Index

F-Test, 39f. , 157f.	gewicht, 85
Faktorbestimmung, 39f.	Informationsgehalt, 105
Probenvarianz, 39	$prim \ddot{a}rer \sim, 36$
	$_{ m sekund\ddot{a}re}\sim,36$
Abbruchkriterium, siehe Stopfunktion	Selektion, 85
Achsenabschnitt, 25f.	Fitnessfunktion, 48
Analysenverfahren	Full-Cross-Validation, 32
multivariate \sim , 11	,
univariate \sim , 11f.	GA, siehe Genetischer Algorithmus
Auswahlverfahren, siehe Selektion	Generalized Cross-Validation, 32
Automatisierung, 137	Genetischer Algorithmus, 3, 13, 43ff.
Basislinieneffekte, 68	Deme, 128
	Diffusions–Modell, 128
Chromosom, 3, 45, 131	Fitnessfunktion, 104ff.
Ähnlichkeit von ∼en, 132	Hybridisierung, 127
Classical Least Squares, 13	Initialisierung, 129
Coefficient-Weighting-Spektrum, siehe	Konvergenz, 55 , 118ff. , 133
Property-Weighting-Spektrum	Verhalten, 55, 119
r roperty-weighting-spektrum	Lösungsraum, 5, 38
Datenreduktion, 26ff.	Migrations–Modell, 128, 130ff.
Dichtefunktion, 57	Nebeneffekte, 129
Lebesque-Dichten, 58	Paralleler, 128ff.
Dominanz, 129	Robustheit, 56 , 124ff. , 133
Durbin-Watson-Test, 105f.	Gesamtvarianz, 17
Autoregression, 105	
Linearität, 105	Hammingdistanz, 132
,	Hybridisierung, 85
Eigenspektrum, siehe Faktor	T.1. (1.11)
Eigenvektor, 22, 61	Identitätsmatrix, 15
-matrix, 20	Indikator–Funktion, 36
Eigenwertzerlegung, 18f.	Initialisierung, siehe Genetischer Algo-
Empfindlichkeit, 56, 63, siehe Net Analy-	rithmus
te Signal	Interaktion, 129, 132ff.
-	∼skriterium, 133
Faktor, 2, 20 , 61	\sim smodul, 133 , 134
-auswahl, 35ff .	\sim spartner, 133
-gewicht, $20, 26$	${\bf Intercept}, \ siehe \ {\bf Achsen abschnitt}$

Invader, 54	Partial Least Squares, 2, 13
Inverse Least Squares, 13	PCA, siehe Principal Component Analy-
- · ·	$\sin sis$
K-Matrix Methode, siehe Classical Least	PCR, siehe Principal Component Regres-
Squares	sion
Kalibration	PLS, siehe Partial Least Squares
Datensatz, 73	Population, 3, 46
pseudo-univariate, 61	- · · · · · · · · · · · · · · · · · · ·
robuste, 28	heterogene, 45
Kalibrationsmethode	konvergente, 46
inverse \sim n, 61	Start-, 129
Kodierung, 47	Pretreatment
Konvergenz, 133, siehe Genetischer Algo-	Meancentering, 60
	Offset-Korrektur, 60
rithmus	Principal Component Analysis, 22, 106
Korrelation, 85	Principal Component Regression, 2, 13,
-skoeffizient, 85	14ff.
-svektor, 85	Property-Weighting-Spektrum, 61
Kovarianzmatrix, 15	F
Lambart Baseshas Casatz 11	Quality-Values, 56ff.
Lambert–Beersches Gesetz, 11	
inverses \sim , 12	Ranking
Last Improved Generation, 134	Eigenwert, 80
Least–Squares–Verfahren, 22ff.	Korrelation, 85
Loadings, siehe Faktorgewichte	Real-Error-Funktion, 36
Lorentzprofil, 67	Regression
N.T	_
Matrix	~svektor, 22ff.
orthogonale~, 15	Reproduktion, 45
Mittelwertspektrum, 26	Reproduktions-Technik
MLR, siehe Multiple lineare Regression	Steady State Without Duplicates,
Modell	133
Invarianz, 13	Restvarianzwert, 30
Mutation, 45, 53f.	RMSEP, siehe Standard Error
	RSS, siehe Restvarianzwert
NAS, siehe Net Analyte Signal	
Net Analyte Signal, 60ff.	Scores, siehe Eigenvektoren
O 40 FOG	SEE, siehe Standard Error
Operator, 48, 52ff .	Selektion, 3
Crossover, 133	Roulette Wheel Parent Selection.
Invader, 48	48ff. , 133
Mutation, 3, 48	Selektionsfaktor, 45
Rekombination, 3	Selektionsverfahren
Uniform-Crossover, 48	
Overfitting, 27ff .	deterministische, 37ff.
	stochastiche, 117
P-Matrix Methode, siehe Inverse Least	SEP(est), siehe Standard Error
Squares	Signal-Rausch Verhältnis, 39

```
Singulärvektor, 15
Singulärwertzerlegung, 14ff.
Spektrenbibliothek, 139
Spektrenvorbehandlung, siehe Pretreat-
        ment
Spektrochemometrie, 11ff.
Standardabweichung, 58
    F-Test, 56
    Varianz, 57ff.
Standard Error
    of Estimate and Prediction, 133
    of Analysis, 33
    of Estimate, 31
    of Prediction, 32
    of Prediction Estimate, 31
Stopfunktion, 122ff.
Techniken, 48ff.
    Generational Replacement, 50
    Roulette Wheel Parent Selection,
        48ff.
    Steady State Reproduction Techni-
        que, 50ff.
Underfitting, 27ff.
Uniform-Crossover, 52f.
Validierung
    Kalibrationsmodelle, 30ff.
Varianz, 122
Varianz-Kriterium, 59
Vektor
    orthogonaler\sim, 15
    orthonormaler\sim, 15
Vollspektrenmethode, 14
Wellenlängenselektion, 14
Wichtungskoeffizienten, siehe Faktorge-
        wichte
```