11 Experimentelle Aspekte der NMR-Messungen

Die NMR-Messungen an den Dispersionen und am Standard-PBCA wurden an einem ASX-400 Spektrometer der Firma Bruker durchgeführt. Die ¹H-Frequenz dieses Spektrometers beträgt 400 MHz, die ¹³C-Frequenz 100.61 MHz. Es wurde ein HP-Breitband-MAS-Probenkopf der Firma Bruker mit 10 mm ZrO₂-MAS-Rotoren und Kel-F-Käppchen verwendet. Für die Experimente unter MAS-Bedingungen wurde eine Rotationsfrequenz von 3 kHz gewählt. Der Antrieb der Rotoren erfolgte über Pressluft. Adamantan diente zur Justierung der Hartmann-Hahn-Bedingung und als externe Spektrenreferenzierung (38.56 ppm für die Methylenresonanz relativ zu TMS). Der magische Winkel wurde mit KBr ermittelt. Für alle DE- und CP-Experimente wurde ein 90°-Puls für die ¹H- und ¹³C-Kerne von 7 µs verwendet. Die Kreuzpolarisationszeit betrug, falls nicht anders angegeben, 1 ms für die Untersuchung des PBCAs und 7 ms für die Untersuchung der Öl- und Tensid-Komponenten. Es wurde ein Recycle-Delay von 4 s gewählt. Die Aufnahme des ¹³C-Signals wurde immer unter Hochleistungsentkopplung mit einer ¹H-Entkoppelfrequenz von 35.7 kHz durchgeführt. Für alle Relaxationszeit- und T_{CP}-Messungen, die die Spektrenaufnahme bei unterschiedlichen Delay-Zeiten erfordern wurde die Methode der Block-Akquisition eingesetzt, um mögliche experimentelle Fehler, wie Magnetfeldschwankungen oder Schwankungen der MAS-Rotorfrequenz auszumitteln. Die T_{1H}-Zeiten der Öl- und Tensid-Komponenten in der Nanokapsel-Dispersion wurden nach der in der Abbildung 3.18 (Unterkapitel 3.5.3) dargestellten Pulsfolge ermittelt. Die Bestimmung der T_{IH}-Zeiten des Standard-PBCAs erfolgte nach dem Pulsschema in der Abbildung 3.19 (Unterkapitel 3.5.3). Für beide Untersuchungen kamen folgende to-Zeitfenster zum Einsatz:

${f T_{1H}}$	DE-T _{1H}	CP-T _{1H}
	t_{D}	t_{D}
Öl- und Tensid-Komponente	0.1 s - 6 s	
Standard-PBCA		1 ms - 2 s

Die Bestimmung der CP- $T_{1\rho H}$ - und DE- $T_{1\rho H}$ -Zeiten wurden mit den Pulsfolgen aus der Abbildung 3.17 (Unterkapitel 3.5.2) durchgeführt. Dabei wurden folgende Spin-Lock-Zeiten t_{SL} gewählt:

T_{1rH}	DE-T _{1pH}	CP-T _{1pH}
	$ m t_{SL}$	t_{SL}
Standard-PBCA		$2 \mu s - 10 ms$
PBCA der Nanokapselwand		$10 \mu s$ - $4 ms$
Öl- und Tensid-Komponente	20 μs - 80ms	40 μs - 27 ms

Die Untersuchung der Kreuzpolarisationskonstanten T_{CP} für die 13 C-Kerne im Standard-PBCA und im PBCA der Nanokapselwand wurde mit der in der Abbildung 3.15 (Unterkapitel 3.5.1) dargestellten Pulsfolge ermittelt. Dabei wurde die variable Kontaktzeit t_{CP} in den folgenden Grenzen gewählt:

T_{CP}	t_{CP}
Standard-PBCA	10 μs - 7 ms
PBCA der Nanokapselwand	100 μs - 2ms