Compatible Solutes and novel Biocatalysts in (hyper)thermophilic Archaea: From Identification and Physiological Significance to Application in Biotechnology
The accumulation of compatible solutes is a prerequisite for the adaptation of microorganisms to respond to various stressors or to survive in extreme environments. The protection mechanisms of compatible solutes on biological macromolecules are still a relevant research field and is far from being thoroughly elucidated. The disaccharide trehalose is one of the most widespread compatible solutes in nature. The respective biosynthetic pathways and involved enzymes were analyzed in a large number of microorganisms. However, often the regulatory mechanisms and physiological functions are unknown so far. Although the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius belongs to the best-studied archaeal species up to date, only less is known about trehalose biosynthesis and its role in this organism. In chapter 3.1, a comprehensive study on the trehalose metabolism in S. acidocaldarius was performed. Therefore, gene deletion mutants, growth studies, bioinformatics, and transcriptional analysis via qRT-PCR were accomplished. Results obtained from single and double gene deletion strains of already reported or predicted trehalose biosynthesis routes (ΔtreY or ΔtreT and ΔtreY/ΔtreT) still demonstrated trehalose formation and thus indicated a further trehalose biosynthesis pathway. Comprehensive bioinformatics revealed a novel TPS/TPP biosynthesis route for trehalose. The novel enzymes show no similarity to classical counterparts, the pathway comprising a TPS (trehalose-6P-synthase) of the GT4 enzyme family as well as a predicted TPP (trehalose-6P-phosphatase) of the HAD (haloacid dehalogenase) enzyme family. Furthermore, the physiological function of trehalose in salt stress response was confirmed. Accordingly, salt stressed wild type cells (250 mM NaCl) showed a 12-fold increased trehalose accumulation. In contrast, upon cold and heat shock (65°C and 83°C), no effect on trehalose biosynthesis was observed. The induction of trehalose synthesis pathways was confirmed on transcriptional level via qRT-PCR, and pathway activities in crude extracts of salt stressed cells. In conclusion, the results obtained in this study unraveled the complexity of the trehalose metabolism in S. acidocaldarius and demonstrate a function of trehalose as compatible solute upon salt stress. However, there is a growing interest in the utilization of compatible solutes for biotechnological and industrial purposes. The transfer of the protecting properties on biomolecules is a favorable approach in medical, cosmetics, and pharmaceutical research. Especially “extremolytes”, compatible solutes from extremophilic microorganisms, offer great potential for versatile applications. The diversity of extremolytes has increased since more (hyper)thermophilic Archaea have been investigated. However, in most cases, the biotechnological potential remains unused so far.
In chapter 3.2, the in vitro production of the extremolyte cyclic-2,3-diphosphoglycerate (cDPG) was extensively studied. Although cDPG with its known protective properties has a high potential for industrial applications and the synthesis pathway is known, no effective production procedure has been developed so far. This is due to the low cell yield and challenging cultivation conditions for methanogens under strict anaerobiosis and very high temperature hampering a whole-cell in vivo approach. Therefore, for the first time an easy biocatalytic in vitro one-step process with a straightforward expression and purification protocol using the codon-optimized cDPGS from Methanothermus fervidus was developed. The expression yield of recombinant cDPGS was significantly improved and the enzyme could be sufficiently stabilized for use and storage, finally, the complete substrate to product conversion was achieved. These findings will now enable the development of the larger scale enzymatic production of cDPG for application.
Besides the biotechnological relevance of extremolytes, likewise extremophiles itself as well as their enzymes are beneficial for biotransformations under hostile conditions. Especially the conversion of lignocellulosic biomass and polymeric substrates is of high industrial demand.
In chapter 3.3, a multi-layered approach was used to identify novel organisms and enzymes from extreme environments, that are capable of polymer degradation. Therefore, an in situ enrichment strategy, genomics, and comparative genomics, as well as cloning, expression, and biochemical characterization of novel enzymes were applied. Thus, a new xylan degrading hyperthermophilic euryarchaeon has been isolated, Thermococcus sp. strain 2319x1. Within the genome, a novel type of glycosidase, with a unique five-domain structure was identified. The multi domain glycosidase (MDG) is assembled of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) (GH5-12-12-CBM2-2 N-to C-terminal direction), which has not been reported for any other archaeal enzyme so far. The full-length protein, as well as several truncated versions, were analyzed in detail. The MDG as well as several truncated versions were analyzed in detail. The MDG was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β-1,3/1,4-glucoside) followed by that for CMC (β-1,4-glucoside), cello oligosaccharides, and galactomannan. The obtained results indicate that the modular MDG structure, with multiple GH- and CBM- domains not only extends the substrate spectrum but also seems to allow the degradation of partially soluble and insoluble polymers in a processive manner. The MDG and its truncated versions provides an innovative source for polymer degradation in industrial processes.
In Kapitel 3.2 wurde die in vitro Produktion des Extremolyt cDPG (cyclisches 2,3-Diphosphoglycerat) eingehend untersucht. Obwohl der Syntheseweg und die schützenden Eigenschaften von cDPG bereits untersucht wurden und es damit ein hohes Potenzial für industrielle Anwendungen besitzt, konnte weder ein effizienter Produktionsstamm oder Prozess etabliert werden. Dies ist auf die geringe Zellausbeute und die schwierigen Kultivierungsbedingungen von Methanogenen unter Ausschluss von Sauerstoff und extrem hohen Temperaturen zurückzuführen, die eine in vivo Ganzzellbiotransformation erheblich behindern und zu niedrigen Produktausbeuten führen. Im Rahmen dieser Arbeit wurde zum ersten Mal ein vielversprechendes in vitro Verfahren mit Hilfe eines einzigen Katalyse Schritts durchgeführt. Für dieses Verfahren wurde ein optimiertes Expressions- und Reinigungsprotokoll unter Verwendung der codon-optimierten cDPGS aus Methanothermus fervidus entwickelt. Dadurch konnte die Ausbeute der rekombinantem cDPGS signifikant verbessert werden, das Enzym konnte für die Anwendung und Lagerung ausreichend stabilisiert werden und schließlich konnte die vollständige Umwandlung vom Substrat in Produkt erreicht werden. Diese Ergebnisse bilden die Grundlage zur Entwicklung der enzymatischen Produktion von cDPG in größerem Maßstab, um die Anwendung zu ermöglichen. Neben der biotechnologischen Relevanz von Extremolyten bieten auch extremophile Mikroorganismen und ihre besonders stabilen Enzyme eine vorteilhafte Quelle für Biotransformation unter industriellen Bedingungen. Insbesondere die Umwandlung von lignocellulose-haltiger Biomasse und anderen polymeren Substraten ist von erheblicher Bedeutung.
In Kapitel 3.3 wurde ein mehrschichtiger Ansatz verwendet, um neuartige Organismen und Enzyme aus extremen Umgebungen zu identifizieren, die zum Polymerabbau fähig sind. Dazu wurden eine In-situ-Anreicherungsstrategie, Genomik und vergleichende Genomik, sowie die Klonierung, Expression und biochemische Charakterisierung neuartiger Enzyme durchgeführt. Mit Hilfe dieser Strategie wurde ein neues Xylan abbauendes hyperthermophiles Euryarchaeon isoliert, Thermococcus sp. Stamm 2319x1. Innerhalb des Genoms wurde eine neuartige Glycosidase mit einer einzigartigen Fünf-Domänen-Struktur identifiziert. Diese Multidomänen-Glycosidase (MDG) besteht aus drei Glycosidhydrolase (GH) -Domänen und zwei Kohlenhydratbindungsmodulen (CBM) (GH5-12-12-CBM2-2 N-zu-C-terminus). Das Protein voller Länge, sowie mehrere verkürzte Versionen wurden detailliert analysiert. Die MDG ist in der Lage verschiedene Polysaccharide zu hydrolysieren, die höchsten Aktivität wurden für Gersten-β-Glucan (β-1,3/1,4-Glucosid) und CMC (β-1,4-Glucosid) gemessen, gefolgt von Cellooligosacchariden und Galactomannan. Die Ergebnisse zeigen, dass diemodulare MDG-Struktur mit mehreren GH- und CBM-Domänen nicht nur das Substratspektrum erweitert, sondern auch den prozessiven Abbau von teilweise löslichen und unlöslichen Polymeren ermöglicht. Die MDG inklusive der verkürzten Versionen bietet eine innovative Quelle für den Polymerabbau in industriellen Prozessen.