The effect of feature normalization methods in radiomics
Objectives: In radiomics, different feature normalization methods, such as z-Score or Min–Max, are currently utilized, but their specific impact on the model is unclear. We aimed to measure their effect on the predictive performance and the feature selection.
Methods: We employed fifteen publicly available radiomics datasets to compare seven normalization methods. Using four feature selection and classifier methods, we used cross-validation to measure the area under the curve (AUC) of the resulting models, the agreement of selected features, and the model calibration. In addition, we assessed whether normalization before cross-validation introduces bias.
Results: On average, the difference between the normalization methods was relatively small, with a gain of at most + 0.012 in AUC when comparing the z-Score (mean AUC: 0.707 ± 0.102) to no normalization (mean AUC: 0.719 ± 0.107). However, on some datasets, the difference reached + 0.051. The z-Score performed best, while the tanh transformation showed the worst performance and even decreased the overall predictive performance. While quantile transformation performed, on average, slightly worse than the z-Score, it outperformed all other methods on one out of three datasets. The agreement between the features selected by different normalization methods was only mild, reaching at most 62%. Applying the normalization before cross-validation did not introduce significant bias.
Conclusion: The choice of the feature normalization method influenced the predictive performance but depended strongly on the dataset. It strongly impacted the set of selected features.
Preview
Cite
Rights
Use and reproduction:
This work may be used under a
.