Chapter 4

Implementation
of Genetic Algorithm
based Real Power Dispatch

Introduction

The operation planning of a power system is characterized by having to maintain
a high degree of economy and reliability. Economic load dispatch is one of the
options available to the engineer to operate the system. Various mathematical
programming methods and optimization techniques have been applied to solve
this problem. These methods include lambda-iteration, the base point and
participation factor, gradient based, unit-based genetic algorithm, evolutionary
algorithm, etc. In this chapter, an innovative approach based on the lambda-
based encoding GA to solve the problem of real power dispatch incorporating
the branch power flow limits as described in chapter two is presented. In this
approach, the normalized system incremental cost (lambda) was encoded within
limits as determined by the minimal and maximal incremental cost of all
actually synchronized units. By doing so, the number of bits required for coding
was drastically reduced, since the number of bits of chromosome required is
independent of the number of units. This feature therefore makes it attractive for
large scale problems. Because the lambda based encoding GA approach was
derived from the principle of well known classical technique, it was most
expedient to first implement the classical approach for comparison with the new
GA approach. Also unit based encoding GA real power dispatch was equally
implemented. Each of the three methods are first sketched highlighting their
principles of operation. The three methods were implemented and relatively
investigated on the operator training simulator used in this work, and the
preliminary results compared and conclusions drawn.

4.1 Classical Economic Load Dispatch

The economic load dispatch problem described in chapter 2 is a constrained
optimization and has been widely solved using the LaGrange function. The basic
principle associated with this method is that for continuous analytical generator
cost functions, the most economical division of load between two or more units
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is when they are operating at equal incremental cost A in CU/MWh subject to
their capabilities constraints. This is formed by augmenting the objective
function with the penalty term of violating the constraint function. The
LaGrange function is given by:

{=F +2p 4.1)

where F.. is as given by equation (2.10) and ¢ is as given by equation (2.11) in
chapter 2.

The necessary conditions for an extreme value of the objective function result by
taking the partial derivative of equation (4.1) with respect to generating units
power output and set the derivatives equal to zero, we have
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is the incremental transmission losses which is a measure of the sensitivity of
the system losses to an incremental change in the output of generating unit i
when all other generating unit outputs are kept fixed and
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is the LaGrange penalty factor of generating unit .
Equation (4.2) can be compactly written by inserting all the necessary value of
penalty factor, incremental production cost as

2Py : 1.0—-p.|—B.
A\ = GZYZ+BI or PG;':K[ 0 pl] Bl (43)
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From the equality constraint of equation (2.5) and putting the values of
individual P_ s we have
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4.1.1 Approach

These equations described above are collectively known as the coordination
equations, and the processes involved in the solution of this problem are
described in the following steps:

Step 1: Initialization and actualization of all necessary power system data. Base
case load flow is then carried out.

Step 2: Formation of bus admittance matrix and computation of impedance
matrix by taking the inverse of the bus admittance matrix.

Step 3: Calculation of incremental transmission losses using the approximate
equation as derived in [48]

np
pj zz.kgl(Pkajk _kajk) (45)
where
R cos(8, —d,) R sin(6, —8,)
a _ = . L=
A v

and R, is the real part of the element jk of the impedance matrix.

Step 4: Evaluation of system incremental cost A" for iteration L using the
equation (4.4).

Step 5: Computation of individual generating unit power output from
equation (4.3).

Step 6: Verification of the power balance condition from equation (2.11):

k=1
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g,= power balance tolerance.

If this condition is not satisfied, update the system A by computing its

new value A**! by means of extrapolation technique using the last two
successive values of A to estimate the next value [49]:

7\’,u+1 A 4 k=1 i=1

nj ng ng K
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' po_ g p-l

where superscript (u+1) indicates the next iteration being started,
superscript (u) is the iteration just completed, and (x-1) denotes the
immediately preceding iteration. Return to step 5 until the final
convergence is achieved.

Step 7: Check if the calculated individual generating units’ power output P . are

within the operating limits; if a power limit is subsequently found to be
violated then set the generating unit output at corresponding limit

P, =P2™ or P, =PE™ and eliminate the unit from the problem with
the corresponding generation-load balanced constraint fixed at

ngG nyp ngG n+ n .

Y PG =D Py + P+ Pyp, = D PG - D PG (4.8)
i=1 k=1 i=1 m=1 w=1

where

n £ number of units whose power output violate the lower limit

n 2 number of units whose power output violate the upper limit;

and return to step 3 and continue the calculations until final
convergence is achieved.

Step 8: Specifying the optimal P_s at their respective nodes and execute the

final load flow to determine appropriate generation cost, total system
losses and generating units’ power schedule.

4.1.2 Realization

Specifically for the training simulator used in this work, all the required power
system data of generating units, loads and network topology are retrieved from
the process database by the corresponding program packet of generation
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observer, load observer, and topology evaluation. An additional program
packet was developed to retrieve the generating units’ constant o, linear B and
quadratic y cost coefficients from the process database. The data are of the form
outlined in chapter 3 (see table 3.2a). In addition to the data outlined in table
3.2a, the minimum loading conditions of various types of generating units are
computed as a certain percentage of the rated power output using the
information of table 3.2b.

After all the necessary power system data have been actualized, steps 1 to 8
described above are then applied to determine the optimal generating units
power set-point schedule. An existing Newton-Raphson load flow program was
used to carry out the load flow analysis. The power balance tolerance ¢, of

equation (4.6) was specified at 0.0001% of total real power demand, and for the

0
L 0 G
first iteration in step 6, the values of A and [Z Ps, | were both set at zero.
i=1
After the final converged solution for both system A and economic loading of
the generating units has been found, a final load flow is then executed to
compute:

e the appropriate generating units power set-point schedule,

ng

e the total generation cost, Fy =Y F,(Pg;) in CU/h, and
i=1

e the total system transmission losses P_.

Initial and optimal generating units power set-point schedule and their identifiers
in GDL format are then mapped into the optimal generating unit schedule list
until they are required for further autonomous execution or for presentation to
the operator to be adjusted manually.

4.2 Innovative GA-based Secure Real Power Dispatch

The solution of the economic load dispatch problem using the classical approach
described above presents some limitations in its implementation. One of such
limitations is that the lambda-iteration method assumes the cost coefficient to be
a continuous function. The method breaks down when it is applied to a
discontinuous function with prohibited zones or large steam turbine generating
units which have a function of the form given by equation (2.8) discussed in
chapter 2. Also, there is a high tendency for this approach to be caught at the
local minima when the power system operating status is far outside the normal
situation, as for instance during and after large disturbances.
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For this reason, the method of GA was applied in this work to the active power
dispatch problem to eliminate the limitations of the lambda-iteration enumerated
above. In unit-based encoding, the number of bits constituting a chromosome
increases with the number of units which may lead to some difficulties such as
poor performance, long computational time and large memory demand for large-
scale application. For this reason, a variation of the lambda-iteration approach in
the form of a genetic algorithm was applied in this work to the real power
dispatch problem using the lambda-based encoding. By encoding the normalized
system incremental cost (lambda) within specified limits as determined by the
minimum and maximum active powers of the actually synchronized units, see
equation (4.11) instead of unit power output, the number of bits required for
coding can be considerably reduced, since the number of bits of chromosome
required is independent of the number of units. This feature therefore makes it
attractive for large scale problems. Furthermore, additional operational
constraints such as branch (line and transformer) apparent power flows limit
violations can easily be incorporated into the objective function to eliminate
branch overload problem. As will be shown later, this criterion is a dominating
factor in the application implemented in this work.

4.2.1 Approaches

For either unit-based or lambda-based encoding GA real power dispatch, the
description of the general procedure involved in their implementations is as
follows:

4.2.1.1 Initialization

The GA real power dispatch starts with the choice of appropriate GA parameters
and actualization of all the necessary power system data required for the
computational process as described in chapter 3, section 3.6.2.

4.2.1.2 Encoding and Decoding Schemes

The encoding in which the problem is to be represented in the GA must be
carefully designed to utilize the GA’s ability to efficiently transfer information
between chromosomes (strings) and the problem’s objective function. Binary
representation has been widely used for GA analysis because of the ease of
binary number manipulation and the fact that GA theory is based on the binary
alphabet. Two encoding mechanisms based on coding and decoding of equal
system incremental production cost A and generating units power output are
considered; thus the names ‘lambda based’ and ‘unit based’” GA real power
dispatch. These are described below:
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4.2.1.2.1 Lambda-based Encoding and Decoding

In this approach, equal system incremental cost A is used as coding parameter.
The number of bits will be entirely independent of the number of generating

units. The encoding parameter is the normalized system incremental cost A
within the range 0 and 1. At the initialization stage, the initial chromosomes

C=[s;], m= 1,2,...n, ; k=1,2,..b,, for n, population size using b, number
of bits are randomly generated from the sets of uniform distribution ranging over
0and 1, and s¥" €[0,1].

Coding of n, individuals is illustrated in figure 4.1 by using b=10 bits to code

the normalized system incremental cost. The resolution of the solution depends
on the number of bits used to represent the parameter. The more the encoding
bits there are, the higher the resolutions and the slower the convergence.
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Figure 4.1 Encoding scheme of normalized system incremental cost

To evaluate the individual, the encoded strings are decoded to give the real value
. . . th , ..,
equivalent of the normalized system incremental cost. For the m individual of
. dec .
the population, the decoded value A~ can be computed using

10
I
d k=1
pdee = (4.9)

20
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The normalized system incremental cost is then transformed into actual system
incremental cost by using

km :xmin + 7\431“ ) O\Imax _ kmin) (410)

sys sys sys sys

where AJ" andAJT" are respectively the minimum and maximum values of

system incremental cost determined from the actually synchronized units within
their operating loading limits using the expressions

i=12..ng 4.11)

dF;
Meys = max( l ]
PGZ’

Applying the methods of the LaGrange and Kuhn-Tucker conditions [39,68] for

. : : . th
n, synchronized generating units, the problem is then reformulated for the m
individual of the population as:

}“Z;/s =B; +2y,Pg; if P(I*?iin <Pg <Pg™
X;’;S >B; +2y,Pg if Ps; =P (4.12)

ng <B; +2y,Pg if Pgi = Pcr}ri'in

subject to power balance constraint of equation (4.7). The cost coefficients {3,
and y, are as defined by equation (2.11) and outlined in table 3.2a. Having

determined the actual system incremental cost, the generation output of each
unit can be evaluated from equation (4.12). If the computed generation output
power is outside the operating limits, adjustment is made to the corresponding
unit’s power output to operate at the lower or upper limit depending on the
situation.

This approach is illustrated with an example. Consider a system consisting of
four thermal units in which the minimum and maximum values of system

incremental cost X:;isn and Lj " have been determined to be 8.38 and 12.61

CU/MWh respectively. For individual number 4 of the population, coded with
b=15 bits in which the output of the random generator is 100011111101010, the

decoded value is computed from equation (4.9) as



Chapter 4 Implementation of Genetic Algorithm based Real Power Dispatch 57

15
Z 54 15—k
dec _ k=l —
Ay =——5——— =0.56185
27 -1
The actual system incremental cost can be determined using equation (4.10) as

ngs =[8.38+0.56185(12.61-8.38)] CUMWh =10.76 CU/MWh

Each generating unit’s power output can be computed by substituting this value
in equation (4.12).

4.2.1.2.2 Unit-based Encoding and Decoding

In this approach, each generating unit loading range is represented by a binary
number. The number of bits required to represent each unit’s output can be
calculated after the resolution in unit output has been agreed upon. Consider for
example a system consisting of n generating units each loaded within its limits

[P2in P2*]; the value P, of unit / is represented by an approximate nearest

integer bit length b} given by

b = logz{[(szaX —Ecr?zin)*' Py ]} (4.13)
A

where P, is the unit’s power output resolution, and the total string length is

obtained by concatenating the bits representing each unit. At the initialization
stage, the chromosomes of n; generating units for a population size n  are

randomly generated from the sets of uniform distribution ranging over the
minimum and maximum power output.

An example of this representation is shown in figure 4.2 for a system with the
number of generating units n_=3, each coded with bll=4 bits. To evaluate the

unit power output levels, sub-strings of the chromosomes are extracted and
decoded within the operating limits to give the real number equivalent values.

. .. th , .. .
The power output value of each generating unit i of the m individual in the
population can be evaluated using the expression, see appendix D, equation

(D.4)

) bf . ; pmax _ Pm'in
PE =PE™ + > sh, 207" Glzbf 1G (4.14)
k=1 —
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Figure 4.2 Encoding scheme of generating units
4.2.1.3 Function Evaluation and Treatment of Constraints

The evaluation process computes the fitness of each individual as a solution to
the optimization problem. The objective function has two components: the fuel
cost and penalty terms associated with system constraints violation. The system
constraints to be satisfied are:

e power balance constraints of matching the sum of load demand, substation
auxiliary power supply and system real power losses with that of generating
units power output, see chapter 2, equation (2.11); and

e branch (transformer and line) apparent power flow limit, see chapter 2,
equation (2.13).

Generating units’ minimum and maximum loading constraints are taken care of
in the encoding process as discussed above. Changes in each unit power output
computed as control variable (see section 4.2.1.1 above) depending on the
method, i.e. lambda based or unit based, are mapped into the data of their
respective power units. The power flow program is then actuated, delivering the
branches’ (lines and transformers) apparent power flows and losses associated
with each individual schedule, and the fitness of each individual constituting the
population is then computed.
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The rank-based reproduction scheme proposed by [69] was finally adopted in
this work. In this scheme, the function to be optimized is redefined to be less
than 1.0, and the constraints are mapped into a range greater than 1.0. This
ensures that all the feasible points are always preferred while at the same time
the function can be normalized in order to ameliorate the scale difference
between the ranges of constraints, and to allow the infeasible points to compete
for reproduction. The load dispatch problem taking into consideration ng,
branches’ apparent power flow limit as well as power balance constraints is then
transformed into the fitness objective function and can be computed for the m
individual of the population using

Fit =1.0+ng, - K[qH—Z(‘S |- S/ ] v o[S)|>S (4.15)
/=1

where

Base

n'g, 18 the penalty term the value of which is chosen in such a way that the
objective function is scaled below the minimum penalty value; it is assigned a
value of 1.0. K is a scaling constant expressed as a fraction of the base power

value S, (see appendix A).

Conventional GAs are formulated as maximization problem. Since the real
power dispatch problem is a minimization problem, it is transformed into a
maximization problem using

min[Fﬁ”i ]<:> max[g} (4.16)

The individual fitness is calculated from the fitness objective function of
equations (4.15) and (4.16) using the expression of the form:

frd = Lo v oS,|>8m (4.17)

{1 0+Mga - K{(pﬂ-f(‘s ‘—Smax }}

/=1

After computing the fitness of each individual, the parents then undergo the
genetic operation of selection and crossover; each pair creates a child having
some mix of the two parents. The process of selecting and mating of individuals
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continues until a new generation is reproduced. The chromosome of each
individual constituting the population is subjected to mutation. The elite
preserving strategy is also applied. Subsequently, the fitness of the individuals
of the new generation is evaluated, and this procedure continues until the
convergence criterion is reached. The algorithm is defined to converge when the
following conditions are satisfied:

e There are no branch apparent power flow limit violations AND
e the power balance constraint given by equation (4.6) is less than a certain
tolerance €, AND

o if'the average fitness of the population exceeds some fraction of the best fit in
the population (the value used here is 0.999) OR

e there is no improvement in the incumbent solution after a specified number
of generations (typical value of 5-50 generations).

If the above conditions are not met, the algorithm automatically stops at the pre-
defined maximum number of generations.

After the algorithm has converged, the most fit individual of this generation is
chosen as optimum solution to the problem. The optimal generation schedule in
form of assigned Pg;s at the respective generating units i is specified, and the
final load flow is executed to determine:

e an appropriate generation schedule,
e the total generation cost and
e the total system real power losses.

The above described general procedure for both methods is clearly depicted in
figure 4.3, and details of processes involved in the computations of the
individual fitness for lambda based encoding GA and unit based encoding GA
are respectively shown in figures 4.4 and 4.5.
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Figure 4.3 Flow chart of GA based real power dispatch strategy
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Figure 4.4 LLambda-based GA fitness evaluation process (as described in
section 4.2.1.2.1)
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Figure 4.5 Unit-based GA fitness evaluation process (as described in
section 4.2.1.2.2)

4.2.2 Realization

The processes described in section 4.2.1 were realized for both lambda and unit
based encoding schemes of the GA based economic load dispatch. At the
initialization stage, basic control parameters are defined: Population size (n,),

encoded parameter resolution, number of children per pair of parents, elite
preserving strategy and genetic operation probabilities such as crossover rate
(o) per pair of parents, mutation rate (G_) per bit and creep mutation rate (c )

m Cr

per parameter. The values used in this work are as depicted in table 4.1.
Furthermore, all the required power system data must be actualized. Specifically
for the training simulator used in this work as a substitute for a power system
control, the data of generating units, loads and network topology are retrieved
from the process database by the corresponding program packet of generation
observer, load observer, and topology evaluation as outlined in chapter 3,
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table 3.2a. An additional program packet was developed to retrieve the
generating units’ constant a, linear B and quadratic y cost coefficients from the
process database. In addition to these data, the minimum loading conditions of
various types of generating units are computed as a certain percentage of the
rated power output using the information of table 3.2b.

At the start of the evolution process, an initial population is randomly created
within the parameters’ minimum and maximum values by using a random
generator. The fitness of each individual of the population is evaluated
according to figures 4.4 and 4.5. The convergence criteria outlined above are
tested. The power balance tolerance €, was specified at 0.0001% of total real
power demand, and the improvement in generation convergence was set at 20
generations. If the convergence criteria are satisfied, the algorithm is exited,
otherwise the genetic operations of selection, crossover and mutation are
applied.

Tournament selection is used to select mates according to their fitness. The
parents then undergo uniform crossover; each pair creates a child having some
mix of the two parents. The process of selecting randomly pairs and mating the
stronger individuals is continued until a new generation is reproduced.

Table 4.1 Applied parameters for GA based real power dispatch

Parameter Value
Population size (np) individuals 20
Mutation rate (c_) per bit c =1 .75/lc-r1p *
Creep mutation rate (G_) per parameter 0.04

Uniform crossover rate (G ) per pair of parents 0.5

Elite preserving strategy? yes
Maximum number of generations (genmax) 100
Improvement in generation convergence 20

for lambda-based encoding
GA, (b=15 bits)

Parameter resolutions
for unit-based encoding GA
(b =20 bits, i=1,2,...n,))

Number of offspring per pair of parents 1

* 1, is the chromosome length ; n is the population size
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The chromosome of each individual constituting the population is subjected to
mutation and creep mutation. During the evolution process, the elite preserving
strategy is applied by checking if the fittest individual of the last population is
reproduced in the current generation; if not, a randomly selected individual is
replaced by the old elite member. From the initial generation, a new population
of the same size is generated using the genetic operations. Subsequently, the
fitness of the individuals of the new generation are evaluated, and this procedure
continues until the convergence is reached.

After the algorithm has converged, the most fit individual of this generation is
chosen as optimum solution to the problem. Specifying these optimal generation
schedule P_ s at their respective generating units, a final load flow is executed to
compute:

e appropriate generation schedule,

ng

e total generation cost F; = Z F.(Pg, ) in CU/h, and
i=1

e total system real power losses.

Initial and optimal generation set-points scheduled, the generating units’
identifiers in GDL format and their total number are then mapped into the
optimal generating unit schedule result file. This system object file of generation
control variables can be retrieved and passed on to the super-ordinate expert
system for further autonomous execution, or for presentation to the operator to
be adjusted manually as discussed in chapter 6. The results of the GA evolution
process in the form of convergence behavior and production cost reduction are
sent to a program for graphical display.

4.3 Simulation Results

Both of the above described and implemented GA approaches as well as the
LaGrange approach were tested on two different real power systems: Duisburg
110/25/10 kV municipal and a part of the German high voltage 400/230/110 kV
transmission system, both of them replicated on the operator training simulator
in full operational detail [20] and briefly described in chapter 7. A multitude of
test cases were performed on both networks, and samples of typical simulation
results obtained for the above described three approaches are presented below:
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4.3.1 Illustrative Examples with Duisburg Power System

There are 5 power units: 4 thermal units and a gas turbine unit. The overview
diagram of this system is presented in chapter 7 (see figure 7.1). The system
consists of 95 branches (lines / transformers), and contingency cases can be
considered by outage of any of the branches. Realistic generating units’ cost
coefficients given as quadratic curves were obtained from [24,34,39] and are
presented in table A.1 (see appendix A).

Scenario 1

The system was assumed to be operating in normal state with all loads supplied.
For a total system demand of 249.0 MW, the optimal power dispatch of each of
the four operating thermal generating units using the above described three
methods of classical economic load dispatch, unit based encoding GA and
lambda based encoding GA real power dispatch is as shown in figure 4.6. Each
generating unit is named in GDL format reflecting the operators’ terminology as
described in chapter 3.

S 140-

power output (MW
© o D
< <2

[}
o
1
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"HKW1 "HKW1 "HKW1 "BLA "HKW1 "BLB "HKW3 "DT

generating units

O classical approach H unit based encoding GA
Olambda based encoding GA Oinitial state

Figure 4.6 Re-dispatch of generating units for Duisburg municipal power
system (scenariol)
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From table 4.2, it can be seen that the three methods were able to solve the
economic load dispatch problem, and that the lambda based encoding GA
procures the least production cost compared with the other methods, although
connected with highest total system real losses. The classical approach has a
lower processing time compared with both GA methods.

Table 4.2 Results and comparison of three approaches for Duisburg power
system (scenario 1)

Approaches
Results Classical Unit based = Lambda
approach encoding based
GA encoding GA
Initial production cost (CU/h) 2497.94 2497.94 2497.94
Final production cost (CU/h) 2432.08 2483.21 2424.68
Total power generation (MW) 248.23 248.21 248.61
Initial total real power losses (MW) 3.05 3.05 3.05
Final total real power losses (MW) 3.04 3.00 3.11
Generations taken to converge 19 41
Processing time (seconds)** 27 85* 180*
CU is fictional currency unit ; *time taken to fulfil the convergence criteria
**measured on 25 MHz HP-Apollo workstation

The evolution behavior of both GA approaches within 100 generations is also
depicted in figures 4.7 and 4.8; to compare the convergence behavior of both
GA approaches applied to the same sample scenario, maximal and average
fitness values of individuals within generations according to equation 4.17 are
given. It took unit based encoding GA approach 19 generations (85 seconds) to
fulfil the convergence criteria defined in section 4.2.1.3 while lambda based
encoding GA approach needed 41 generations (180 seconds) to converge. Unit
based encoding GA thus converges faster in fewer generations. Lambda based
encoding GA however needs a lower time (416 seconds) to process 100
generations than unit based encoding GA (423 seconds) since its chromosome
length is shorter.
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Figure 4.7 Convergence characteristics of lambda based encoding GA for
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Figure 4.8 Convergence characteristics of unit based encoding GA for

Duisburg power system (scenario 1)
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Scenario 2

Here a scenario was created from the operating state of the network considered
in scenario 1 which led to the violation of the apparent powegetﬂow limit of
transmission line connecting substations HKW1 and OST1 (S =78.2 MVA;
S""'=58 MVA i.e. 35% overload). The three approaches of classical economic
load dispatch, unit based encoding GA and lambda based encoding GA were
applied to re-dispatch the generation in order to eliminate this overload problem
while at the same time operating at optimum state. Secured optimal real power
dispatch of each of the four on-line thermal generating units using the three
approaches are presented in figure 4.9 showing the adjustment to be made from
the initial status.

power output (MW)
=

"HKW1 "HKW1 . "HKW1 "BLA  "HKW1 "BLB "HKW3 "DT
generating units

O classical approach M unit based encoding GA
Olambda based encoding GA Oinitial state

Figure 4.9 Re-dispatch of generating units (disturbance scenario of Duisburg
power system)

Table 4.3 also depicts results of the economic load dispatch comparing the three
methods. All three methods were able to eliminate the overloads problem while
fulfilling the objective of minimizing the generation cost after the suggested
optimal dispatch has been assigned to each individual generating unit. The
lambda based encoding GA has the lowest total generation cost compared with
the other methods. Both GA approaches are inferior to the classical approach in
terms of processing time.
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Table 4.3 Summary of results and comparison of three approaches for Duisburg
power system (disturbance scenario )

Approaches
Results Classical Unit Lambda
approach based based
encoding encoding
GA GA
Initial production cost (CU/h) 1828.74 1828.74 1828.74
Final production cost (CU/h) 1724.81 1731.48 1721.68
Total power generation (MW) 168.14 168.12 168.09
Initial total real power losses (MW) 3.41 3.41 3.41
Final total real power losses (MW) 3.03 3.01 2.97
Generation convergence 16 17
Processing time (seconds)** 26 73%* 76%*

CU is fictional currency unit ;
**measured on 25 MHz HP-Apollo workstation

*time taken to fulfil the convergence criteria

----- maximum fitness average fitness
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Figure 4.10 Convergence characteristics of lambda based encoding GA for

Duisburg power system (disturbance scenario)
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The evolution behavior of both GA approaches within 100 generations is
depicted again in figures 4.10 and 4.11. The unit based encoding GA also
satisfies all the convergence criteria in fewer generations than the lambda based
encoding GA approach and has a more stable convergence behavior. It took
lambda based encoding GA 412 seconds to process 100 generations while unit
based encoding GA needed 425 seconds.
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Figure 4.11 Convergence characteristics of unit based encoding GA for
Duisburg power system (disturbance scenario)

4.3.2 Illustrative Example with 400/230/110 kV Transmission System

The real power dispatch approaches were also applied to a larger transmission
network in order to demonstrate their capability and performance. The system
under regard consists of 23 generating units. The overview diagram of this
system is as presented in figure 7.3, chapter 7. Realistic generating units cost
coefficients given as quadratic curves were obtained from [24,34,39], and
operating limits are as presented in table A.2 (see appendix). For the scenario
investigated here, there are 13 generating units actually synchronized, 10 of
which are thermal units, two gas turbine units and one pressurized water reactor
unit.
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Optimal power dispatch of each of the 13 generating units using the above
described three methods of classical economic load dispatch, unit based
encoding GA and lambda based encoding GA real power dispatch is as shown in
figure 4.12.

In table 4.4, results of the economic load dispatch are also presented comparing
the three methods. It can be seen from table 4.4 that the three methods were able
to solve the economic problem, but here the classical approach has the least
production cost compared with GA approaches, and lambda based encoding GA
is close in accuracy to the classical approach. Processing time required by both
GA approaches are higher compared with that of the classical approach.
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Figure 4.12 Re-dispatch of generating units (high voltage transmission system)

Evolution characteristics of both GA approaches in 100 generations are equally
depicted in figures 4.13 and 4.14. From both figures and table 4.4, it can be
noted that unit based encoding GA also satisfied the convergence criteria in
fewer generations than lambda based encoding GA approach. The processing
time required by unit based encoding GA is 542 seconds while lambda based
encoding GA approach needs 839 seconds. Conversely, Lambda based encoding
GA required a lower processing time to process 100 generations (1484 seconds)
compared with its unit based encoding GA (1547 seconds) counterpart since its
chromosome length is shorter.
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Table 4.4 Summary of results and comparison of three approaches
(high voltage transmission system)
Approaches
Results Classical Unitbased  Lambda
approach encoding based
GA encoding GA
Initial production cost (CU/h) 5067991  50679.91 50679.91
Final production cost (CU/h) 49666.70  50356.45 50046.41
Total power generation (MW) 5357.40 5356.45 5359.60
Initial total real power losses (MW) 52.87 52.87 52.87
Final total real power losses (MW) 52.31 51.36 54.53
Generations taken to converge 35 55
Processing time (seconds)™** 69.8 542* 839*
CU is fictional currency unit *time taken to fulfil the convergence criteria

**measured on 25 MHz HP-Apollo workstation
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Figure 4.13 Convergence characteristics of lambda based encoding GA for
high voltage transmission system
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Figure 4.14 Convergence characteristics of unit based encoding GA for high
voltage transmission system

4.3.3 Behavior of Unit based Encoding GA with the Number of Bits

In order to determine the optimal number of bits required to code each of the
generating unit, a multitude of tests was performed on the Duisburg municipal
network of scenario 2 with the number of bits varying between 10 and 35. From
table 4.5, it can be seen that the optimal number of bits required to code each
unit is 20 because it procures a good production cost and converges in fewer
generations. Also, beyond 25 bits the performance became poorer, and when the
bits per generating unit were increased to 35 (not shown in the table), the unit
based encoding GA was even unable to solve the problem.
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Table 4.5 Summary of results showing dependency of unit based encoding GA
on the number of bits

Results Number of bits per generating unit
10 15 20 25 30
Convergence time (seconds)* 259 78 70 127 110
Generation taken to converge 60 17 15 28 24

Initial production cost (CU/hr) 1829.14 1829.14 1829.14 1829.14 1829.14
Final production cost (CU/hr) 1734.22 1732.29 1732.01 1731.99 1738.46
Initial total real power losses 3.48 3.48 3.48 3.48 3.48
(MW)

Final total real power losses 3.06 3.05 3.08 3.05 3.08
(MW)

Total power generated MW) 168.16 168.15 168.08 168.15 168.18

CU is fictional currency unit *measured on 25 MHz HP-Apollo workstations

4.4 Concluding Remarks

Simulation studies conducted on both municipal and transmission networks
revealed that all the above approaches can solve the problem of economic load
dispatch. Due to the fact that branch apparent power flow limits constraint was
easily incorporated into the fitness function of the GA solution, a genetic
computation approach was preferred over the classical approach where
additional rigorous computational methods of generation shift distribution
factors and generalized generation distribution factors [43,55] are involved in
taking care of the branch constraints. Under this perspective, the higher
computational time of the GA approaches developed in this work could be
compensated. Furthermore, use of modern computer hardware could
considerably contribute to alleviate the computational time problem.

A comparative analysis of the results of both GA approaches shows that the
lambda based encoding GA is more accurate in terms of generation cost than the
unit based encoding GA, but needs more generations to converge. For large
scale application, the chromosome lengths required by unit based encoding GA
increase proportionally with the number of units. This thus leads to high
computational time and poor performance of the GA. In view of these facts, the
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lambda based encoding GA was intended to be finally dedicated as a sub-
function of a hybrid system of state assessment and enhancement as described in
chapter 6, procuring for the removal of branch overloads to normal operating
conditions from states where the system is far outside optimal operation.



