Drahtlose Signal- und Energieübertragung mit Hilfe von Hochfrequenztechnik in CMOS-Sensorsystemen

Vom Fachbereich Elektrotechnik der Gerhard-Mercator-Universität - Gesamthochschule Duisburg

> zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

> > von

Dipl.-Ing. Stephan Kolnsberg

aus

Krefeld

Referent: Korreferent: Tag der mündlichen Prüfung: Prof. Bedrich J. Hosticka, Ph.D. Prof. Dr. rer. nat. W. Mokwa Mittwoch, 25. April 2001

Vorwort

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit am Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme in Duisburg, bei dessen Leiter, Prof. Dr. rer. nat. G. Zimmer, ich mich an dieser Stelle für die Möglichkeit zur Ausübung einer wissenschaftlichen Tätigkeit auf dem äußerst interessanten Gebiet der vorliegenden Dissertation bedanken möchte.

Ein besonderer Dank gilt Prof. B. J. Hosticka, Ph.D., der mir in zahlreichen Gesprächen viele nützliche Anregungen unterbreitete und durch seine kontinuierliche Förderung sowie sein entgegengebrachtes Interesse sehr zum Gelingen dieser Arbeit beigetragen hat.

Ebenso waren die Zusammenarbeit und Gespräche mit anderen augenblicklichen und ehemaligen Mitarbeitern des IMS während meiner Promotionszeit sehr aufschlußreich und förderlich. Insbesondere möchte ich in diesem Zusammenhang die Herren Dirk Weiler, Dr. Dirk Hammerschmidt, Ralf Ochsenbrücher, Thomas van den Boom, Karsten Stangel, Dirk Teßmann, Peter Fürst, Thorsten Kneip, Dr. Markus Schwarz, Dr. Jürgen Niederholz, Dr. Lutz Ewe, Dr. Hoc Khiem Trieu, Dr. Gerd vom Bögel und Michael Niederholz nennen. Des weiteren möchte ich ausdrücklich bemerken, daß bei allen Mitarbeitern des IMS stets die Bereitschaft herrschte, schnell und unproblematisch zur Lösung von Problemen beizutragen.

Herrn Prof. Dr. rer. nat. W. Mokwa danke ich für die Übernahme des Korreferates.

Meiner Familie danke ich für das entgegengebrachte Verständnis und die Entlastungen im privaten Bereich. Mein besonderer Dank gilt meiner Frau, die mir durch ihr Verständnis und die damit verbundenen Entlastungen während der gesamten Zeit das erhöhte Engagement zur Anfertigung der Arbeit ermöglichte.

Duisburg, im Juni 2000 Stephan Kolnsberg

Inhaltsverzeichnis

VORWOI	RT	II
INHALTS	VERZEICHNIS	III
FORMEL	ZEICHEN UND ABKÜRZUNGEN	VI
ABBILDU	JNGSVERZEICHNIS	XVI
1 EIN	LEITUNG	1
2 GRU	INDLAGEN DER DRAHTLOSEN SIGNAL- UND ENERGIEÜBERTRAGUNG	1
2.1	Unterscheidungsmerkmale von RFID-Systemen	6
2.1.1	Frequenzbereiche und Wellenlängen	6
2.1.2	Übertragungsdistanz und Energieversorgung	10
2.1.3	Datenübertragung	11
2.2	Grundlegende Funktionsweise	13
2.2.1	1-Bit-Transponder	14
2.2.2	Mikroelektronisch aufgebaute Transceiver	17
2.3	Erweiterung zu RFIDS-Systemen	
2.3.1	Integrierbare Sensoren	29
2.3.1.1	Drucksensor	
2.3.1.2	Temperatursensor	
2.3.1.3	Beschleunigungssensor	
3 PHY	SIKALISCHE GRUNDLAGEN FÜR PASSIV VERSORGTE RFID- UND RFIDS-SY	STEME.39
3.1	Magnetischen Feldkomponenten im Nah- und Fernfeld	
3.2	Berechnung des Kopplungsfaktors in Abhängigkeit der Übertragungsdistanz	43
3.2.1	Wahl des Übertragers	
3.2.2	Äquivalente Rauschbandbreite	61
3.2.3	Abschätzung der benötigten Eingangsleistung	66
3.2.4	Internationale Zulassungsvorschrift	69

4	UNTERSUCHUNG VON DIGITALEN MODULATIONSVERFAHREN FÜR CMOS	
	TRANSCEIVER	72
4.1	Digitale Modulationsverfahren	73
4.2	Festlegung eines Gütefaktors zur Bestimmung des günstigsten Modulationsverfahrens	74
4.2.1	Betrachtung der Bitfehlerrate P.	75
422	Abschätzung der Hardware-Komplexität bezogen auf den Stromverbrauch von Detektoren	77
423	Auswertung des Gütefaktors	80
1.2.5	Retrachtungen zum Signal-Übertragungsmodel	00
л. Л З 1	Einfluß des eingekonnelten Kanalrauschens	01
4.3.1	Potrochtungen zum Detaktor Model	20
4.5.2	Betrachtungen zum Detektor Model.	04
4.5.2.1	Bestimmung der minimelen Eingengespennung des Komparators	00
4.3.2.2		90
5	CMOS SCHALTUNGSTECHNIK FUR PASSIV VERSORGTE TRANSCEIVER	92
5.1	Prinzipielle Architektur eines passiv versogten RFIDS-Transceiver-ICs	92
5.2	Schaltungskomponenten des RF-Frontends eines passiven Transceivers	94
5.2.1	Schaltungsblock "Versorgung" eines RF-Frontends	96
5.2.1.1	Gleichrichtung	97
5.2.1.2	2 Spannungsbegrenzung	103
5.2.1.3	B ESD-Schutz	106
5.2.1.4	4 Biasstromquelle	106
5.2.1.5	5 Spannungsregelung	109
5.2.2	Schaltungsblock "Taktextraktion" eines RF-Frontends	111
5.2.3	Schaltungsblock "Daten" eines RF-Frontends	115
5.2.3.1	ASK-Modulator auf der Transceiverseite	116
5.2.3.2	2 Hüllkurvendemodulator	118
5.2.3.2	2.1 Verteilte RC-Filter	120
5.2.3.2	2.2 Hysteresekomparator	122
6	ANWENDUNGEN VON CMOS-TRANSCEIVER	128
6.1	Medizinische Anwendungen	128
611	Retina Implantat System zur Netzhautstimulation	129
6111	Retina Encoder	132
6.1.1.2	2 Telemetriceinheit	132
6.1.1.3	3 Retina Stimulator	140
6.1.1.4	4 Retina Implantat	143
6.1.1.5	5 Messungen der diskret aufgebauten Übertragungsstrecke	144
6.1.1.6	5 Meßergebnisse an einem Retina-Implantat	147
6.1.2	Intraokulares Drucksensorsystem	151
6.1.2.1	Aufbau des implantiebarem Transceiverchips mit Drucksensor, Temperatursensor und Sensorelektronik.	152
6.1.2.2	2 EEPROM zur Speicherung des ID-Kodes	154
6.1.2.3	B Druck- und Temperatursensor mit ihren Sensorausleseschaltungen	155
6.1.2.4	Drahtlose Übertragung der Meßergebnisse	161

6.1.2.	.5	Realisierung des intraokularen Drucksensorsystems	162
7	ZUSAN	IMENFASSUNG UND AUSBLICK	166
8	LITER	ATURVERZEICHNIS	170
A	ANHAN	NG	
A.1		Transformatorische Kopplung	
A.2		Übertragungsfunktionen eines Übertragers mit beidseitigen Resonanzschwingkreisen	
A.2.1	l	Übertragungsfunktion H _I (s)	
A.2.2	2	Übertragungsfunktion H _U (s)	190
A.3		Berechnung der äquivalenten Bitfehlerrate Baq für weißes Rauschen	193
A.4		Digitale Modulationsverfahren	196
A.4.1	1	Amplitudentastung (ASK)	197
A.4.2	2	Frequenzumtastung (FSK)	
A.4.3	3	Phasenumtastung (PSK)	
A.4.3	.1	Zweiphasenumtastung (BPSK)	205
A.4.3	.2	Vierphasenumtastung (QPSK)	206
A.4.3	.3	I/Q-Modulator	208
A.4.3	.4	Minimum Shift Keying (MSK)	212
A.4.3	.5	Gaussian filtered Minimum Shift Keying (GMSK)	213
A.4.4	1	Vergleich der Modulationsverfahren für einen Einsatz bei CMOS Transceivern	

Formelzeichen und Abkürzungen

$\alpha_{\rm R}$	linearer Temperaturkoeffizient eines Widerstandes
β	Steilheitskonstante des MOS-Transistors
ΔC	Kapazitätshub eines Drucksensorelements
Δf_{T}	Frequenzhub
$\Delta \phi_T$	Phasenhub
ΔR	Widerstandsänderung
ΔT	zeitliche Differenz
ΔU	Spannungsänderung
Φ	Streufluß
$\Phi_{ m m}$	magnetischer Fluß
η	Wirkungsgrad einer Antenne
η_F	Flächenwirkungsgrad
φ	Phasenwinkel
Φτ	Phasenwinkel einer Trägerschwingung
Φ _{Tw}	Wechselanteil eines Phasenwinkels einer Trägerschwingung
λ	Wellenlänge
μ_0	magnetische Feldkonstante
ν	Querkontraktionszahl
θ	Rotationswinkel
σ	Rückstreuquerschnitt, Streufaktor

τ	Zeitkonstante
τ_k	Zeitkonstante eines kontinuierlichen RC-Filters
$ au_{ m v}$	Zeitkonstante eines verteilten RC-Filters
ω	Kreisfrequenz
ω_0	Resonanzfrequenz
Wres	Resonanzfrequenz eines lose gekoppelten Systems
ω _S	Kreisfrequenz der Signalschwingung
ω _Γ	Kreisfrequenz der Trägerschwingung
Ψ	verketteter magnetischer Fluß
A_E	Emitterfläche eines Bipolartransistors
ASK	Amplitude Shift Keying - Amplitudentastung
A _T	Fläche der Transceiverspule
В	Flußdichte
В	Bandbreite
B _{äq}	äquivalente Rauschbandbreite
$B_{\ddot{a}q\ddot{U}}$	äquivalente Rauschbandbreite eines Übertragers mit Übertra- gungsfunktion in Abhängigkeit der Spannung
B _{HF}	Bandbreite im hochfrequenten Übertragungskanal
BMBF	Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
B _N	Nyquist-Bandbreite
BPF	Bandpaßfilter
B _{Praxis}	Bandbreite, die in der Praxis verwendet wird.
BPSK	Bi Phase Shift Keying – Zweiphasenumtastung
HI	Übertragungsfunktion des Übertragers in Abhängigkeit des Stromes
С	Kapazität

c	Lichtgeschwindigkeit
c' _{ox}	Kapazitätsbelag
C ₀	Sensorgrundkapazität
CCD	Charge-Coupled-Device
C _{fix}	fester Kapazitätswert
C _{Lmin}	minimale Knotenkapazität
Cr	Resonanzkapazität
CRC	Cyclic Redundancy Check
C _{Sensor}	Kapazität des Drucksensors
C _{temp}	Kapazität zur Temperaturauslese
d	binäres Datenwort
d	Abstand zwischen zwei Spulen
D	Membranbiegesteifigkeit
DBPSK	Zweiphasenumtastung mit Differenzkodierung
d _{Fernfeldgrenze}	Fernfeldgrenze
D _n	Einstein-Relation
D _{nB}	Elektroden-Diffusionskonstante in der Basis
DSP	digitaler Signalprozessor
d ₀	Abstand zwischen den Elektroden des Drucksensors bei Vakuum
E	Elastizitätsmodul
E	Signalenergie
EAS	Electronic article surveillance – elektronische Artikelsicherung
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMV	Elektromagnetische Verträglichkeit
ERM	Electromagnetic compatibility and Radio spectrum Matters
ESD	Electro Static Discharge – Elektrostatische Entladung
ETSI	European Telecommunications Standards Institute

f	Frequenz
f_b	Grenzfrequenz eines verteilten RC-Gliedes
f_{Bit}	Frequenz eines Übertragungsbits
FDX	Vollduplexverfahren
f _H	Hilfstaktfrequenz
FM	Frequenzmodulation
f _{Oszillator}	Frequenz des Ausleseoszillators
$\mathbf{f}_{\mathbf{s}}$	Sendefrequenz
f _S	Signalfrequenz
FSK	Frequency Shift Keying - Frequenzumtastung
\mathbf{f}_{T}	Trägerfrequenz
f_{Tw}	Wechselanteil der Trägerfrequenz
GBW	Gain Band Width - Verstärkungsbandbreiteprodukt
GLEI	Gleichrichter
GMSK	Gaussian filtered Minimum Shift Keying
h	Membrandicke
Н	magnetische Feldstärke
Н	Übertragungsfunktion
HDX	Halbduplexverfahren
HF	Hochfrequenz
HI	Übertragungsfunktion des Übertragers in Abhängigkeit des Stromes
H _k	Übertragungsfunktion eines kontinuierlichen RC-Filters
H _U	Übertragungsfunktion des Übertragers in Abhängigkeit der Span- nung
Hü	Übertragungsfunktion des Übertragers
$H_{\rm v}$	Übertragungsfunktion eines verteilten RC-Filters
Hz	z-Komponente der magnetischen Feldstärke

i	Kleinsignalstrom
I ₀	konstanter Strom (Biasstrom)
I _{aus}	Ausgangsstrom
IC	Integrated Circuit – integrierte Schaltung
I _C	Kollektorstrom
ID	Identifikationssystem
i _D	Strom durch den Drainanschluß eines MOS-Transistors
i _{Di}	Strom durch eine Diode
IDS	Identifikations-und Sensor-System
I _{ein}	Eingangsstrom
I _{RL}	Strom durch den Lastwiderstand
I _S	Transportstrom
ISM	Industrial-Scientifical-Medical
k	Boltzmannkonstante
k	Kopplungsfaktor
Κ	Kettenmatrix
Κ	Anzahl der Perioden einer Übertragung
KOMP	Komparator
k _{1,2}	Technologieparameter
L	Transistorlänge
L	Eigeninduktivität
LSB	Least Significant Bit
m	Modulationsgrad
Μ	Modulationsindex
М	Gegeninduktivität
М	Anzahl der Bit eines Wortes
M _{1k}	Transistorennummerierung

MESAflex	Membran elastisch gekoppelte Siliziumanordnung auf flexiblen Substrat
MSB	Most Significant Bit
MSK	Minimum Shift Keying
MULT	Multiplizierer
Ν	Flächenverhältnis zweier Bipolartransistoren
Ν	Anzahl der gezählten Pulse
Ν	Rauschleistung
Ν	Anzahl der Wörter einer Übertragung
N _D	Anzahl der parallel geschalteten Drucksensorelemente
N ₀	Rauschleistungsdichte
N_1	Windungszahl der Spule der Basiseinheit
N_2	Windungszahl der Transceiverspule
OOK	On-Off-Keying
OSB	Oberes Seitenband
p	Druck
Р	Leistung
P _A	Wirkleistung
P _{AM}	Leistung einer amplitudenmodulierten Schwingung
P _{chip}	Leistungsaufnahme eines Mikrochips
Pe	Bitfehlerrate
P _{e,äq}	äquivalente Bitfehlerrate
P _E	Empfangsleistung
PLL	Phase-Locked –Loop - Phasenregelschleife
PM	Phasenmodulation
p _N	Nenndruck
P _{OSB}	Leistung des oberen Seitenbandes

P _{refl}	vom Transceiver reflektierte Leistung
PS	Phasen-Shifter
Ps	Strahlungsleistung
PSK	Phase Shift Keying, - Phasenumtastung
P _T	Leistung einer Trägerschwingung
P _{USB}	Leistung des unteren Seitenbandes
P _V	Verlustleistung
p ₀	Druck bei Vakuum
P ₁	Eingangsscheinleistung
P _{1max}	maximale Eingangsscheinleistung
P ₂	Wirkleistung am Verbraucher
q	Elementarladung
Q _B	Basisladungen
QPSK	Vierphasenumtastung
r	Roll-off-Faktor
r	Radius
R	Widerstand
R ₀	Bezugswiderstand
R _A	Realteil der Antenneneingangsimpedanz
R _{ab}	Abstand des Transceivers zur Sendeantenne
r _B	Radius der Spule der Basiseinheit
RFID	Radio Frequency Identification
RFIDS	Radio Frequency Identification and Sensors
R _L	Lastwiderstand
R _{L1}	Verlustwiderstand der Spule der Basiseinheit
R _{L2}	Verlustwiderstans der Transceiverspule
R _s	Strahlungswiderstand

r _{sens}	Radius eines Drucksensorelements
r _{sq}	Square-Widerstand
r _T	Radius der Transceiverspule
R _T	temperaturabhängiger Widerstand
R _v	Verlustwiderstand
S	Empfindlichkeit
S	komplexe Frequenz
SEQ	Sequentielles System
SIMOX	Separation-by-Implanted-Oxygen
SNR	Signal zu Rauschverhältnis
SRD	Short Range Devices
t	Zeit
Т	Temperatur
Т	Zeitdauer
T _{aa}	äquivalente Rauschbandbreite eines Übertragers mit Übertra-
▲ aq	gungsfunktion in Abhängigkeit des Stromes
T _{Bit}	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits
T _{Bit} t _{max}	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit
T _{Bit} t _{max} t _{min}	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit
Taq T _{Bit} t _{max} t _{min} TPF	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter
Taq T _{Bit} t _{max} t _{min} TPF T _s	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer
Taq T _{Bit} t _{max} t _{min} TPF T _s T _S	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer Periodendauer eines Signals
Taq T_{Bit} t_{max} t_{min} TPF T_s T_S T_T	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer Periodendauer eines Signals Periodendauer einer Trägerschwingung
Taq T_{Bit} t_{max} t_{min} TPF T_s T_S T_T T_0	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer Periodendauer eines Signals Periodendauer einer Trägerschwingung Bezugstemperatur
Taq T_{Bit} t_{max} t_{min} TPF T_s T_S T_T T_0 U	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer Periodendauer eines Signals Periodendauer einer Trägerschwingung Bezugstemperatur Spannung
Taq T_{Bit} t_{max} t_{min} TPF T_s T_s T_T T_0 U U_2	gungsfunktion in Abhängigkeit des Stromes Periodendauer eines Übertragungsbits maximale Ladezeit minimale Ladezeit Tiefpaßfilter Schrittdauer Periodendauer eines Signals Periodendauer einer Trägerschwingung Bezugstemperatur Spannung Wechselspannung

U_0	Gleichspannung
U _{ASK}	Spannung bei Amplitudentastung
U _{aus}	Ausgangsspannung
U _{BE}	Basis-Emitter Spannung
U _{Bias}	Referenzspannung
U _{BPSK}	Spannung bei Zweiphasenumtastung
U _{DD}	Betriebsspannung - Obergrenze
u _{Di}	Spannung über eine Diode
U _{ein}	Eingangsspannung
U _{ein-}	invertierende Eingangsspannung des Komparators
$U_{\text{ein+}}$	nicht invertierende Eingangsspannung des Komparators
U _F	Flußspannung einer Diode
U _{FSK}	Spannung bei Frequenzumtastung
U _{GS}	Gate-Source-Spannung
Ui	Induzierte Spannung
u _M	Modulationsprodukt
U _{PSK}	Spannung bei Phasenumtastung
U _Q	Quellenspannung
U _{QPSK}	Spannung bei Vierphasenumtastung
u _S	Signalschwingung
u _{SB}	Seitenschwingung
USB	Unteres Seitenband
U _{SH}	Schaltschwelle von Low- nach High-Pegel
U _{SL}	Schaltschwelle von High- nach Low-Pegel
u _T	Trägerschwingung
UT	Schwellenspannung eines MOS-Transistors
U _{th}	thermische Spannung

U _{TS}	Ausgangsspannung eines Temperatursensors
W	Transistorweite
X _A	Imaginärteil der Antenneneingangsimpedanz
Z	Durchbiegung

Abbildungsverzeichnis

5
6
7
14
19
27
30
31
34
35
37
41
44
47
48
49
50
68
70

	Rauschverhältnis SNR _{max}	76
Bild 4.2:	Aufbau eines kohärenten Detektors	78
Bild 4.3:	Aufbau des inkohärenten Detekors	78
Bild 4.4:	Aufbau des Detektors für das Verfahren mit DBPSK-Modulation	78
Bild 4.5:	Aufbau der inkohärenten ASK- und FSK-Detektoren	79
Bild 4.6:	Signal-Übertragungsmodel	81
Bild 4.7:	Übertragungskanalmodel	82
Bild 4.8:	Detektor Model eines Hüllkurven-Demodulators	84
Bild 4.9:	Rauschmodel des Komparators	85
Bild 4.10:	Definition der Wortbreite M	86
Bild 4.11:	Definition der Periodenlänge NM Bit	87
Bild 4.12:	Betrachtung einer Nachricht aus K Perioden	88
Bild 4.13:	Betrachtung unterschiedlicher Fehler in einer Nachricht (Oben: 1/2 LSB-	
	Fehler zu jedem Zeitpunkt; Mitte: 1 einzelner MSB-Fehler über die ganze	
	Nachricht; Unten: fehlerfrei)	89
Bild 5.1:	Architektur eines passiv versorgten RFIDS-Transceiver-ICs	93
Bild 5.2:	Schaltungsblöcke eines RF-Frontends und ihre Eingangs- und	
	Ausgangsbezeichnungen	95
Bild 5.3:	Schaltungsblock "Versorgung" eines RF-Frontends	96
Bild 5.4:	Übertragungscharakteristik einer idealen und einer Halbleiterdiode	97
Bild 5.5:	Übertragungscharakteristik eines als Diode geschalteten NMOS-Transistors	98
Bild 5.6:	Einweggleichrichtung mit einem MOS-Transistor	99
Bild 5.7:	Schematische Darstellung der Spannungsverläufe einer	
	Einweggleichrichtung	99
Bild 5.8:	Funktionsprinzip eines regelbaren Gleichrichters mit einem gesteuerten	
	Schalter	100
Bild 5.9:	Realisierung des regelbaren Gleichrichters in einer CMOS-Technologie	101
Bild 5.10:	Schematische Darstellung der Spannungsverläufe an einem Gleichrichter mit	
	einem gesteuerten Schalter	102
Bild 5.11:	Spannungsbegrenzung für induzierte Spannung bei Versorgungsspannungen	
	kleiner 5 V	103
Bild 5.12:	Spannungsbegrenzung für induzierte Spannungen bei	
	Versorgungsspannungen größer 5 V	104
Bild 5.13:	Strom-Spannungsabhängigkeit bei der Überspannungsschutzschaltung	105

Bild 5.14:	ESD-Schutzstrukturen auf einem Siliziumchip: links mit Halbleiterdioden	
	und rechts mit als Diode geschalteten Transistoren	106
Bild 5.15:	Aufbau einer konstanten Stromquelle	107
Bild 5.16:	Aufbau einer Spannungsregelung	110
Bild 5.17:	Schaltungsblock "Taktextraktion" des RF-Frontends	111
Bild 5.18:	Taktextraktion mit einem Inverter und eingebauter Hysterese der	
	Schaltschwelle	112
Bild 5.19:	Zeitverlauf der Taktextraktion	113
Bild 5.20:	Taktextraktion mit einer Schmitt-Trigger-Schaltung	114
Bild 5.21:	Blockschaltbild einer Phasenregelschleife (PLL)	115
Bild 5.22:	Schaltungsblock "Daten" des RF-Frontends	116
Bild 5.23:	ASK-Modulator	117
Bild 5.24:	ASK-Modulator mit einer OOK-Modulation	118
Bild 5.25:	Architektur des Hüllkurvendemodulators	119
Bild 5.26:	Querschnitt durch ein verteiltes RC-Glied	120
Bild 5.27:	Querschnitt durch ein konzentriertes RC-Glied	121
Bild 5.28:	Funktionsweise des Hysteresekomparators	123
Bild 5.29:	Hysteresekomparator als differentielle Eingangsstufe	124
Bild 6.1:	Architektur des Retina Implantat Systems zur Netzhautstimulation	130
Bild 6.2:	Blockschaltbild des Retina Implantat Systems	131
Bild 6.3:	Blockdiagramm der Algorithmenabläufe zur Generierung der Ortsfilter, die	
	den individuellen rezeptiven Feld-Funktionen entsprechen	133
Bild 6.4:	Dynamik der Pixel	134
Bild 6.5:	Architektur des logarithmischen Bildsensors mit 128 x 128 Pixeln	135
Bild 6.6:	Chipphoto des 128 x 128 CMOS-Bildsensors	136
Bild 6.7:	Aufnahme der 128 x 128 CMOS-Kamera	137
Bild 6.8:	Blockschaltbild der Telemetrieeinheit	139
Bild 6.9:	Chipphoto des integrierten Transceivers	140
Bild 6.10:	Blockschaltbild der Stimulationselektronik	141
Bild 6.11:	Chipphoto der integrierten Stimulationselektronik	142
Bild 6.12:	Darstellung des aufgebauten Retina-Implantates	143
Bild 6.13:	Hohe flexible Siliziumteststrukturen (links eine mit einer Vakuumpinzette	
	angehobene Struktur und rechts ein um 90° gebogener Siliziumchip)	144
Bild 6.14:	Aufbau der diskreten Übertragungsstrecke	145

Bild 6.15:	Messung der mit den Daten modulierten Trägerschwingung bei	
	unterschiedlicher Zeitauflösung auf der Seite des Transceivers	145
Bild 6.16:	Meßergebnisse der demodulierten und dekodierten Daten des Transceivers	
	bei unterschiedlichen Zeitauflösungen	146
Bild 6.17:	Ausgangssignale an zwei Elektroden der Stimulationselektronik über einem	
	27 k Ω Widerstand abgegriffen	147
Bild 6.18:	Darstellung des angeschlossenen Transceivers im Retina-Implantat	147
Bild 6.19:	Messung der mit einer externen Gleichrichterdiode gewonnen	
	Versorgungsspannung (linke Seite) und der anschließend auf dem Chip	
	geregelten digitalen Versorgungsspannung (rechte Seite)	148
Bild 6.20:	Messung der demodulierten Daten im Transceiver bei unterschiedlicher	
	Zeitauflösung	148
Bild 6.21:	Messung des extrahierten und anschließend durch den Digitalteil	
	heruntergeteilten Taktes	149
Bild 6.22:	Messung der dekodierten Daten im Transceiver bei unterschiedlicher	
	Zeitauflösung	149
Bild 6.23:	Darstellung der angeschlossenen Stimulationselektronik	150
Bild 6.24:	Messung des aus den Daten in der Stimulationselektronik umgesetzten	
	Stromes über zwei Elektroden an einem 27 k Ω Widerstand	150
Bild 6.25:	Architektur des intraokularen Drucksensorsystems	152
Bild 6.26:	Blockschaltbild des Transceiverchips mit einer externen Antennenspule	153
Bild 6.27:	Blockschaltbild der Struktur des EEPROMs	154
Bild 6.28:	Aufbau einer EEPROM-Zelle	155
Bild 6.29:	Das Prinzip der Sensorausleseschaltung	156
Bild 6.30:	Änderung der Sensorkapazität in Abhängigkeit des Drucks	157
Bild 6.31:	Schaltungstechnische Realisierung der Sensorausleseschaltungen	157
Bild 6.32:	Zeitdiagramm der Auflade- und Entladevorgänge des Oszillators	159
Bild 6.33:	Zeitdiagramm der Meß- und Übertragungszyklen	161
Bild 6.34:	Chipphoto des intraokularen Drucksensorsystems	162
Bild 6.35:	Messung des Drucksensors mit verschiedenen Durchmessern d der	
	Drucksensorelemente	163
Bild 6.36:	Kommunikation zwischen dem integrierten Chip und der externen	
	Basiseinheit	164
Bild 6.37:	Prototyp des intraokularen Drucksensorsystems	165

Bild A.1:	Verkettung zweier gekoppelter Spulen a) nur Spule 1 stromdurchflossen b)	
	nur Spule 2 stromdurchflossen	180
Bild A.2:	Schaltsymbole der gekoppelten Spulen a) gleichsinnig gewickelte Spulen, b)	
	gegensinnig gewickelte Spulen	185
Bild A.3:	Resonanzübertrager mit beidseitigen Resonanzschwingkreisen	187
Bild A.4:	Zeitfunktion einer Amplitudentastung	198
Bild A.5:	Spektrum einer Amplitudentastung	199
Bild A.6:	Amplitudentastung zwischen zwei unterschiedlichen	
	Versorgungsspannungen	200
Bild A.7:	Zeitfunktion einer phasenkontinuierlichen Frequenzumtastung	202
Bild A.8:	Spektren bei Frequenzumtastung mit verschiedenem Modulationsindex	203
Bild A.9:	Zeitfunktion einer Zweiphasenumtastung	205
Bild A.10:	Spektrum einer Zweiphasenumtastung	206
Bild A.11:	BPSK-Modulator und zugehöriges Phasendiagramm	206
Bild A.12:	Zeitfunktion der Vierphasenumtastung	207
Bild A.13:	Spektrum bei Vierphasenumtastung	208
Bild A.14:	Aufbau eines I/Q-Modulators	209
Bild A.15:	Phasenzustandsdiagramm der Vierphasenumtastung	210
Bild A.16:	Phasenzustandsdiagramm einer 16-QAM	211