Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium : Identification of the responsible medium components

Background: In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology.


Results: Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca²⁺ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca²⁺ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells.


Conclusion: These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber:

© 2012 Pless-Petig et al.

Nutzung und Vervielfältigung:
Dieses Werk kann unter einer
CC BY 2.0 LogoCreative Commons Namensnennung 2.0 Lizenz (CC BY 2.0)
genutzt werden.