Abbildungsverzeichnis

1.1	Spannungs-Dehnungs-Diagramme bei a) stetigem b) unstetigem Über- gang vom elastischen in den plastischen Verformungsbereich	3
1.2	Belastungen eines Gelenk-Arm-Systems	4
1.3	Wirkung von Belastunggrößen auf ein elastisches Handhabungssy- stem für schwere Lasten	6
1.4	Übersicht der Teilprobleme für die Erfassung der dynamischen Biege- und Torsionsbelastung an Gelenk-Arm-Systemen von Schwerlasthand- habungssystemen	7
2.1	Definition des allgemeinen, räumlichen Spannungszustands im Werk- stoff	10
2.2	Verformungen eines Trägers mit einem auf der Oberfläche aufgekleb- ten Faser-Bragg-Gitter-Dehnungssensor bei einer einachsigen Kraftein- wirkung	10
2.3	Zur Definition der Verformungen an der Oberfläche (ebene Darstellung)	12
2.4	Übersicht über die Brechungsindexänderung von Glas für verschiede- ne Dotierungen und Belichtungswellenlängen	14
2.5	Prinzip des Faser-Bragg-Gitters (FBG)	15
2.6	Simulationsergebnisse der Reflexionsspektren verschiedener Bragg-Gitter- Ausführungen nach der Transfermatrix-Methode	- 17
2.7	Simulierte Reflexionsspektren und Brechungsindexverläufe eines Standard und eines gaußförmig apodisierten Bragg-Gitters nach der Transfer-	1-
	matrix-Methode	18
2.8	Schematische Darstellung des Aufbaus zur Herstellung faseroptischer Bragg-Gitter-Sensoren	20
2.9	Einfluss des Laserstrahlprofils auf das Reflexionsspektrum apodisier- ter FBG-Sensoren bei Verwendung einer Phasenmaske mit unzurei- chender Unterdrückung der nullten-Beugungsordnung	22
2.10	Einfluss des Faser-Maskenabstandes für diskrete Blendenweiten	23

2.11	Abhängigkeit der mechanischen Festigkeit der Glasfaser vom Entcoating- Verfahren	24
2.12	Maximale Zugkraft F_V von Klebstoffen für die Applikation von FBG- Dehnungssensoren bei statischer und dynamischer Belastung	25
2.13	Einfluss einer Temperaturänderung auf eine Faser-Bragg-Gitter-Messstel an einer ebenen Fläche	le 26
2.14	Verlauf des Längenausdehnungskoeffizienten verschiedener Werkstoffe in Abhängigkeit von der Temperatur ϑ bezogen auf $\vartheta_{20} = 20^{\circ}C$	27
2.15	Temperaturabhängigkeit der Braggwellenlänge λ_B für einen "freien" und einen applizierten FBG-Dehnungssensor unter der Voraussetzung $\Delta l/l_0 = 0$	27
3.1	Prinzipieller Aufbau eines verteilten FBG-Sensors aus n Einzelsensoren in Reihenschaltung	29
3.2	Reflexions spektrum eines verteilten FBG-Sensors aus 12 Einzelsensoren	30
3.3	Schematische Darstellung eines aperiodischen Bragg-Gitters mit be- liebiger Brechungsindexmodulation	32
3.4	Struktogramm zur Simulation des Reflexions- und Transmissionsspek- trums von Faser-Bragg-Gitter nach der Transfermatrix-Methode	36
3.5	Spektrale und interferometrische Auswertung von FBG-Sensoren	38
3.6	Aktive und passive Filterung zur Auswertung von FBG-Senosoren .	39
4.1	Applikationsalternativen für Faser-Bragg-Gitter-Dehnungssensoren; link Kastenbauweise, rechts: Stab- bzw. Fachwerkbauweise	s: 56
4.2	Ablaufdiagramm zum Auffinden einer Optimaltopologie für die online- Erfassung der statischen und dynamischen Belastungsgrößen	57
4.3	Zur Definition der Durchbiegung $w_y(z)$ einer einseitig eingespannten Biegezunge	58
4.4	Berechnete Verläufe der dynamischen Biegelinie $w_y(z)$ (oben) und der dynamischen Dehnungen $\epsilon(z)$ (unten) der ersten drei Eigenmoden einer einseitig eingespannten Biegezunge	59
4.5	Vergleich zwischen einer a) äquidistanten und b) nichtäquidistanten geometrischen Anordnung von fünf Dehnungssensoren für die Bela- stungsrekonstruktion an einer einseitig eingespannten Blattfeder	61
4.6	Experimenteller Aufbau zum Überprüfen der Stützstellenwahl für die Belastungsapproximation	63
4.7	Rekonstruktion der ersten drei Dehnungsmoden einer einseitig einge- spannten Blattfeder	64

4.8	Foto des Biege-Torsionsprüfstandes für die Belastungssimulation	66
4.9	Skizze des Vierkantarms mit der Position der Faser-Bragg-Gitter- Dehnungssensoren für die Biege- und Torsionsbelastungserfassung	67
4.10	Dehnungssignale der vier Einzelsensoren zur Erfassung der Biege- und Torsionsbelastung eines Vierkantstabs bei stoßförmiger Anregung; a) reine Biegebelastung; b) reine Torsionsbelastung	68
4.11	Einfluss der Biegebelastung auf die Dehnungssignale zur Erfassung der Torsionsbelastung bei einer kombinierten Biege- und Torsionsbe- lastung; a) Dehnungssensor S_3 bei $x = b/2$; b) Dehnungssensor S_1 bei $x = -b/2$	70
4.12	Einfluss der Torsionsbelastung auf die Dehnungssignale zur Erfassung der Biegebelastung bei einer kombinierten Biege- und Torsionsbela- stung; a) Dehnungssensor S_4 bei $y = h/2$; b) Dehnungssensor S_2 bei y = -h/2	71
4.13	Simulationsergebnisse des Dehnungsverlaufs und der Biegelinie der 1. Mode des Vierkanstabes; a) räumliche Darstellung; b) Seitenansicht .	73
4.14	Messergebnisse des Dehnungsverlaufs (oben) und der Biegelinie (un- ten), dargestellt durch Splineinterpolation	74
4.15	Simulationsergebnisse der ersten Biegemode des idealen Fachwerkarms; dargestellt ist die Verformung und die Dehnungsverteilung in Fehlfar- ben; a) räumliche Ansicht; b) Seitenansicht	76
4.16	Simulationsergebnisse der ersten Torsionsmode des idealen Fachwerkarms dargestellt ist die Verformung und die Dehnungsverteilung in Fehlfar- ben; a) räumliche Ansicht; b) Seitenansicht	s; 77
4.17	Schematischer Aufbau des Fachwerkarms mit der Position der Faser- Bragg-Gitter-Sensoren zur Erfassung der maximalen Verwölbung ei- nes Stabsegmentes	78
4.18	a) Betrag und b) Winkel α des Dehnungsvektors der FBG-Sensoren S_5 , S_6 und S_9 , S_{10} bei reiner Biegebelastung des Fachwerksarms	79
4.19	a) Betrag und b) Winkel α des Dehnungsvektors der FBG-Sensoren S_5 , S_6 und S_9 , S_{10} bei reiner Torsionsbelastung des Fachwerkarms	80
4.20	Ergebnisse der Fast-Fourier-Transformatin der Dehnungsmesswerte der Sensoren S_5 , S_6 und S_9 , S_{10} ; a) reine Biegebelastung; b) reine Torsionsbelastung des Fachwerkarms	81
4.21	Position der FBG-Dehnungssensoren zur Erfassung der Torsionsbela- stung des Fachwerkarm	83
4.22	Vergleich der Amplituden der Dehnungssensoren; a) S_0 und S_1 (oben); b) S_0 und S_5 bei reiner Torsionsbelastung des Fachwerkarms	84

5.1	Blockschaltbild des faseroptischen Gesamtsystems für die dynamische Dehnungsmessung	86
5.2	Beispiel für ein faseroptisches Bragg-Gitter-Sensornetzwerk	87
5.3	Problemelemente und Lösungen für die optische Signalverarbeitung, die optoelektronische bzw. elektrooptische Signalwandlung und die elektronische Auswertung	88
5.4	Prinzipieller Aufbau eines verteilten FBG-Sensornetzwerks mit pas- siver Signalerfassung	89
5.5	Signalvorverarbeitung für einen spektral kodierten Faser-Bragg-Gitter- Sensor aus vier Einzelsensoren	91
5.6	Reflexionsspektren eines apodisierten, aperiodischen Faser-Bragg-Gitter- Filters für verschiedene Apodisationsfunktionen $f_A(z)$	93
5.7	Simulationsergebnisse der Spektren; a) Superlumineszenzdiode (ELED); b) Verteilter FBG-Sensor; c) FBG-Filter 1; d) FBG-Filter 2	94
5.8	Ausgangssignale der separierten Sensorsignale nach der Bandpassfil- terung ohne Berücksichtigung der Zusatzdämpfungen; a) S_{FBG1} ; b) S_{FBG2} ; c) S_{FBG3} ; d) S_{FBG4}	95
5.9	Wellenlängensensor zur Erfassung der Schwerpunktverschiebung des FBG-Reflexionssignal; a) prinzipieller Aufbau; b) Prinzipieller Ver- lauf der spektralen Empfindlichkeit	96