Chapter 3

Applied Software Techniques

Introduction

Several analytical techniques have been applied in solving the real and reactive
power dispatch problems described in chapter two with notable successes. There
exists a considerable amount of power system problems that are widely solved
by human experts together with either the results from the numerical analysis or
decision support. Due to inadequate modeling of the real world, incapability of
expressing the solution method employed by humans in an algorithm or
mathematical form, decision making of the operators based on fuzzy linguistic
description and analysis based on human judgement and experience, the power
system community has been motivated to explore alternative solution strategies:
Expert systems, artificial neural networks, fuzzy logic systems and evolutionary
computation techniques essentially belong to the field of Artificial Intelligence
(AI). Al systems basically try to emulate functions of human beings on a
machine.

Since this work is concerned with the application of evolutionary techniques and
heuristics to real and reactive power dispatch in order to enhance the state of a
power system, a brief overview of genetic algorithms and expert systems is
presented in this chapter. Finally, a brief survey over relevant existing data setup
software packages used in order to supply required power system data for the
sub-systems developed in this work are also presented.

3.1 Overview of Genetic Algorithm based Optimization

Genetic Algorithms (GAs), first proposed by John Holland in the 1960’s, are
numerical optimization algorithms based on principles inspired from the genetic
and evolution mechanisms observed in natural systems and populations of living
beings [14,15,16]. The method is a general one and finds widespread application
as a consequence of two fundamental issues:

e The computational code to implement GAs is quite simple and yet provides a
powerful search mechanism.

26 Chapter 3 Applied Software Techniques

e GAs are very flexible and robust schemes in that they can be applied to a
broad range of optimization problems.

The robust behavior, which is the distinguishing feature of GAs with respect to
other optimization methods, implies that GAs must differ in some fundamental
ways. These traits are described below:

e GAs search from a population of candidates and do not process only one
single solution; thus, they are resistant to being trapped in local optima.

e (GAs use probabilistic transition rules and not deterministic rules.

e GAs exploit only the payoff information of the objective function to guide
their search towards the global optimum. They do not depend on any
additional information like the existence of derivatives.

e GAs work with a coding of the problem parameters and not the parameters
themselves.

e (GAs mimic the natural evolution process.

Some recognized disadvantages inherent in GA search are:

e Large number of function evaluations, with the resulting undesirably long
execution time.

e There is no way to definitely know whether the optimal solution has been
found.

With the positive qualities highlighted above, the method has been extensively
discussed to be used in the field of power system operation and planning
[7,42,54]; rather the number of practical implementations is still low.

Binary encoding GAs are dealing with binary strings, where the number of bits
of each string simulates the genes of an individual chromosome, and the number
of individuals constitutes a population. Each parameter set is encoded into a
series of a fixed length of string symbols, usually from the binary bits which are
then concatenated into a complete string called chromosome (see figure 3.1).
Sub-strings of specified length are extracted successively from the concatenated
string and are then decoded and mapped into the value in the corresponding
search space. Other encoding mechanisms are real-valued encoding in which
real numbers are used to form the chromosomes, and Gray encoding [14,16].
However, the performance depends very much on the problem and the details of
the GA being used, and at present there are no rigorous guidelines for predicting
which encoding will work best.

Chapter 3 Applied Software Techniques 27

@ &
population
individual no. 8
1 0 1 1 1 1 1 0 0 0 1 1
— —_—— — —— .
genes of parameter 1 genes of parameter 2
N—
—
chromosomes of individual no. 8

Figure 3.1 Illustration of GA terminology

Generally, GAs implementation comprises three different phases: initial
population generation, fitness evaluation and genetic operations. The processes
involved in the implementation of conventional GAs are as described below and
comprehensively shown in figure 3.5.

3.1.1 Initial Population Generation

The GA control parameters, such as population size, crossover probability and
mutation probability (see below) are selected, and an initial population of binary
strings of finite length is randomly generated. Each of these individuals,
consisting of a number of chromosomes, represents a feasible solution to the
search problem. The solution strings are decoded back into their control
variables to compute their fitness, see below.

3.1.2 Fitness Evaluation

Each solution must be evaluated by the “fitness function” to produce a value
which determines its relative quality. Therefore, the maximum fitness, minimum
fitness and average fitness of all individuals within a generation are computed. If
a pre-defined convergence criterion is not satisfied, then it is continued with the

28 Chapter 3 Applied Software Techniques

following genetic operations of selection and reproduction, crossover and
mutation.

3.1.3 Selection and Reproduction

This mechanism attempts to apply pressure upon the population in a manner
similar to that of natural selection found in biological systems. A new
population or generation is created in which poorer performing individuals are
weeded out and the most highly fit members in a population are selected to pass
on information to the next generation. Figure 3.2a depicts a selection strategy.

This operator can be implemented in a variety of ways, although the most used
techniques are “Stochastic Tournament” and “Roulette wheel selection” [14,15]
which are discussed below:

old generation new generation

|:l> selection
mechanism

‘ individual with bad characteristics O individual with good characteristics

Figure 3.2a Selection strategy

e Roulette wheel selection: In this process, the individuals of each generation
are selected for survival into the next generation according to a probability
value proportional to the ratio of individual fitness over total population
fitness. That means the individuals with higher fitness value have higher
probability to be selected. It involves spinning a roulette wheel in which each
string occupies an area of the wheel equal to the string’s share of the total
fitness. This method is illustrated in figure 3.2b with a population consisting
of 6 individuals. Here, the individual number 4 has the highest probability to
be selected and hence of being represented in the next generation. The
selected candidates are gathered in a temporary mating pool and are ready for
further processing.

Chapter 3 Applied Software Techniques 29

Oindividual 1
W individual 2
Oindividual 3
Oindividual 4
Oindividual 5
Oindividual 6

Figure 3.2b Roulette wheel selection strategy

e Tournament selection: This is another method, computationally efficient
and effective, used to select mates. Pairs of individuals are chosen at random
from the population and the most fit of each pair is allowed to mate. Each
pair of mates creates a child having some mix of the two parents’
characteristics according to the crossover method discussed next. The pair is
then returned to the original population and can be selected again. The
process of randomly selecting pairs and mating the stronger individuals
continues until a new generation of the same number of individuals is
reproduced. This approach is illustrated in figure 3.2¢ for a population of
eight individuals.

I .

i old generation : new generation

i @ better E @
(@0 @\ (6 a9 | o(® ©
i —

E ® ® ® % o |! ® ® @
: @ i ®

e

! 1

Figure 3.2¢ Tournament selection strategy

30 Chapter 3 Applied Software Techniques

3.1.4 Crossover

This is the primary genetic operator which promotes the exploration of new
regions in the search space. It is a randomized mechanism of exchanging
information between strings. Two individuals previously placed in the mating
pool during reproduction are randomly selected. A crossover point is then
randomly selected, and information from one parent up to the crossover point is
exchanged with the other parent. Thus, two new offspring which are a mixture
of the two parents are created for the next generation. There are three important
crossover techniques normally used in GAs which are discussed below:

e Single point crossover randomly chooses a single locus (point) along the
parents and swaps all the binary bits to the right of this locus between the two
parents to form two offspring.

crossover point

parent 1 [1JoJ1]1 |1]1]1]o] offspring 1 {1 Jo J1]1 [1]o |1 |1]

parent2 [1]o |1]o |1]o|1|1] offspring 2 [1 Jo |1 Jo |1 |1 |1 |o |

Figure 3.3a Single point crossover

e Two points crossover is like single point crossover except that two random
crossover positions are selected and binary bits between the two selected
points are swapped to form the two offspring.

crossover points

parent 1 {1 JoJ1]1 1|1]1 o] offspring 1 [1 Jo J1]1 |1]o |1 o]

=

parent2 |1]o [1 o |1 fo |1 1] offspring2 |1 {0 |1]o |1 |1 |1]1 |

Figure 3.3b Two points crossover

Chapter 3 Applied Software Techniques 31

e Uniform crossover operates by uniformly selecting positions, and binary
bits at each corresponding pair of coordinates are exchanged with the same
probability o as shown in figure 3.3c. This can be highly disruptive,
especially in early generations. Parameterized uniform crossover [74]
moderates this disruption by applying a probability (typically 0.5<c _<0.8) to
the exchange of bits between strings.

parent 1 |1 {0 |1 |1]1]1 |1 o] offspring 1 |1 [0 [1 o [1 |1 |1 |1 |
parent2 [1 |0 |1 [o |1 o |1 [1] offspring2 [1 [0 |1 |1]1]o |1 |o]

Figure 3.3¢ Uniform crossover

Empirical comparison of the three techniques shows that uniform crossover
performs better than the other two methods as it tends to preserve more alleles
than the other methods [14,15].

3.1.5 Mutation

Mutation is the process of randomly changing encoded bit information for a
newly created population individual. Mutation is known as an insurance policy
to maintain search diversity within the population. It is generally considered as
secondary operator extending the search space. It is performed sparingly, and
involves randomly selecting a string and bit positions and toggling them from a
1 to 0 or vice-versa. It is used to escape from a local optimum when used
sparingly with selection and crossover.

parent 1 |1 Jo |1 [1]1]1]1]0o| = offspring1 [1 |1 |1 o1]1]1|1]

Figure 3.4 Mutation operation
3.1.6 Creep Mutation

This is an operator used to assist the GA search for optimum solution based on
an intelligent mechanism. It leaps in a random direction and distance, always
within the feasible region of parameter space. The parameter could creep one

32 Chapter 3 Applied Software Techniques

increment up or down from one of the parents values, i.e. the creep mutation
produces a parameter value that is randomly picked to be larger or smaller, as
long as it remains within the range of the appropriate parameter values.

3.1.7 Elitism

The probabilistic nature of the generation process involves the possibility that
the highest fit individual may be destroyed by the genetic operator. The elitist
strategy ensures that the most fit individual generated actually is reproduced in
the subsequent generation. After the population is generated, the GA checks to
see if the best parent has been replicated; if not, a random individual is chosen
and the chromosome set of the best individual is mapped into that individual.
This may increase the speed of domination of the population by a super
individual, but on balance it can rapidly increase the GA performance by using
the best solution as a seed for further optimization and also the speed of
convergence to global optima.

3.1.8 Treatment of Constraints

In many optimization problems like real and reactive power dispatch, there are a
number of constraints to be satisfied. The following methods reported in
literature [2,8] enable the GAs to be applied to constrained optimization
problems are summarized below:

e Infeasible solutions are discarded as soon as they are generated. This method
has been used by evolution strategies, evolutionary programming and
simulated annealing. The method does not utilize the potential information
contained in the infeasible solutions, and a lot of processor time may be
consumed searching for a feasible solution.

e Special decoder schemes are used that minimize or eliminate the possibility
of producing infeasible solutions through the standard genetic operators.

e Repairs and approximation of invalid solutions: The resulting valid solutions
may be substantially different from the originally produced solution.
Moreover, in certain problems, finding a feasible approximation of an
infeasible solution may be as difficult as the optimization problem.

e Special problem-specific recombination and permutation operators are
designed, which are similar to traditional crossover and mutation operators,
and produce only feasible solutions. Such operators are sometimes difficult
to construct and problem dependent.

Chapter 3 Applied Software Techniques 33

e Penalty terms are added to the fitness function. Unfeasible solutions are not
removed from the population, but their fitness values are degraded according
to the degree of constraints violation. This method is probably the most
commonly used method in treatment of constraints, and its implementation
variations are reported in [2,8,14,15,16]. However, the problem of this
method is the design of an appropriate penalty function that will enable the
GA to converge to a feasible sub-optimal or even optimal solution.

3.1.9 Control Parameters

Like other optimization methods, GAs use certain control parameters such as
population size, maximum number of generations, parameter resolution, genetic
operations probabilities (crossover probability, creep mutation probability and
mutation probability) and elitist strategy for their implementation. These
parameters must be selected with maximum care, as the performance of GAs
depends largely on the values used. Normally, relatively low population size,
high crossover and low mutation probabilities are recommended [15]. The
population size increases according to the problem difficulty. Typical values for
the crossover rate range from 0.5 to 1, and the mutation rate is typically very
small.

There are no conclusive results on what is the best parameter setting; most
authors report that they used what has worked well in previously reported cases.
De Jong [75] found out that the mutation rate ¢_ of 0.001 per bit, population

size n, of between 50 to 100 individuals and single-point crossover rate ¢_of 0.6

per pair of parents were optimal for the test suite considered. These settings
(along with De Jong’s test suite) became widely used in the GA community,
even though the efficiency of this parameter setting outside De Jong’s test suite
was not clear.

Somewhat later, in [60] the mutation rate c_ of 0.01 per bit, a smaller
population size n, of 30 individuals and higher crossover rate 6_of 0.95 per pair

of parents were found out to be optimal settings. This parameter setting procured
a small but significant improvement in performance over De Jong’s setting.

It was observed that no general principle about parameter setting can be
formulated a priori in view of the variety of problem types, encoding and
performance criteria that are possible in different applications. Moreover, the
optimal population size, crossover rate, and mutation rate likely change over the
course of a single run. This prompted the researchers to develop approaches to
have the parameter values adapt in real time to the ongoing search. There have

34 Chapter 3 Applied Software Techniques

been several approaches to self-adaptation of GA parameters. Two particular
mutation rates G_ given by

1.75

_10 ando =
1 m 1 .p
c c p

per bit

Om

have been investigated by Béck in [76] and were found to be satisfactory; where
1 is the total number of chromosome length and nj, is the population size.

4
i
1
initial population initialization and random generation

generation of individuals in the population
|

f

! fitness evaluation for
fitness evaluation each individual

|
|
|
X convergence?
|
|
|
|
|

i no yes

selection and mating

of fit individuals

.

I l
genetic operations
1 crossover

}

mutation

y

i

1

1

1

1

1

| create a new population and
| apply elite preserving strategy
|

v

Figure 3.5 Flow chart of conventional GA

Chapter 3 Applied Software Techniques 35

3.1.10 Convergence Criteria

The processes stop when the convergence criteria are satisfied; the most
commonly used criteria in GAs are:

e Stop the algorithm at some pre-set number of generations.

e Stop whenever the solution does not improve after a specified number of
generations.

e Stop if the average fitness of the population exceeds some fraction of the
best fit in the population.

The criteria actually applied in this work will be described in sections 4.2.1.3
and 5.2.1.3 respectively.

3.2 Micro Genetic Algorithm

It is expected of GAs to be able to find an acceptable solution within a
reasonable time when solving the optimization problem. One of the features that
distinguish GAs from other conventional search methods is the characteristics to
simultaneously deal with a population of points (solutions), thus leading to the
disadvantage of requiring a relatively large number of function evaluations. A
survey over existing population studies [15] shows that a larger population (20-
200) is generally thought to be able to find a global optimum in few generations.
Application of a small population size was proposed by Krishnakumar [61], and
the effectiveness of such so called micro GA (uGA) was tested on stationary
and non-stationary functions. The application of this approach has been reported
in [62], proving to be conceptually simple and easy to implement as an effective
search technique.

The major difference between the micro GA and the conventional GAs lies in
the choice of the population size. In the micro GA, an initial very small
population, typically of four or five individuals is randomly generated; it is then
processed by the three main GA operators except that the mutation rate is fixed
at 0.0. The algorithm thus converges quickly within a few function evaluations.

A restart procedure in which new individuals are randomly generated while
keeping a copy of the best individual of the previous converged generation
ensures the infusion of new genetic information and the retention of the previous
best individual. The genotype convergence is said to occur when less than 5%
of the bits of other individuals differ from the best individual. The flow chart of

36

Chapter 3 Applied Software Techniques

figure 3.6 shows a comparison of the conventional GA approach and the micro
GA depicting their differences.

In the investigations described later in this work, a comparison is made between
both the conventional - and micro - GA approaches.

*

;

.

.
.
.
.
.
.
.
.
.
.
.

v

initial po'pulation initialization and random generation
generation of individuals in the population

fitness fitness evaluation for
evaluation each individual
|
convergence?
no yes

crossover
restart by random
generation of four new
individuals keeping the
_ best one
. conventional micro 7'y
genetic v
operations :
1 mutation

v

&

J ‘
selection and mating of fit
individuals

create a new population and apply elite preserving strategy

genotype
convergence?

yes

Figure 3.6 Combined flow chart of micro - and conventional - GA depicting

their differences

Chapter 3 Applied Software Techniques 37

3.3 Expert Systems applied to Power System Control
3.3.1 Nature of Expert Systems

Expert systems (ES), also referred to as knowledge-based systems, are
developed to emulate the problem solving behavior of human experts in a
specific domain. The term “problem solving behavior” refers to the experience,
heuristics, procedural rules and strategies used by human experts in solving a
problem. Characteristic for the structure of ES is thus, the consistent separation
of the inference mechanism from the specialized domain knowledge stored in
the so called knowledge base. This separation of knowledge base and the
inference engine enables one to modify or upgrade the knowledge base without
influencing the inference engine. Knowledge can be represented in an expert
system by using one or more knowledge structures such as production rules,
frames, semantic networks, and objects [3,32,40].

3.3.2 Benefits of Expert Systems
Expert systems can bring the following benefits [21,22,32,37]:

e Logical structures can be well expressed due to the correspondence between
production rules and logical implications.

e The use of if - then rules structure makes the knowledge base easy to set up
and to maintain.

e Tracing the application of rules eases to implement an explanation sub-
system, thus procuring transparency in reasoning.

e Knowledge of more than one human expert can be accumulated.

e The knowledge is permanently fixed and can well be reproduced.

e Expert systems work free of emotion related factors like stress or time
pressure.

e Once set up, an expert system is inexpensive.

Although expert systems have some weakness in comparison with human
intelligence such as the limitation of knowledge as well as lacking intuition,
creativity, adaptation and learning abilities, the strong points highlighted above
make expert systems be useful as decision support tools for many applications.

38 Chapter 3 Applied Software Techniques

3.3.3 Knowledge Base
The knowledge about a particular field of interest can be classified into:

e Structural or data-based knowledge consisting of all relevant information
and relations, data or facts about the system under study. This is further
classified into dynamic and static knowledge. With special regard to power
systems, a major portion of data-based knowledge can be retrieved from the
process database of the control system [50]; this comprises constant data
such as the components of the power system, their physical parameters and
their topological interconnections as static data in the sense that they are
changed only when the model of the power system incorporated in the
process database is upgraded or modified to reflect changes in the actual
system, as well as the actual information concerning the states of breakers,
measurement values, alarms and other events as dynamic data.

e Methodical knowledge in the form of algorithms, models or rules. It is
basically to differentiate between an exact formulation, for instance in the
form of a causation model, an algorithm or logical if-then rules, and a
heuristic formulation which can be provided by if-then rules as well. For
power systems, the knowledge about the physical behavior of a certain
device in a certain situation or the ability to determine from the network
connectivity and switching states the actual topology are examples of
methodical knowledge.

Complex expert systems applied in the area of power system control use a
combination of both static and dynamic process data, algorithms, physical
models and symbolic computations, whereby the logical and heuristic rules are
usually applied to derive the higher level decisions.

Knowledge acquisition is a crucial point in the development of expert systems
because its usefulness depends strongly on the quality of the knowledge put into
the system. Experiences made in the area of power systems revealed that the
task of knowledge engineering is best performed by classical power engineers
instead of so called “knowledge engineers”; this at the same time eliminates the
possible refusal of experts yielding their expertise.

The correctness of a knowledge base can be achieved on the level of data, rule
syntax and their logical consistency by the application of corresponding
auxiliary software; on the level of the technical contents, the correctness can
only be checked by comprehensive tests, as for any large conventional program.

Chapter 3 Applied Software Techniques 39

3.3.4 Inference Engine

The inference engine of a rule based ES, as a driving force, analyzes the system
by applying the rules together with the acquired information about the problem
to reason, and provides an expert solution. It therefore deduces conclusions by
combining knowledge evaluated from the rule base and case data about the
current problem retrieved from outside by either pre-processing external
routines or through user dialogue. The rules can be matched among each other
using the following inference strategies:

e The forward chaining method, also referred to as a data-driven strategy, is
an algorithm which is used to match data to the condition of a rule. If a
combination of data elements satisfies the conditions, the data combination
is stored in a conflict set. Among all data combinations in the conflict set,
the one with the highest priority is fired. The procedure of selecting the
highest priority rule from the conflict set is referred to as conflict resolution.

e In contrast, the backward chaining method also referred to as goal-driven
strategy, tries to prove a given goal or conclusion. The advantage of this
method is the reduction in the number of external information which makes
it attractive for diagnosis rules formulation.

In forward chaining, the names of individual rules under investigation are
entered into a dynamic goal stack, which controls the processing of further rules
by the inference engine. To satisfy the goal, the inference component first tries
to satisfy all the conditions of the forward rule under consideration linked
together by logical operators ‘and’ and ‘or’; naturally a condition may also
consist of a backward chain which then is first evaluated. Having satisfied the
condition part of a forward rule, the name(s) of consequence rule(s) is (are) then
put forward in the goal stack and its evaluation succeeds. If the rule fails, the
inference engine searches for alternatives. The inference process is terminated if
the goal stack is empty.

Backward chaining tries to verify a superior condition by checking the sub-
posed pre-conditions in any depth. Failing in doing so initiates backtracking to
the last node and attempt to pursue an alternative.

3.3.5 Expert Systems in Power System Operation

The origins of ES are outside the electric utility industry. But since the mid
1980s, expert system technology has obtained wide-ranging attention of the

40 Chapter 3 Applied Software Techniques

power engineering community for applications in power systems. Specific
objectives aimed at supporting the power system operators include [21,22]:

alarm processing and reduction;

fault diagnosis;

contingency selection and security control,
preventive, emergency and restorative control;
unit commitment, fuel scheduling;
maintenance scheduling.

Control center operators benefit from using ES because they not only identify a
problem, but they can also provide the underlying reasoning used to define the
problem, and a set of recommended actions to ameliorate the problem. For
application in power systems, system information can be retrieved from the real
time process data base or a simulator. A comprehensive survey of many
applications of expert systems in electric power engineering are reported in
[21,22].

In the work considered here, expert system technology is used for the
implementation of the superior strategy employing the GA based active and
reactive power dispatch modules.

3.4 Training Simulator

In order to implement and verify the work developed in the frame of this thesis
in a realistic environment it was embedded into an existing operator training
simulator which represents the replicated power system including all physical
components and its control system [20,29,63,64,65]. This training simulator
realistically imitates the control room view on the performance of a power
system by the application of the dynamic models for power units, network and
loads as well as its SCADA/EMS environment. Therefore, both SCADA/EMS
data as well as modeling data are maintained within the process database of the
simulator, thus having all available information accessible at one and the same
place.

The Grid Data Language (GDL) data system enables the -efficient
parameterization of the simulator. At the same time, the GDL data format allows
open and transparent data exchange between the (simulated) system operation
process and the environmental systems including the work described in this
thesis.

Chapter 3 Applied Software Techniques 41

3.5 The GDL-Data System

The GDL-system enables one to describe the full set of process data of any real
power system according to substations, lines, transformers, busbars, switchgear,
protection and auxiliary equipment, including their potential topology
(connectivity) in format-free alpha-text; this also applies to power units. In the
source data, it uses the basic form of syntax given by five hierarchical levels to
describe the objects of a network with the format [64,65,66]:

*LOK”’NUM’PART[S=(A1)*S=(A2)] (3.1)

where the elements of these descriptors are:

LOK Local (consists of a maximum of 6 characters name of, e.g.,
substation or generating unit)

NUM Numeral (consists of a maximum of 4 characters name of, e.g.,
voltage level or transformer)

PART Partial (a maximum of 8 characters name of, e.g., busbar, line, bay)

A attributes (such as ‘open’, ‘closed’ or ‘disturbed’ state of switching
equipment)

S absolute species (such as switches)

*S relative species (such as remotely controlled).

The first three hierarchical levels “’”’LOK”’NUM’PART” indicate the location
of the objects, and in actual application the element symbols are replaced by the
terms in operators’ terminology. Thus an object is defined by a statement giving
its location and species.

The use of quantifier “?” in the sense of an existence quantor on any of the
hierarchical levels of GDL allows querying the process database in various
manner [66]. As for example an expression of the form

2 Y?V.AUL=?]

in query mode will cause the output of lists of location and values of upper
limits of the nodal voltages.

The GDL format is used in the simulator where the work described here was
implemented on; thus, all the data dealt with are of this format.

42 Chapter 3 Applied Software Techniques

3.6 Data Actualization

Three different sources of case data can be identified which have to be provided
for expert systems supporting power system operation:

e Immediate process data which can be directly retrieved from the process
(SCADA) database; examples would be measurement values, states of
switching equipment, or events such as alarms or breaker trips.

e Pre-processed SCADA data which may be evaluated, condensed or pre-
computed through application-specific routines, for instance the actual
system topology (derived from the system connectivity and the actual states
of switches) or the power flow.

e Information from outside the system under regard, such as power plant states
or the availability of power from a neighboring utility, which have to be
asked for by telephone calls of the operators to the corresponding control
rooms and then entered by an appropriate man-machine interface (MMI).

3.6.1 Original Process Data

Retrieving immediate process data requires that the data formats used in the
process (SCADA) database are understood by the numeric computation as well
as symbolic computation. This can be achieved on principle by appropriate
transformation interfaces. In the actual case of the work described here, the
training simulator coupled with the expert system is used which is based on the
Grid Data Language (GDL) process data system.

Due to the relationship to natural language, GDL descriptors can immediately be
embedded in an expert system’s rules as construing parts of them. This enables
the expert system to conveniently retrieve SCADA information from the GDL
process database by a corresponding interface [50,66,67]. In the present work
described here, information about the available shunt capacitor banks and
reactors and the nodes voltage feasibility range defined in the database are
retrieved from the process database by the database (DB) access routine
existing in the training simulator’s environment in query mode using GDL
descriptors of equation (3.1).

3.6.2 Pre-Processed SCADA Data

As described in [50,51], several algorithmic routines are available which
observe the power system under regard with respect to sources (power units, tie
lines), loads and network. These algorithmic routines take SCADA data as input,

Chapter 3 Applied Software Techniques 43

and are addressed by the embodiment of their calling names within the
corresponding numerical computation program for the actualization of the
information. The results of their simulations are mapped into system object files
(lists) and are made available in a predefined format to the numerical
computation program of real power dispatch, reactive power dispatch,
reactive power controller pre-selection mechanism and state assessment,
developed within the frame of this thesis, through a communication channel.
These routines are briefly reviewed as follows:

3.6.2.1 Generation Observer

This routine is a central observer which continuously monitors the operational
status of each generating unit and external tie. Besides static information such as
the generating unit’s name, type and dynamic information such as its current
status, it also provides information such as operational identifiers of
interconnected region, generating units under consideration and actual house
load power demand [50]. External power sources are modeled in lumped
fashion. The data dealt with are the minimum and maximum reactive power
capability of generating units determined from the generator power diagrams,
rated and actual power output, the technical minimum power output of different
types of generating units computed as percentage of rated power according to
table 3.2b, their real and reactive auxiliary power demands as well as generator
actual voltage set-points and their operating limits; furthermore, as information
for the real power dispatch problem, the generating units’ constant, linear and
quadratic cost coefficients. A complete list of data provided by this routine for

each of the developed modules is clearly enumerated in the left columns of
tables 3.1, 3.2a and 3.3.

3.6.2.2 Load Observer

This routine combines an observer functionality on the current supply status of
each load and a heuristic estimation of their recovery behavior. It also provides
the static and dynamic information as well as operational identifiers of loads and
reactive power compensation devices. The data are in the form of real and
reactive power (capacitive or inductive) drawn by each consumer [50]. The daily
load curves are also provided in the form of ASCII-files [41]. The corresponding
values of active and reactive powers at any particular time of the day are made
available thus making the load time dependent. A complete list of data provided
by this routine on request through the communication channel for each of the
developed modules is clearly enumerated in the middle columns of tables 3.1,

3.2a and 3.3.

44 Chapter 3 Applied Software Techniques

3.6.2.3 Network State Assessment

This routine combines topology evaluation, load observer, generation observer,
load flow, database access routine, branch (transformer and line) overloads and
voltage profile checking functions to provide the information about the state of
the network. Therefore, the topology evaluation program determines for the
power system under consideration the actual topology from the potential
topology (connectivity) lodged in the data-model and the state of the switching
elements by filtering all topologically non-relevant objects, and establishes lists
for nodes and branches [29]. This information includes the numbers and
identifiers of islands (if the system is split) with their corresponding number of
nodes. A complete list of data provided by the topology evaluation program for
each of the developed modules is clearly enumerated in tables 3.1, 3.2a and 3.3,
right columns.

3.7 Autonomous Execution of Operating Commands

Provided that remote operation from the control center is installed, actions
suggested by a decision support system can be executed autonomously; a
corresponding functionality for automatic operation of switching elements and
commands for set-point change of power units was developed and presented in
[50]. In the work described here, such functionality was used in order to enter
commands addressing generation units in the form of computed optimum real
power set-points, as well as commands for voltage control set-points into the
process database of the training simulator used, and the corresponding power
unit model responds accordingly. In case of omn load tap changing
transformers, the computed optimal tap position settings are executed
automatically by an internal message executing utility program which, before
the actual execution, checks for the remote controllability of the particular
transformer as well as the physical feasibility of the tap change. The commands
in the form of integer values of transformer steps are then passed on to the event
processing and entered into the process database of the training simulator for
further action. With regard to shunt reactances (capacitors and reactors), the
same principle applies except that the command to be passed on to the event
processor is in the form of switching ‘on’ and ‘off” the breakers and isolators of
the shunt elements. This also presupposes the remote controllability of the
switches.

Chapter 3 Applied Software Techniques

45

Table 3.1 Summary of data set required by reactive power dispatch module

Generation Observer

e generating unit’s
type, name in GDL
format

e current status

e generating unit
terminal voltages

" nominal (VGl.nom)
min

" minimum (V.)

. max
" maximum (V.)
e reactive power
capability
> o min
" minimum (Q,,)
ax

" maximum (QGZ.m)

e actual power output

act

= real (P,)
" reactive (QGiaCt)

e generating unit house
load power
requirements
= real (P,)

= reactive (Q,,)

Data Actualization Program

Load Observer

load identifiers
consumer time
dependent

" real power (P)
= reactive power

(Qp)
demand
loading status
reactive power
compensa-
tion devices

Topology Evaluation

total number of islands

number of nodes

nodal voltage levels

node locations specified in

GDL format of eqn. (3.1)

branches (transformers and

lines)

® initial and end nodes

= node’s location in GDL
format

= series resistance (T)

= series reactance (x)

* shunt conductance (g,)

* shunt susceptance (b,)
per island

on-load tap changing
transformers .

* minimum step (TS,)

)

max

* maximum step (TS,

nom

* nominal step (TS,

)
tap ratio change Tl.Step)
* phase angle (D)

per island

46 Chapter 3 Applied Software Techniques

Table 3.2a Summary of data set required by real power dispatch module

Data Actualization Program

Generation Observer Load Observer Topology Evaluation

e generating unit’s ¢ load identifiers e total number of islands
type, name in GDL e consumer time e number of nodes
format dependent e nodal voltage levels

® unit generation cost * real power (P,) e node locations specified in
coefficients " reactive power GDL format of eqn. (3.1)
= constant (o) Q) e branches (transformers and
* linear (B) demand lines)
" quadratic (y) e loading status * initial and end nodes

e current status e reactive power = Jocations in GDL

e real power capability compensa- format
* minimum (P Gl.mm) tion devices " rated apng 2rent power

] max flow (S)
" maximum (P,) . . .
_ series resistance (r)

® reactive power " series reactance (X)
capabilities - " shunt conductance (g,)
" minimum (Q;,) = shunt susceptance (b,)
" maximum (QGimaX) per island

e nominal terminal
nom
voltage (V.)
e actual power output

act

= real (P,)
" reactive (QGiaCt)

e generating unit house
load power
requirements
= real (P,)

= reactive (Qp,)

Chapter 3 Applied Software Techniques 47

Table 3.2b Technical value of minimum power output computed as a
percentage of rated power output

Generating Unit’s Type Type Minimum Power Output

Identifier PG"’"':X%,.PG"'ax *
Thermal unit (TH) 1 30
Hydro unit (HY) 2 10
Gas turbine (GT) 3 10
Pressurized water reactor unit (PWR) 4 30
Boiling water reactor unit (BWR) 5 30
*Values obtained from [12,39]

48 Chapter 3 Applied Software Techniques

Table 3.3 Summary of data set required by reactive power controller pre-
Selection mechanism

Data Actualization Program

Generation Observer Load Observer Topology Evaluation
e generating unit’s e load identifiers e total number of islands
type, name in GDL e consumer time e number of nodes
format dependent e nodal voltage levels
e current status " real power (P,) e node locations specified in
e generating unit " reactive power GDL format of eqn. (3.1)
terminal voltages Q) e branches (transformers
. nom S
" nominal (V) demand and lines)
« minimum (V."") ® loading status . 1n1t1a.1 anq end nodes
: Gi * Jocations in GDL
" maximum (V) format
e reactive power " series resistance (r)
capability . " series reactance (X)
" minimum (QGimm) = shunt conductance (g,)
SR — (QGimaX) . s'hunt susceptance (b))
per island
e actual power output
. 1 (P act)
real i o e availability of on-load tap
= reactive (Q;,) changing transformers
e generating unit house
load power
requirements
= real (P,)

" reactive (Qp,)

