Vorwort

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für mikroelektronische Schaltungen und Systeme in Duisburg.

Die Arbeit wäre sicherlich ohne freundschaftliche Unterstützung und fachliche Anregung von vielen Freunden und Kollegen am Fraunhofer-Institut nicht möglich. Danken in diesem Zusammenhang möchte ich insbesondere Matthias Hillebrand, Dr. Andreas Teuner, José Emilio Santos Conde, Uri Iurgel und Carsten Prokop, von denen die meisten auch an dem Korrekturlesen des Manuskripts beteiligt waren.

Mein ganz besonderer Dank gilt Prof. B. J. Hosticka, Ph. D. für die Anregung zu der sehr interessanten Themenstellung der Arbeit sowie für seine engagierte wissenschaftliche Betreuung des Promotionsvorhabens.

Herrn Prof. Dr.-Ing. Hans-Jörg Pfleiderer danke ich für die freundliche und sehr gewissenhafte Übernahme des Korreferates und für seine Unterstützung während des Promotionsverfahrens.

Außerdem bin ich meinen Eltern zum Dank verpflichtet, daß sie mir diesen Bildungsweg ermöglicht haben und mir stets zur Seite standen.

Meiner Frau Barbara danke ich für ihr Verständnis und die liebevolle Unterstützung, wodurch die Anfertigung dieser Arbeit erst ermöglicht wurde.

Inhaltsverzeichnis

1	Ein	leitung	1
	1.1	Motivation und wissenschaftliche Zielsetzung	1
	1.2	Gliederung der Arbeit	3
2	Kla	ssische Kamerasysteme für Hochgeschwindigkeitsaufnahmen	5
	2.1	Opto-Mechanische Systeme	5
	2.2	Elektro-Optische Systeme	8
	2.3	Systeme mit kurzer Szenenausleuchtung	11
	2.4	Zusammenfassung	12
3	3 Hochgeschwindigkeitskamerasysteme mit Halbleiter-Bildsensoren auf CC Basis		- 13
	3.1	Das Prinzip der CCD-Bildsensoren	14
	3.2	Hochgeschwindigkeitskamerasysteme mit Halbleiter-Bildsensoren auf C Basis 3.1 Das Prinzip der CCD-Bildsensoren	
		3.2.1 Frame-Transfer CCD-Sensoren	19
		3.2.2 Interline-Transfer CCD-Sensoren	24
		3.2.3 Frame-Interline-Transfer CCD-Sensoren	27
		3.2.4 Burst-Modus-CCD-Sensoren	28
	3.3	Zusammenfassung	29
4	Gru	undlagen der schnellen CMOS 2D-Bildsensorik	31
	4.1	Funktionalität und charakteristische Größen von CMOS-Bildsensoren \ldots .	32

		4.1.1	Übertragungscharakteristik	33
		4.1.2	Empfindlichkeit und Responsivität	34
		4.1.3	Rauschen	34
		4.1.4	Signal-Rausch-Verhältnis und Dynamikbereich	38
		4.1.5	Auflösung und Modulationsübertragungsfunktion MTF	39
		4.1.6	Blooming und Smearing	40
	4.2	Lichte	mpfindliche Bauelemente im CMOS-Prozeß	40
		4.2.1	Photodiode	41
		4.2.2	Photogate	44
		4.2.3	Vergleich Photodiode vs. Photogate	45
	4.3	CMOS	S-Bildelemente für kurze Belichtungszeiten	47
		4.3.1	Pixel mit elektronischem Shutter	48
		4.3.2	Pixel für synchrone Integration und Auslese	54
	4.4	Grund	lsätze der rauscharmen CMOS-Schaltungstechnik für 2D-Bildsensorik .	60
		4.4.1	Rauschmodell für MOS-Transistor	60
		4.4.2	Rauschmodell für den Operationsverstärker	62
		4.4.3	Korrelierte Doppelabtastung	63
	4.5	Zusam	nmenfassung	68
5	CM	OS-Bi	ldsensorlösungen für Hochgeschwindigkeitsbildaufnahmen	70
	5.1	Das so	chnelle CMOS-Sensorsystem mit externer Bildverbesserung	71
		5.1.1	Motivation	71
		5.1.2	Schaltungstechnische Realisierung	72
		5.1.3	Statische Übertragungsfunktion und "Matching"-Verhalten	73
		5.1.4	Rauschverhalten	76
		5.1.5	Sensorarchitektur	83
		5.1.6	Meßergebnisse und Chipdaten des 128 \times 128 Bildsensors $\ .$	84
		5.1.7	Systemkonzept für die Kamera mit reduzierter Auflösung	87

	5.2	Das sc	hnelle CMOS-Sensorsystem mit On-Chip Bildverbesserung	89
		5.2.1	Motivation	90
		5.2.2	Schaltungstechnische Realisierung	91
		5.2.3	Statische Übertragungsfunktion und "Matching"-Verhalten	95
		5.2.4	Rauschverhalten	99
		5.2.5	Sensorarchitektur	106
		5.2.6	Meßergebnisse und Chipdaten des 256 \times 256 Bildsensors	108
		5.2.7	Systemkonzept für die Kamera mit sehr hohen Datenmengen	112
	5.3	Zusam	menfassung	112
6	Anv	vendun	ngsmöglichkeiten von Hochgeschwindigkeits-CMOS-Bildsensore	en115
	6.1	Aufzei	chnung von schnell ablaufenden Ereignissen	115
	6.2	Masch	inelles Sehen	119
	6.3	1D- un	nd 2D-Abstandsmeßtechnik	121
		6.3.1	Aktive Triangulation	122
		6.3.2	Laufzeitbasierte Abstandmessung	125
	6.4	Überw	achung mit schnellen Kurzzeitbelichtungssensoren	136
	6.5	Zusam	menfassung	138
7	Zusa	ammer	nfassung und Ausblick	141
A	MO	S-Feld	effekt-Transistor	145
в	Abk	türzung	gen und Formelzeichen	149

Abbildungsverzeichnis

2.1	Prinzipieller Aufbau der Framing Kamera mit rotierendem Prisma	6
2.2	Prinzipieller Aufbau der Framing-Kamera mit rotierendem Spiegel	7
2.3	Prinzipieller Aufbau der nah-fokussierten Diodenröhre und zwei Elektronröh- ren mit Multikanalplatten ("intensifier tubes")	9
3.1	Prinzip des Ladungstransfers bei einem CCD-Sensor	15
3.2	Die verschiedenen CCD-Typen: FT-CCD, IL-CCD, FIT-CCD (von links nach rechts)	20
3.3	Der horizontale (links) und der vertikale (rechts) Antiblooming-Mechanismus beim FT-CCD-Sensor.	21
3.4	Reset- und Integrationszeit-Ansteuerung beim FT-CCD-Sensor	22
3.5	Der horizontale (links) und der vertikale (rechts) Antiblooming-Mechanismus beim IL-CCD-Sensor	25
3.6	Reset- und Integrationszeit-Ansteuerung beim IL-CCD-Sensor	27
4.1	Architektur eines CMOS-Bildsensors	32
4.2	Die Übertragungscharakteristik eines linearen CMOS-Bildsensors mit seinen Rauschanteilen	38
4.3	Schematischer Aufbau von Photodioden im Standard-CMOS-Prozeß: n^+ -Diffusion-p-Substratdiode (links) und n-Wanne-p-Substratdiode (rechts).	42
4.4	Kennlinie einer Photodiode	43
4.5	Rauschersatzschaltbild einer Photodiode	44
4.6	Aufbau eines Photogates	45

4.7	Gemessener Quantenwirkungsgrad zweier Photodioden und eines Photogates, realisiert in einem 2 μ m CMOS-Prozeß [74]. Die Einbrüche in den Kurven sind auf den Einfluß von durch die Oberflächenstrukturen parasitär gebildeten Interferenzfiltern zurückzuführen.	47
4.8	Pixelstruktur mit elektronischem Shutter für High-Speed Anwendungen	48
4.9	Zeitschema des Pixels für Standard- und S/H-Modus	50
4.10	Pixelstruktur mit einem zusätzlichen Schalter für eine synchrone Integration und Auslese (oben) und das dazu gehörige Zeitschema.	55
4.11	Pixelstruktur mit einem zusätzlichen Verstärker für eine synchrone Integra- tion und Auslese (oben) und dazu gehöriges Zeitschema (unten)	57
4.12	Zwei Pixelstrukturen für synchrone Integration und Auslese mit einem zu- sätzlich eingebauten Verstärker. Der Verstärker A1 sowie der Selekttransistor M4 sind hier nicht gezeigt.	59
4.13	Rauschersatzschaltbild des MOS-Transistors	61
4.14	Rauschersatzschaltbild des Operationsverstärkers	63
4.15	Prinzipschaltbild der Schaltung für korrelierte Doppelabtastung	64
4.16	Die Übertragungsfunktion der CDS-Schaltung aus Abbildung 4.15	65
5.1	Pixel mit synchronem elektronischen Shutter und Stromausleseschaltung	73
5.2	Das Rauschersatzschaltbild zur Stromauslese-Schaltung	76
5.3	Das vereinfachte Rauschersatzschaltbild zur Stromauslese-Schaltung	78
5.4	Architektur des CMOS-Bildsensors mit Stromausleseprinzip	83
5.5	Das Chipphoto des 128 \times 128 Pixel großen CMOS-Bildsensors	85
5.6	Die gemessene Übertragungscharakteristik des 128 \times 128 Bildsensors	85
5.7	Das gemessene örtliche Rauschen des 128×128 Bildsensors einer homogen hellen Szene (links) und einer homogen dunklen Szene (rechts)	86
5.8	Aufnahmen der CMOS-Kamera mit 128×128 Pixel bei Integrationszeiten von 50 μ s bzw. 100 μ s und einer Bildrate von 1030 Bilder/s	87
5.9	Das Blockschaltbild des entwickelten Kamerasystems mit einem 128×128 Pixel großen CMOS-Bildsensor für Hochgeschwindigkeitsanwendungen	89
5.10	Das Pixel mit elektronischem Shutter und Spannungsauslese und die S/H- Schaltung	92

5.11	Zeitschema der Steuersignale für die korrelierte Doppelabtastung (CDS), an- gewendet auf aller Pixel <i>i</i> -ter Zeile
5.12	Zeitschema der synchronen Auslese im versetzten Pipelinebetrieb 94
5.13	Schaltung zur Realisierung des CDS-Verfahrens mit den zugehörigen Rausch- einflüssen
5.14	Das Rauschsignalersatzschaltbild der Spannungsausleseschaltung mit CDS und seine Vereinfachung (unten)
5.15	Das Rauschsignalersatzschaltbild der Schaltung für die Signalauslese 101
5.16	Das Rauschsignalersatzschaltbild der Schaltung für die Resetauslese 102
5.17	Architektur eines schnellen CMOS-Bildsensors mit On-Chip Bildverbesserung. 107
5.18	Das Chipphoto des 256 × 256 Pixel großen CMOS-Bildsensors 109
5.19	Das Layout des eingesetzten Pixels im realisierten CMOS-Bildsensor 109
5.20	Die gemessene Übertragungscharakteristik des 256 \times 256 Bildsensors 111
5.21	Aufnahmen der CMOS-Kamera mit 256 × 256 Pixeln bei Integrationszeiten von 50 μ s bzw. 100 μ s respektive und einer Bildrate von 1040 Bilder/s 112
6.1	Sequenz eines in Wasser fallenden Objektes aufgenommen mit dem 128 \times 128 Pixel CMOS-Bildsensor bei einer Integrationszeit von 100 μ s und einer Bildrate von 1030 Bilder/s
6.2	Sequenz von aufeinanderfolgenden Bildern eines platzenden Ballons aufge- nommen mit dem 128×128 Pixel CMOS-Bildsensor bei einer Integrationszeit von 100 μ s und einer Bildrate von 1030 Bilder/s
6.3	Aufgenommene Sequenz des mit Wasser gefüllten platzenden Ballons, bei dem jedes zweite Bild innerhalb der Sequenz ausgeblendet ist. Die Aufnahme ist mit dem 256×256 Pixel CMOS-Bildsensor bei Integrationszeiten von $100 \mu s$ und einer Bildrate von 1040 Bilder/s durchgeführt worden
6.4	Sequenz von aufeinanderfolgenden Bildern eines platzenden Ballons aufge- nommen mit dem 256 × 256 Pixel CMOS-Bildsensor bei Integrationszeiten von 100 μ s und einer Bildrate von 1040 Bilder/s
6.5	Testbilder, die mit dem entwickelten 128×128 Pixel CMOS-Bildsensor bei einer Bildrate von 100 Hz und 9 ms Integrationszeit (links) und mit dem entwickelten 256×256 Pixel CMOS-Bildsensor bei einer Bildrate von 200 Hz und 4 ms Integrationszeit (rechts) aufgenommen wurden

6.6	Geometrische Darstellung des Triangulationsverfahrens
6.7	Die mit dem 128 × 128 CMOS-Bildsensor (als Lichtschnittsensor) aufgenom- menen Bilder des Beifahrersitzes in einem Kfz mit einer Person in verschie- denen Positionen und die dazu gehörige ermittelte Information über den Ab- stand von dem Sensor
6.8	CCD-Pixelstruktur für die Laufzeitmessung nach [112]
6.9	Struktur des CCD-Pixels für die Laufzeitmessung aus [112] mit dem zugehö- rigen Messprinzip
6.10	Pixelstruktur eines CMOS-Bildsensors für die Laufzeitmessung aus [116] 130
6.11	Das Zeitdiagramm einer der beiden Messungen für die mit 128×128 Pixel CMOS-Sensor realisierte direkte Laufzeitabstandsmessung
6.12	Der mit dem Laufzeitverfahren gemessene Abstand vs. tatsächlichem Abstand.133
6.13	Die Pixelstruktur eines CMOS-Bildsensors für die Laufzeitmessung mit On- Chip analoger Mittelung
6.14	Vordergrundextraktion des relevanten Bereiches einer Bildsequenz, die mit einer gewöhnlichen CCD-Kamera aufgenommen wurde. a) zeitrekursive Fil- termethode [117], b) Kalman-Filtermethode [119], c) adaptiv-zeitrekursive Filtermethode [118] d) Originalbild. Die Verwendung der Kamera mit dem schnellen CMOS-Bildsensor mit aktiver Beleuchtung gewährleistet die Er- mittlung der verfälschungsfreien Vordergrundinformation (wie in c)), unab- hängig von dem verwendeten Algorithmus
A.1	Schematischer Aufbau eines MOS-Transistors
A.2	Kleinsignalersatzschaltbild eines MOS-Transistors

Tabellenverzeichnis

4.1	Vergleich der Pixelstrukturen für die Hochgeschwindigkeitsanwendungen	69
5.1	Technische Daten des 128×128 CMOS-Bildsensors für Hochgeschwindigkeits- anwendungen	86
5.2	Technische Daten des 256×256 CMOS-Bildsensors für Hochgeschwindigkeits- anwendungen.	111
A.1	Kleinsignalparameter des MOS-Transistors in der starken Inversion	148