Machine Learning-Based Predictive Maintenance for Photovoltaic Systems
The performance of photovoltaic systems is highly dependent on environmental conditions, with soiling due to dust accumulation often being referred to as a predominant energy degradation factor, especially in dry and semi-arid environments. This paper introduces an AI-based robotic cleaning system that can independently forecast and schedule cleaning sessions from real-time sensor and environmental data. Methods: The system integrates sources of data like embedded sensors, weather stations, and DustIQ data to create an integrated dataset for predictive modeling. Machine learning models were employed to forecast soiling loss based on significant atmospheric parameters such as relative humidity, air pressure, ambient temperature, and wind speed. Dimensionality reduction through the principal component analysis and correlation-based feature selection enhanced the model performance as well as the interpretability. A comparative study of four conventional machine learning models, including logistic regression, k-nearest neighbors, decision tree, and support vector machine, was conducted to determine the most appropriate approach to classifying cleaning needs. Results: Performance, based on accuracy, precision, recall, and F1-score, demonstrated that logistic regression and SVM provided optimal classification performance with accuracy levels over 92%, and F1-scores over 0.90, demonstrating outstanding balance between recall and precision. The KNN and decision tree models, while slightly poorer in terms of accuracy (around 85–88%), had computational efficiency benefits, making them suitable for utilization in resource-constrained applications. Conclusions: The proposed system employs a dry-cleaning mechanism that requires no water, making it highly suitable for arid regions. It reduces unnecessary cleaning operations by approximately 30%, leading to decreased mechanical wear and lower maintenance costs. Additionally, by minimizing delays in necessary cleaning, the system can improve annual energy yield by 3–5% under high-soiling conditions. Overall, the intelligent cleaning schedule minimizes manual intervention, enhances sustainability, reduces operating costs, and improves system performance in challenging environments.
Preview
Cite
Rights
Use and reproduction:
This work may be used under a
Creative Commons Attribution 4.0 License (CC BY 4.0)
.