Appendix 149

Appendix

Appendix A
Generating Unit Data
Apparent power base value S, =100 MVA

Table A.1 Generating unit cost coefficients for Duisburg municipal power
system

Units’ no. and
Identification Type

No. Local Numeral
1 HKW1 HKW1 TH 288 96.0 80.0 8.0 0.02400

HKW2 BLA TH 216 72.0 80.0 8.0 0.02400
HKW2 BLB TH 42.0 140.0 78.0 7.97 0.00482
HKW3 DT TH 42.0 140.0 78.0 7.97 0.00482
HKW3 GT GT 3.80 380 120.0 6.00 0.04000

N B W

CU fictional currency unit
Realistic cost coefficients a, B, and y obtained from [24,34,39]

PGmln computed as a percentage of the values given in table 3.2b (see chapter 3)

TH thermal generating unit
GT gas turbine generating unit

150

Appendix

Table A.2 Generating unit cost coefficients for 400/230/110 kV transmission

system

O© 60 3 O U B~ W N ~—

[N T O R \O R (O R i e e e e e T
WD = O O 0NN kWD = O

24

No.

Units’ no. and
Identification

Local Numeral

SOL
SOL
MARL
KHER
RX
KNEP
GKW
KGW
KGW
KGW
KGW
KGW
KGW
KGW
KGW
KGW
KGW
BKAM
KWE

B

E
1
1
N
C
M7
K2
F2
G2
H2
12
K1
F1
Gl
HI
Il
A
C
B2
C2
Bl

Cl
1

min
l)G

1ype Iviw] [mMw]

TH 115.5
TH 115.5
TH 195
TH 165.0
TH 45.0
TH 103.5
TH 105.0
TH 196.5
TH 109.5
TH 109.5
TH 109.5
TH 109.5
GT 11.0
GT 55
GT 5.5
GT 55
GT 5.5
TH 224.1
TH 87.0
TH 109.5
TH 109.5
GT 55
GT 5.5
PWR 405.0

PWR pressurized water reactor generating unit

max
PG

385.0
385.0
65.0
550.0
150.0
345.0
350.0
655.0
365.0
365.0
365.0
365.0
110.0
55.0
55.0
55.0
55.0
747.0
290.0
365.0
365.0
55.0
55.0
1350.

a

S

310.0
310.0
180.0
561.0
78.0
310.0
310.0
561.0
310.0
310.0
310.0
310.0
80.0
80.0
80.0
80.0
80.0
749.0
328.1
310.0
310.0
80.0
80.0
1285

p Y

CU CU
MWh} {szh
7.85 0.00194
7.85 0.00194

9.0 0.06
7.92 0.00156
7.97 0.00482
7.85 0.00194
7.85 0.00194
7.70 0.00156
7.85 0.00194
7.85 0.00194
7.85 0.00194
7.85 0.00194
8.00 0.024
8.00 0.024
8.00 0.024
8.00 0.024
8.00 0.024
6.95 0.00099
8.66 0.00525
7.85 0.00194
7.85 0.00194
8.00 0.024
8.00 0.024
7.05 0.00073

|

Appendix 151

Appendix B
Knowledge Base Development

B.1 Applied Rule Syntax

Both forward and backward chained rules consist of heading (conclusion) and
condition parts; the latter could be made of one or more conditions connected
by conjunctive “and”. The principle of applied rule representation [40] is as
depicted in figure B.1. It can be seen that the structure of the conditions part of
the rules for both chaining methods is identical, while they differ in the
structure and number of arguments of the conclusion part. The arguments are in
particular:

e The rule’s name as first argument of the conclusion and each condition for
its identification within the inference mechanism, written in lowercase
letters.

A forward chained rule is represented as:

rule (name, [sequence rules]):-
condition (name, a_ 1, b I,c 1,ci I, log I, res 1),
condition (name, a 2, b 2, c 2, ci 2, log 2, res 2),

while a backward chained rule is similarly represented as:

rule (name, a 0, b 0, c 0):-
condition (name, a_ 1, b 1,c 1, ci 1, log I, res 1),
condition (name, a 2, b 2, c 2, ci 2, log 2, res 2),

cegeny

Figure B.1 Rule syntax

e Text elements for the transformative grammar in the form of subject (a_y),
predicate (b y), object/attribute (c_y), by combination of which various
types of sentences can be formed for user communication if required [51].
Each expression is enclosed in commas as ‘string’. The conclusion part of

152 Appendix

backward chained rules also consists of such text elements ‘a 0°, ‘b_0’, and
‘c_0’ which are tried to be matched with those of the condition part of
another rule by the inference engine, thus constituting a backward chain.
e The argument [sequence rules] of forward chained rules which consists of a
list of zero or more names of rules to be evaluated in the next sequence in
the case of positive termination.
e The control instruction (ci_y) which directs the inference mechanism where
the required factual information (case data) for the evaluation of the
corresponding condition can be obtained. This could take the form of:
= direct dialog with the system operator or the user indicated with the
assignment “#” or

= the results obtained through pre-evaluation of external routines accessed
through the Fortran-interface of the Prolog interpreter. This condensed
factual information is usually stored in object files until required by the
ES for further application in reasoning. The indication used to direct the
inference engine is made with the assignment “prolog”.

e The expected termination value (log_y) which could be positive or negative
depending on the logical results of the evaluation of the conditions part of a
rule.

e The notation (res_y) which could be any of the form “diagnose”, or “action”
which influences the behavior of the inference mechanism in testing of the
actual condition [51].

B.2 Rules for the Network State Assessment and
Enhancement Scheme

Using the rule syntax described above and the strategy of chapter 6 (see figure
6.1), the rules required for the hybrid system of network state assessment and
enhancement are as shown in figure B.2.

Appendix 153

module saekb.

/*$eject®/

body.

saekb rule(saekb,[test 1]):-

nl,write_tab(10),write("The network state problem is to be solved with expert
system'),nl.

saekb rule(test I,[limit detection]):-
condition(verify, 'yvou', 'would','like to enhance the network state by
ES’ # positive ,fix).

saekb rule(test I,[standby]):-
condition(verify, 'vou','would', 'like to enhance the network state by ES’ #,
negative, fix).

saekb rule (limit _detection, [overload detection]):-

condition (limit detection, 'there’,’is’, ‘any limits
violation’,prolog,positive,action).

saekb rule (limit detection, [exit]):-
condition (limit detection, 'there’, ’is’, ‘any limits
violation’,prolog,negative,action).

saekb rule(voltage iteration,[quit]).-

condition(voltage _iteration, 'allowable number of voltage
iteration’,'is’,'exceeded’, prolog, positive, action).

saekb rule(voltage iteration,[control selection]).-
condition(voltage iteration,'allowable number of voltage
iteration’,'is’,'exceeded’, prolog, negative, action).

saekb rule(overload iteration,[voltage detection]).-
condition(overload iteration, 'allowable number of overload

iteration’,'is','exceeded’, prolog, positive, action).

saekb rule(overload iteration,[branch overload]):-
condition (overload iteration, 'allowable number of overload
iteration’,'is','exceeded’, prolog, negative, action).

saekb rule (voltage detection, [voltage iteration]):-
condition (voltage detection, 'limits violation’,’is’, ‘voltage
related’ prolog,positive, action).

Figure B.2 Knowledge base of the hybrid system of network state assessment
and enhancement

154 Appendix

saekb rule (voltage detection, [quit]):-

condition (voltage detection, limits

volation’,’is’, ‘voltage related’ prolog,negative, action).
saekb rule (control selection, [voltage problem]):-
condition(control_selection, reactive power
controllers’, ‘are’, ‘available’,prolog, positive, action).

saekb rule (control selection, [quit]):-
condition(control_selection, reactive power
controllers’, ‘are’, ‘available’,prolog, negative, action).

saekb rule (overload detection,[overload iteration]):-
condition(overload _detection, 'limits violation’, 'is’, ‘overload
related’ prolog,positive, action).

saekb rule (overload detection, [voltage detection]):-
condition (overload detection, ‘limits violation’,’is’, ‘overload
related’ prolog ,negative, action).

saekb rule(branch _overload, [limits detection]):-
condition (branch_overload, ‘overload problem’,’is’, ‘being
solved’ prolog,positive, action).

saekb rule(voltage problem,[limits detection]):-

b

condition (voltage problem, ‘voltage problem’,’is’,
solved’ prolog,positive, action).

saekb rule(exit,[saekb]).-

nl,write_tab(10),write("The system is successfully restored to normal state").

saekb rule(quit,[saekb]):-
nl,write_tab(10),write("The problem cannot be solved, consider
other measures').

saekb rule(standby,[saekb]).-
nlwrite_tab(10),write("The problem is not yet solved").

‘being

endmod /* saekb */.

Figure B.2 Continued

Appendix 155

Appendix C

Transmission Real Power Losses

Consider a two terminal © equivalent of a transmission line shown in figure
C.1, the current at node / is given by the summation of the current in the branch
connecting node / to m and shunt charging current

I, = (Vl -V,)Yzm +y70V1

where

Yim = &im + 105, branch admittance

Yo =80 +]bo total shunt charging admittance
g, branch conductance

b branch susceptance

g, shunt conductance

b, shunt susceptance

V=V |(cosd +jsind) complex voltage at node /

V =V |(cosd +jsind) complex voltage at node m

ylm=g/m+j blm
I/ @ @ Im
—>—» >
Vi Y2 g2 Vi
v v

Figure C.1 n-equivalent of a transmission line

The real power injected into the branch at node / is given by
Yo

= Re{vl* '(Vz —Vm)'YIm +V1* % 7}

156 Appendix

_ Re{ﬂvl\z =V, V|- ((cos(,) - jsin(,))cos(,,) +jsin<6m>))) Yim +| V| YO}

=RC{QV1‘2 —‘V,Vm‘ '(COS(8[_Sm)_jSin(ﬁl _Sm))) (glm +Jblm +‘V1‘2 yo}

=qu‘ ‘Vl m‘ cos@; —o)) im — ‘Vz m‘ sin@®; —9,,) blm+‘vl‘2 £0 (C.1)

Similarly, at node m the real power injected into the branch is given by

P, =Re{V, I, [=Re{V.I, |

- Re{v,’; (Vo = Vi) Yin + V5V, %0}

Re{ﬂVm\z =V, V|- ((c0s@,,) — jsin@,,) Ncos@,) + jsin(SI))) Vi +[Vi Yzo}

P =va\2 [V, v,,|-cos@, —sm))-g,m HV,V,,|-$in@; —8,,) by +[V,| g_20 (C.2)

m

The real power loss in the m-equivalent branch is the algebraic sum of the
power flows of equations (C.1) and (C.2) given by

P, =P +P,
(C.3)
= QVI‘ +‘Vm‘2 —2-‘V,Vm‘ -€0s(0; —Sm))-g,m +‘Vl‘2 g—20+‘Vm‘2 g_20

Neglecting the shunt losses, the transmission losses P for the n,, branches of
the system under regard are given by

P =Yg, (Vi[* +[V,.[* =2:[V,V,, |- coss,, (C.4)
npr
where

0, =0,_0 voltage angular difference

Appendix 157

Appendix D

Linear Mapping between Real Numbers and Binary
Strings

To carry out the transformation between strings of a fixed length and a real
number ¥, the binary string (genotype) is first converted to a base-10 integer
X . This integer is then transformed to a real number using

§=mR + ¢ (D.1)

The values of mand¢ depend on the location and width of the parameter space.
Their expressions can be derived from the two equations

gt =mx™ +¢ (D.2)
g = mx™™ + ¢ (D.3)
where §™", §7, ™" and ™™ are respectively the minimum and maximum

possible parameters in real and integer representation. The smallest and largest
numbers that can be represented by the binary in base-10 are respectively given
by &™" =0and 8™ =2' —1, where I, is the binary string length. _
Subtracting equation (D.2) from equation (D.3) and substituting X™" =0 in
equation (D.2), we have

Amax A min
A min

Ay .
m=—————— andc=y
2k 1

Substituting these in the original equation (D.1), the required transformation is
given by

g=gmn 4L =Y ¢ (D.4)

Illustration with an Example

Given a problem where the unknown parameter ¥ being sought is known to lie
between 3.2 and 4.9, the binary string 11001 is mapped to this space as follows:

158 Appendix

string=11001, therefore its base-10 value is X=25 and 1.=5.
By using equation (D.4) the required transformation to the real value is

49-32
+—
25 -1

§=3.2 25=4.571

