff
- 6-3 Hauptdaten und Koeffizienten für das Gütermotorschiff
- 6-4 Hauptdaten und Koeffizienten des Schubverbands mit Typleichtern E II b
- 6-5 Hauptdaten und Koeffizienten des Schubverbands mit Großleichtern E III
- 6-6 Seiten- und Drehgeschwindigkeit bei Seitenkraft und Drehmoment
- 6-7 Potenzdarstellung der Koeffizienten für die 4 Beispielschiffe mit individuellen Exponenten
- 6-8 Vereinfachte Darstellung der Beiwerte der Potenzfunktion für individuelle Exponenten
- 6-9 Potenzdarstellung der Koeffizienten für die 4 Beispielschiffe mit einheitlichen Exponenten
- 6-10 Vereinfachte Darstellung der Beiwerte der Potenzfunktion für einheitliche Exponenten

Abbildungsverzeichnis

Abb. Titel

- 1-1 Darstellung der schiffbaulichen Arbeitsgebiete
- 2-1 Koordinatensystem und Definitionen
- 2-1 Vergleich der kubischen mit der signum-quadratischen Funktion
- 2-3 Dimensionslose Vorausgeschwindigkeit über der Geschwindigkeit
- 2-4 Strömung am Ruder
- 2-5 Ruderanordnung
- 2-6 Kräfte am Ruder
- 2-7 Querströmung an einem Hauptspant in flachem Wasser
- 2-8 Beispiel für die Abhängigkeit der Seitenkraft von der Quergeschwindigkeit
- 2-9 Beispiel für die Abhängigkeit der Koeffizienten von der Wassertiefe
- 3-1 Dimensionslose Seitenkräfte bei verschiedenen Geschwindigkeiten
- 3-2 Bewegungsarten des PMM
- 3-3 Formelmäßig beschriebenes Testschiff
- 3-4 Ausschnitt aus dem Berechnungsgitter für das Testschiff
- 3-5 Residuen bei der Berechnung der Schräganströmung beim Testschiff
- 3-6 Berechnete Kräfte beim Testschiff über der Zellenzahl
- 3-7 Längskraft beim Testschiff über Zellenzahl und Iterationstiefe
- 3-8 Seitenkraft beim Testschiff über Zellenzahl und Iterationstiefe
- 3-9 Giermoment beim Testschiff über Zellenzahl und Iterationstiefe
- 3-10 Feines 2-D-Gitter für die Berechnung der Querströmung am Hauptspant
- 3-11 2-D-Berechnung der Querströmung unter einem Schiff
- 3-12 Spantriß des Containerschiffs
- 3-13 Berechnungsgitter: Bug des Containerschiffs
- 3-14 Berechnungsgitter: Heck des Containerschiffs
- 3-15 Block-Gitter am Hauptspant
- 3-16 Gitter an der Wasseroberfläche
- 3-17 Geschwindigkeitsvektoren an der Wasseroberfläche
- 3-18 Geschwindigkeitsvektoren in Bodennähe
- 3-19 Geschwindigkeitsvektoren am Hauptspant
- 3-20 Dynamischer Druck an der Wasseroberfläche

- 3-21 Dynamischer Druck am Boden
- 3-22 Dynamische Druckkräfte auf die einzelnen Zellflächen
- 3-23 Vergleich: Messung und Berechnung der Seitenkraft am Containerschiff
- 3-24 Vergleich: Messung und Berechnung des Moments am Containerschiff
- 3-25 Vergleich: Messung und Berechnung über alle 4 Quadranten
- 3-26 Diskretisierung des Containerschiffs für WAMIT mit 165 Paneelen
- 3-27 Diskretisierung einer Schiffshälfte durch 369 Paneele
- 3-28 WAMIT: Änderung der Koeffizienten mit der Erregerfrequenz
- 3-29 WAMIT: Hydrodynamische Massen für das Containerschiff
- 3-30 Diskretisierung des Mariner-Schiffs für die Vergleichsrechnung
- 3-31 WAMIT: Hydrodynamische Massen für das Mariner-Schiff
- 4-1 Interpolation durch quadratische Polynome für 3 benachbarte Punkte
- 4-2 Approximation von gemessenen Koeffizienten durch Polynomansätze
- 4-3 Containerschiff: Potenzfunktionen für die Koeffizienten für den Rumpf
- 4-4 Vergleich des Potenzansatzes mit dem Vorschlag von Norrbin
- 4-5 Containerschiff: Potenzfunktionen für das 4-Quadranten-Modell
- 4-6 Manöverparameter beim Drehkreisversuch und Z-Manöver
- 4-7 Simulation der Propellerfreifahrt
- 4-8 Simulation eines Propulsionsversuchs
- 4-9 Simulation eines Spiralversuchs
- 4-10 Simulation eines Pull-Out-Tests
- 4-11 Simulation von Stoppversuchen
- 4-12 Änderung der Längskraft beim Ansatz nach Abkowitz
- 4-13 Änderung der Seitenkraft beim Ansatz nach Abkowitz
- 4-14 Änderung des Moments beim Ansatz nach Abkowitz
- 4-15 Drehkreis: Anteile der Längskraft über der Zeit
- 4-16 Drehkreis: Anteile der Seitenkraft über der Zeit
- 4-17 Drehkreis: Anteile des Giermoments über der Zeit
- 4-18 Z-Manöver: Anteile der Längskraft über der Zeit
- 4-19 Z-Manöver: Anteile der Seitenkraft über der Zeit
- 4-20 Z-Manöver: Anteile des Giermoments über der Zeit
- 4-21 Vergleich Z-Manöver und Drehkreis
- 4-22 Phasendiagramm beim Z-Manöver
- 4-23 Geschwindigkeiten und Beschleunigungen beim Z-Manöver
- 5-1 Geschwindigkeitsabfall bei Drehkreisen für verschiedene Wassertiefen
- 5-2 Driftwinkel bei Drehkreisen für verschiedene Wassertiefen
- 5-3 Drehgeschwindigkeit bei Drehkreisen für verschiedene Wassertiefen

- 5-4 Bahnverlauf bei Drehkreisen mit einzelnen Koeffizientensätze
- 5-5 Maximale Drehgeschwindigkeit bei verschiedenen Z-Manövern
- 5-6 Drehkreisradius bei verschiedenen Simulationen über der Wassertiefe
- 5-7 Geschwindigkeitsabfall bei versch. Simulationen über der Wassertiefe
- 5-8 Drehgeschwindigkeit bei versch. Simulationen über der Wassertiefe
- 5-9 Driftwinkel bei verschiedenen Simulationen über der Wassertiefe
- 5-10 Unterschiedliche Berücksichtigung der Wassertiefe bei 3 verschiedenen mathematischen Modellen: Drehgeschwindigkeit
- 5-11 Unterschiedliche Berücksichtigung der Wassertiefe bei 3 verschiedenen mathematischen Modellen: Driftwinkel
- 5-12 Unterschiedliche Berücksichtigung der Wassertiefe bei 3 verschiedenen mathematischen Modellen: Geschwindigkeitsabfall
- 5-13 Unterschiedliche Berücksichtigung der Wassertiefe bei 3 verschiedenen mathematischen Modellen: Drehkreisradius
- 6-1 Regression der Widerstandsmessungen für das Simulationsmodell
- 6-2 Spantenriß des Containerschiffs
- 6-3 Spantenriß des Gütermotorschiffs
- 6-4 Ansicht des Schubverbands mit Standardleichtern E II b
- 6-5 Ansicht des Schubverbands mit Großleichtern E III
- 6-6 Potenzdarstellung der Koeffizienten der Längskraft für 4 versch. Schiffe
- 6-7 Potenzdarstellung der Koeffizienten der Seitenkraft für 4 versch. Schiffe
- 6-8 Potenzdarstellung der Koeffizienten des Moments für 4 versch. Schiffe
- 6-9 Potenzdarstellung mit konstanten Exponenten: Längskraft
- 6-10 Potenzdarstellung mit konstanten Exponenten: Seitenkraft
- 6-11 Potenzdarstellung mit konstanten Exponenten: Moment

Bewegungsgleichungen in 6 Freiheitsgraden

$$X = m\dot{u} - mvr + mwq$$

- $mx_G(q^2 + r^2) + my_G(pq - \dot{r}) + mz_G(pr + \dot{q})$ (E.1)

$$Y = m\dot{v} - mwp + mur - my_G(r^2 + p^2) + mz_G(qr - \dot{p}) + mx_G(qp + \dot{r})$$
(E.2)

$$Z = m\dot{w} - muq + mvp$$

- $mz_G(p^2 + q^2) + mx_G(rp - \dot{q}) + my_G(rq + \dot{p})$ (E.3)

$$K = I_{x}\dot{p} + (I_{z} - I_{y})qr + my_{G}(\dot{w} + vp - uq) - mz_{G}(\dot{v} - wp + ur) + I_{zx}(\dot{r} + pq) + I_{yz}(r^{2} - q^{2}) + I_{xy}(pr - \dot{q})$$
(E.4)

$$M = I_{y}\dot{q} + (I_{x} - I_{z})rp + mz_{G}(\dot{u} + wq - vr) - mx_{G}(\dot{w} - uq + vp) + I_{xy}(\dot{p} + qr) + I_{zx}(p^{2} - r^{2}) + I_{yz}(qp - \dot{r})$$
(E.5)

$$N = I_{z}\dot{r} + (I_{y} - I_{x})pq + mx_{G}(\dot{v} + ur - wp) - my_{G}(\dot{u} - vr + wq) + I_{yz}(\dot{q} + rp) + I_{xy}(q^{2} - p^{2}) + I_{zx}(rq - \dot{p})$$
(E.6)

Symbole

X, Y, Z	Kräfte in x, y, z
<i>u</i> , <i>v</i> , <i>w</i>	Geschwindigkeiten in x, y, z
K, M, N	Momente um x, y, z
p, q, r	Drehgeschwindigkeiten um x, y, z
I_x, I_y, I_z	Trägheitsmomente bezüglich x, y, z
I_{xy}, I_{yz}, I_{zx}	Deviationsmomente

Bewegungsgleichungen in 3 Freiheitsgraden

$$X = m\dot{u} - mvr - mx_G r^2 - my_G \dot{r}$$
(E.7)

$$Y = m\dot{v} + mur$$

- $my_G r^2 + mx_G \dot{r}$ (E.8)

$$Z = 0 \tag{E.9}$$

$$K = -mz_G(\dot{v} + ur) + I_{zx}\dot{r} + I_{yz}r^2$$
(E.10)

$$M = m z_G (\dot{u} - vr) - I_{zx} r^2 - I_{yz} \dot{r}$$
(E.11)

$$N = I_{z}\dot{r} + mx_{G}(\dot{v} + ur) - my_{G}(\dot{u} - vr)$$
(E.12)

Symbole

<i>X</i> , <i>Y</i>	Kräfte in <i>x</i> , <i>y</i>
и, v	Geschwindigkeiten in x, y
M, K, N	Momente um x, y, z
r	Drehgeschwindigkeit um z
I_z	Trägheitsmoment bezüglich z
I_{yz}, I_{zx}	Deviationsmomente

Eingabedaten und Koeffizienten

Gliederung

1. Allgemeine Daten

2. Modulares Modell

- 2.a Wassertiefenabhängige Koeffizienten als einzelne Koeffizientensätze
- 2.b Wassertiefenabhängige Koeffizienten in Potenzdarstellung
- 2.c Nicht wassertiefenabhängige Koeffizienten

3. 4-Quadranten-Modell

- 3.a Wassertiefenabhängige Koeffizienten als einzelne Koeffizientensätze
- 3.b Wassertiefenabhängige Koeffizienten in Potenzdarstellung
- 3.c Nicht wassertiefenabhängige Koeffizienten

4. Abkowitz-Modell

- 4.a Koeffizienten als einzelne Koeffizientensätze
- 4.b Koeffizienten in Potenzdarstellung

1. Allgemeine Daten

Dimensionslose Darstellungen in der Simulation:

(nicht immer in der Darstellung des "Prime"-Systems)

Bewegungs- und SteuergrößengrößenKräfte und Momente $u' = u/\sqrt{g \cdot L}$ $X' = X/(r_2' \cdot V^2 \cdot L^2)$ $v' = b \cdot p/180$ $Y' = Y/(r_2' \cdot V^2 \cdot L^2)$ $r' = r \cdot L/V$ $N' = N/(r_2' \cdot V^2 \cdot L^3)$ $d' = d_R \cdot p/180$ $R_T' = R_T/(r \cdot g \cdot L^3)$ $n' = n/n_0$ $n' = n/n_0$

Hauptdaten des Schiffes

Contair	nerschiff			
	Тур			
1416	1			
Modellnummer	Simulationsmaßstab			
232.9 m	32.2 m	9.6 m	10.52 m	
Länge zw. den Loten	Breite auf Spanten	Tiefgang vorne	Tiefgang hinten	
-22.16 m	50.6 m	49792 m ³		
Verdrschwp. v. Hspt.	Trägheitsradius	Verdrängung		
10 °/s	0.0 s	19.0 °C		
Ruderlegegeschwind.	Zeitverzug des Ruders	Wassertemperatur		
8.231 m/s	8.231 m/s	2.289 1/s	1.470 °/s	
Ausgangsgeschwind.	Bezugsgeschwind.	Ausgangsdrehrate	Bezugsdrehrate	
0.2	-0.35	-50	-45 m ²	5.144 m
Nachstromziffer Abst. PropRud. /		Ruderschaft %Lpp	Ruderfläche	Ruderprofillänge
1	1	6.3	0.15	
Anzahl Propeller	Anzahl Ruder	Propellerdurchmesser	Sogziffer	

2 Modulares Modell

2.a Wassertiefenabhängige Koeffizienten als einzelne Koeffizientensätze

Wassertiefenabhängige Koeffizienten für die Rumpfkräfte:

(Alle Koeffizienten sind mit 1.E5 multipliziert !)

h / T	1.2	1.3	1.4	1.6	2.0	4.0
X_{vr}	973.77	1192.6	588.6	778.47	584.40	48.710
X_{rr}	52.876	56.603	51.324	41.846	36.719	41.386
$X_{_{ u u}}$	-1414	-1138.7	-1034.5	-930.38	-702.93	-385.31
Y_{ν}	3341.8	2206.2	1317.7	990.04	801.18	699.20
$Y_{ u u }$	28770.	21966.	19011.	12636.	6435.5	4194.3
$Y_{\dot{v}}$	-2388.9	-2465.3	-1678.8	-1018.8	-651.68	-599.69
$Y_{\dot{r}}$	-105.10	-76.598	-19.676	21.962	30.642	4.1381
$\overline{Y_r}$	180.07	75.68	82.800	33.441	58.376	69.295

Y _{rrr}	-207.45	-206.80	-114.22	-92.845	-93.951	-96.158
Y_{rvv}	-3381.0	-2706.1	-2142.5	-1931.9	-1103.7	-934.02
Y _{vrr}	7459.8	4547.1	3239.6	2472.0	2195.4	1727.9
N_{v}	1400.6	1262.7	1122.1	911.39	740.05	529.00
$N_{_{v v }}$	3058.3	2182.7	1205.9	702.98	185.16	179.32
$N_{\dot{v}}$	115.31	105.05	85.074	42.639	18.231	7.6276
$N_{\dot{r}}$	-50.717	-49.399	-39.913	-35.506	-31.846	-31.983
N_r	-408.13	-394.03	-305.31	-247.01	-203.60	-140.41
N _{rrr}	-155.33	-171.89	-146.29	-134.81	-120.62	-136.74
N _{rvv}	-6647.5	-4047.4	-3521.2	-2470.8	-1488.7	-1484.7
N _{vrr}	909.32	446.68	394.56	171.47	155.50	162.59

Wassertiefenabhängige Koeffizienten für den Widerstand:

(Alle Koeffizienten sind mit 1.E5 multipliziert !)

h / T	1.2	1.3	1.4	1.6	2.0	4.0
$X_{{ m H}{\it uuu}}$ vorwärts	-366.90	-386.60	-330.19	-285.49	-215.66	-84.579
$X_{\mathrm{H}\mathit{uuu}}$ rückwärts	-447.62	-471.65	-402.79	-348.30	-263.11	-103.19
V_0	4.742	4.687	4.853	5.006	5.301	6.221
n_0	1.12	1.12	1.12	1.12	1.12	1.12

2.b Wassertiefenabhängige Koeffizienten in Potenzdarstellung

(Alle Koeffizienten sind mit 1.E5 multipliziert !)

	c_0	C_n	п		C ₀	C_n	n		C ₀	C_n	n
X_{vr}	-322.2	1652.3	1	Y_{v}	704.9	11389.	8	N_{v}	529.9	1562.9	3
X_{rr}	38.6	38.0	4	$Y_{\nu u }$	4091.9	52193.	4	$N_{_{v v }}$	130.5	8971.0	6
$X_{_{VV}}$	-300.4	-1521.6	2	$Y_{\dot{v}}$	-495.4	-4445.	4	$N_{\dot{v}}$	-1.3	214.2	3
X_{uuuv}	-82.17	-470.66	2	$Y_{\dot{r}}$	23.1	-490.	7	$N_{\dot{r}}$	-31.2	-53.261	5
X_{uuuR}	-100.2	-573.97	2	Y_r	50.2	896.81	11	N_r	-134.8	-498.9	3
				Y_{rrr}	-85.3	-399.6	6	N _{rrr}	-127.5	-77.	4
				Y_{rvv}	-914.2	-5118.	4	N_{rvv}	-1542.7	-17986.	7
				Y _{vrr}	1943.9	28267.	9	N _{vrr}	159.6	4601.8	10

2.c Nicht wassertiefenabhängige Koeffizienten

Propellerkoeffizienten:

234	
.05246	m
.46646	rad

Propellernummer

Profillänge bei 0,7 R

maximaler Fortschrittswinkel $oldsymbol{e}_{ ext{max}}$ für die konventionelle Freifahrtkurve

Polynomfaktoren für e <	$\mathbf{e}_{\max} \Rightarrow$	$C_T^* = c_{T0} + \boldsymbol{e} \cdot c_{T1} + \boldsymbol{e} \cdot c_{T$	$\mathbf{e}^2 \cdot c_{T2} + \mathbf{e}^3 \cdot c_{T3}$
.305759	320012	-1.351434	1.355392
C _{T0}	c_{T1}	c_{T2}	<i>c</i> ₇₃

Polynomfaktoren für e <	$\mathbf{e}_{\max} \Rightarrow$	$C_Q^* = c_{Q0} + \boldsymbol{e} \cdot c_{Q1} + \boldsymbol{e} \cdot c_{Q2} + \boldsymbol{e} \cdot c_{Q1} + \boldsymbol{e} \cdot c_{Q$	$\boldsymbol{e}^2 \cdot \boldsymbol{c}_{Q2} + \boldsymbol{e}^3 \cdot \boldsymbol{c}_{Q3}$
.050039	056898	154534	.128289
<i>C</i> _{Q0}	c_{Q1}	c_{Q2}	c_{Q3}

Fourierkoeffizienten für $\boldsymbol{e} > \boldsymbol{e}_{\max}$

Beiwert für	$C_T^*:\sin(i\cdot \boldsymbol{e})$	$C_T^*:\cos(i\cdot \boldsymbol{e})$	$C_Q^*:\sin(i\cdot \boldsymbol{e})$	$C_Q^*:\cos(i\cdot \boldsymbol{e})$
<i>i</i> = 0	000000	.002024	000000	.002359
<i>i</i> = 1	849515	.195469	133872	.032459
<i>i</i> = 2	003720	.048818	.001118	.004071
<i>i</i> = 3	.164251	.025982	.027577	.005919
<i>i</i> = 4	005025	029999	003201	005985
<i>i</i> = 5	.048329	019077	.009596	001992
<i>i</i> = 6	.015489	.019686	.004508	.004585
<i>i</i> = 7	.003654	.036372	002856	.007296
<i>i</i> = 8	014193	000231	003183	000689
<i>i</i> = 9	.008630	.000872	.002131	001261

Ruderkoeffizienten:

751	
.466457	rad

Rudernummer maximaler Ruderwinkel $\pmb{d}_{
m R\,max}$ für die Darstellung durch Koeffizienten

Dimensionslose Darstellung der Ruderkräfte bei frei fahrendem Ruder:

$$F_{\rm D} = C_{\rm DR} \cdot \mathbf{r} / 2 \cdot c^2 \cdot V_{\rm R}^2 \qquad \qquad F_{\rm L} = C_{\rm LR} \cdot \mathbf{r} / 2 \cdot c^2 \cdot V_{\rm R}^2$$

Koeffizienten für
$$d_{\rm R} < d_{\rm R max}$$
 $C_{\rm DR}$ =-1.4749 $\cdot d_{\rm R}^2$ $C_{\rm LR}$ =2.6839 $\cdot d_{\rm R}$ -2.1201 $\cdot d_{\rm R}^3$

Beiwert für	$C_{\rm DR}:\sin(i\cdot\boldsymbol{d}_{\rm R})$	$C_{\mathrm{DR}}:\cos(i\cdot\boldsymbol{d}_{\mathrm{R}})$	$C_{\rm LR}$: sin $(i \cdot \boldsymbol{d}_{\rm R})$	$C_{\text{LR}}:\cos(i\cdot \boldsymbol{d}_{\text{R}})$
<i>i</i> = 0	.000000E+00	749115E+00	000000E+00	.114975E-01
<i>i</i> = 1	916008E-02	229809E-01	.201612E+00	.253328E-02
<i>i</i> = 2	146926E-01	.576260E+00	.105138E+01	991160E-02
<i>i</i> = 3	969051E-02	181587E-01	507648E-01	123301E-01
<i>i</i> = 4	537834E-02	.114177E+00	.375152E+00	103952E-01
<i>i</i> = 5	.324265E-02	.118480E-01	130067E+00	109188E-01
<i>i</i> = 6	.252174E-02	.176199E-02	.726355E-01	.574045E-02
<i>i</i> = 7	.509526E-01	.124730E-01	108601E+00	.519503E-02
<i>i</i> = 8	.663295E-02	441208E-01	352427E-01	.989351E-02
<i>i</i> = 9	806179E-02	.238069E-01	215218E-01	.115814E-01
<i>i</i> = 10	.905502E-02	364093E-01	489571E-02	190018E-02
<i>i</i> = 11	.375630E-02	129472E-02	.333919E-01	.284258E-02
<i>i</i> = 12	979081E-02	.441657E-01	.354462E-01	665779E-02

Fourierkoeffizienten für $d_{\rm R} > d_{\rm R max}$

3 4-Quadranten-Modell

3.a Wassertiefenabhängige Koeffizienten als einzelne Koeffizientensätze

h/T	1.2	1.3	1.4	1.6	2.0	4.0	∞
$X_{\dot{u}}$	1328	1515	.0000	1603	.0000	.0000	0340
X_{vr}	1.7938	1.4445	1.3123	1.1803	.8917	.4888	.4773
X _{rr}	.0671	.0718	.0651	.0531	.0466	.0525	.0565
$X_{\nu\nu}$	1.2353	1.5129	.7467	.9875	.7414	.0618	.0000
$Y_{\dot{v}}$	-3.0305	-3.1271	-2.1297	-1.2924	8267	7608	8608
$Y_{\dot{r}}$	1333	0972	0250	.0279	.0389	.0052	0879
$N_{\dot{v}}$.1463	.1333	.1079	.0541	.0231	.0097	0247
$N_{\dot{r}}$	0643	0627	0506	0450	0404	0406	0309

С	.619	.4086	.2441	.1834	.1484	.1295	.1558
d	1.	1.	1.	1.	1.	1.	1.2
е	.1637	.2006	.1031	0035	0164	.0131	.0340
<i>c</i> '	.211	.1446	.0614	.1184	.0433	.0514	.0884
d'	1.	1.	1.	1.	1.	1.	1.
<i>e</i> '	.3878	.3698	.2892	.2146	.1643	.1480	.1505
<i>k</i> '	.4	.4	.4	.4	.4	.4	.32
a_0	7.872	6.068	4.555	2.872	1.778	.9166	.2672
a_7	-14.32	-22.75	-21.86	-19.18	-17.12	-7.834	-2.8793
a_8	-17.67	-12.11	-8.338	-3.822	-1.145	.003711	3.4812
a_9	17.86	28.06	26.09	22.82	20.48	9.237	4.1791
$R_{\mathrm{T} u u }$	1.15000	.980868	.837747	.724335	.547165	.214591	.15475

3.b Wassertiefenabhängige Koeffizienten in Potenzdarstellung

	<i>C</i> ₀	C_n	п		C ₀	C_n	n		<i>C</i> ₀	C_n	п
$X_{\dot{u}}$	1623	.2155	11	С	.1438	2.4998	9	a_0	.6320	15.175	4
X_{vr}	.4216	1.8532	2	d	1.0000		-	a_7	-1.3621	-28.656	1
X_{rr}	.0520	.04939	5	е	.0018	.48925	5	a_8	1.8318	-39.966	4
$X_{_{VV}}$	4088	2.096	1	<i>c</i> '	.0687	1.0733	11	a_9	1.9341	34.085	1
$Y_{\dot{v}}$	7015	-5.426	4	d'	1.0000		-	$R_{Tu u }$.1512	1.4193	2
$Y_{\dot{r}}$.0293	62155	7	<i>e</i> '	.1434	.549	4				
$N_{\dot{v}}$	0100	.27181	3	k'	.4000		-				
\overline{N}_{r}	0359	064	4					-			

3.c Nicht wassertiefenabhängige Koeffizienten

232.9	m
51036.8	t
9.600	m
10.520	m
6.300	m
500	
45.000	m²
5.114	m
4.802	m/s

Länge zwischen den Loten Schiffsmasse Tiefgang am vorderen Lot Tiefgang am hinteren Lot Propellerdurchmesser Lage des Ruders bezgl. Hauptspant Ruderfläche Profillänge des Ruders Ausgangsgeschwindigkeit

1.120	°/s	Ausgangsdrehrate
2000		Nachstromziffer
.2000		Nachstiomziner
.1500		Sogziffer
.2000		Nachstromziffer für das Ruder
.0000		$Y_{{ m P}T_{vor}}$ Faktor zur Berechnung der steuenden Seitenkraft des Propellers bei Vorwärtsfahrt
.0000		$N_{{ m P}T_{vor}}$ Faktor zur Berechnung des steuenden Moments des Propellers bei Vorwärtsfahrt
.0000		$Y_{{ m P} T_{zur}}$ Faktor zur Berechnung der steuenden Seitenkraft des Propellers bei Rückwärtsfahrt
.0000		$N_{{ m P}T_{zur}}$ Faktor zur Berechnung des steuenden Moments des Propellers bei Rückwärtsfahrt
.7500		$k_{ m HR}$ (Begradigungsfaktor für die Strömung am Ort des Ruders)
.8364		$k_{ m PR}$ (Faktor zur Berechnung der Anströmgeschwindigkeit am Ort des Ruders)
.4798		$k_{ m LR}$ Verstärkungsfaktor zur Berechnung des Ruderauftriebs
.6684		$k_{ m DR}$ Verstärkungsfaktor zur Berechnung des Ruderwiderstandes
.0000		$k_{_{ m NR}}$ Verstärkungsfaktor zur Berechnung des Rudermoments

Propellerkoeffizienten für
$$\boldsymbol{e} < \boldsymbol{e}_{\max} \Rightarrow C_T^* = c_{T0} + c_{T\cos} \cdot \cos(\boldsymbol{e}) + c_{T\sin} \cdot \sin(\boldsymbol{e})$$

$$C_Q^* = c_{Q0} + c_{Q\cos} \cdot \cos(\boldsymbol{e}) + c_{Q\sin} \cdot \sin(\boldsymbol{e})$$

27°]	
e _{max}		
6131	.9242	4818
c_{T0}	$C_{T\cos}$	$C_{T \sin}$
10025	.15078	07109
c_{Q0}	$c_{Q\cos}$	$C_{Q \sin}$

Propellerkoeffizienten für $e < e_{max} \Rightarrow$

1110.11		
$C_T^* = +a_T \cdot \cos(\mathbf{e}$	$ \cdot \cos(\boldsymbol{e}) + b_T \cdot \sin(\boldsymbol{e}) $	$\left \sin(\boldsymbol{e}) \right + c_T$
C_Q^*	$= c_{Q0} + c_{Q\cos} \cdot \cos(\mathbf{e})$	$+c_{Q\sin}\cdot\sin(\boldsymbol{e})$

2124	-1 0668	0428882
.2127	1.0000	.0420002
a_{π}	b_{τ}	C_{π}
••1	÷1	°1
03704	- 16940	0073306
.00704	.10540	.007.0000
a	h	C
$\mathfrak{a}_{\mathcal{Q}}$	ν_Q	c_Q

Ruderkräfte

27	Anzahl Datenpunkte für die Ruderkrafttabelle				
Ruderwinkel	C_{LR0}	C_{DR0}			
-180	.00000	.00000			
-165	.24010	.04280			
-150	.45390	.18750			
-135	.57890	.42500			
-130	.29600	.30570			
-110	.14800	.47000			
-90	.00000	.50960			
-70	14800	.47000			
-50	29600	.30570			
-40	39372	.44263			
-30	47969	.24271			
-20	37072	.09301			
-10	18869	.02119			
0	.00000	.00000			
10	.15214	.03412			
20	.31014	.09797			
30	.45505	.19118			
40	.45685	.32838			
50	.29600	.30570			
70	.14800	.47000			
90	.00000	.50960			
110	14800	.47000			
130	29600	.30570			
135	57890	.42500			
150	45390	.18750			
165	24010	.04280			
180	.00000	.00000			

4 Abkowitz-Modell

4.a Koeffizienten als einzelne Koeffizientensätze

(Alle Koeffizienten sind mit 1.E5 multipliziert !)

h / T	1.2	1.3	1.4	1.6	2	4
X_{u}	-287.63	-295.84	-271.95	-252.63	-218.58	-144.13
X _{uu}	151.01	154.45	144.44	136.38	121.88	89.878
$X_{\nu\nu}$	1009.3	1239.5	604.15	804.2	600.61	38.104
X_{dd}	-93.044	-95.472	-88.41	-82.56	-72.792	-51.498
X _{duu}	-6.7465	-6.9095	-6.4358	-6.0566	-5.3695	-3.8635
X _{ddu}	607.44	621.93	579.71	544.9	484.87	350.42
$X_{\dot{u}}$	-104.67	-119.45	0	-126.34	0	0
X _{rr}	51.661	55.355	50.173	40.776	35.773	40.737
X _{vr}	1325.4	1063.6	965.49	870.65	656.32	351.47
Y_{ν}	-3894.8	-2641.5	-1697.7	-1255.6	-953.2	-800.7
$Y_{v v }$	-23629	-21920	-17326	-12227	-6867.6	-4105.2
Y_d	143.08	146.81	135.95	126.96	111.94	79.191
Y_{ddd}	-42.923	-44.044	-40.787	-38.088	-33.581	-23.758
Y_{vdd}	8267.5	2288.2	2075	617.9	-1063.9	-200.46
Y_{vvd}	-205.04	-210.26	-195	-181.07	-161.43	-115.15
Y_{du}	-295.39	-302.93	-281.02	-263.68	-231.66	-161.69
Y _{duu}	164.9	168.75	157.55	148.44	132.35	96.731
$Y_{\dot{v}}$	-2388.9	-2465	-1678.8	-1018.8	-651.68	-599.69
$Y_{\dot{r}}$	-105.1	-76.598	-19.676	21.962	30.642	4.138
Y_r	200.31	96.562	102.34	52.114	75.466	80.934
Y_{rrr}	-204.92	-204.35	-112.22	-91.52	-93.576	-95.175
Y_{rvv}	8991.5	-3596.2	2136.8	-49.963	-2094.2	-705.36
Y_{vrr}	-9866.3	-3694.6	-3949.4	-2618.9	-1634.9	-1553.4
N_{ν}	-1428.7	-1274.9	-1119.1	-901.21	-723.45	-518.03
$N_{_{v v }}$	-2778.9	-2245.1	-1412.2	-926.13	-403.62	-230.34
N_d	-71.54	-73.407	-67.977	-63.479	-55.968	-39.596
N_{ddd}	21.462	22.022	20.393	19.044	16.791	11.879
N_{vdd}	1234.7	51.22	-83.939	-68.857	-339.18	-73.935
N_{vvd}	102.53	105.13	97.498	90.532	80.716	57.574

N_{du}	147.69	151.46	140.51	131.84	115.83	80.844
N_{duu}	-82.449	-84.374	-78.773	-74.219	-66.173	-48.365
$N_{\dot{v}}$	115.31	105.05	85.074	42.639	18.231	7.6276
$N_{\dot{r}}$	-50.717	-49.399	-39.913	-35.506	-31.846	-31.983
N_r	-422.76	-409.26	-321.06	-261.67	-215.06	-149.45
N_{rrr}	-150.48	-166.61	-139.22	-128.29	-116.85	-132.87
N_{rvv}	-5115.8	-3726.5	-3069.5	-2206.3	-1750.5	-1305.8
N _{vrr}	-1038.6	-314.55	-327.01	-98.996	30.63	-91.76

4.b Koeffizienten in Potenzdarstellung

(Alle Koeffizienten sind mit 1.E5 multipliziert !)

	<i>C</i> ₀	C_n	n		<i>C</i> ₀	C_n	n		<i>C</i> ₀	C_n	п
X_{u}	-83.765	-262.25	1	Y_{ν}	-810.66	-11029	7	N_{v}	-508.05	-1636	3
X_{uu}	64.341	111.59	1	$Y_{\nu \nu }$	-3166.4	-37618	3	$N_{_{v v }}$	-110.78	-5589.5	4
$X_{\nu\nu}$	-351.34	1734.6	1	Y_d	52.046	116.92	1	N_d	-26.022	-58.463	1
X_{dd}	-33.844	-76.036	1	Y_{ddd}	-15.614	-35.076	1	N_{ddd}	7.8071	17.538	1
X_{duu}	-2.6575	-5.2646	1	Y_{vdd}	-295.95	62191	11	N_{vdd}	-256.13	10200	11
X_{ddu}	242.87	469.16	1	Y_{vvd}	-76.882	-164.32	1	N_{vvd}	38.436	82.172	1
X _{ii}	-127.92	169.85	11	Y_{du}	-105.87	-244.1	1	N_{du}	52.935	122.04	1
X_{rr}	37.759	36.532	4	Y_{duu}	68.201	124.47	1	N _{duu}	-34.1	-62.233	1
X_{vr}	273.62	1436.8	2	$Y_{\dot{v}}$	-495.35	-4445.3	4	$N_{\dot{v}}$	-1.3446	214.24	3
				$Y_{\dot{r}}$	23.134	-490	7	$N_{\dot{r}}$	-31.153	-53.261	5
				Y_r	66.869	933.37	11	N_r	-145.19	-509.29	3
				Y_{rrr}	-88.302	-470.15	7	N_{rrr}	-124.59	-88.14	5
				Y_{rvv}	-1608.6	64786	11	N _{rvv}	-1351.2	-9208	5
				Y	-1768.5	-57429	11	N _{vrr}	-42.885	-7154.6	11