DuEPublico 2

Dies ist unser neues Repositorium, derzeit für E-Dissertationen und ausgewählte weitere Publikationen. Weitere Informationen...

Approach for Improved Signal-Based Fault Diagnosis of Hot Rolling Mills

Rother, Astrid

Der hier vorgestellte Ansatz ist in der Lage, zwei spezifische schwere Fehler zu erkennen, sie zu identifizieren, zwischen vier verschiedenen Systemzuständen zu unterscheiden und eine Prognose bezüglich des Systemverhaltens zu geben. Die vorliegende Arbeit untersucht die Zustandsüberwachung des komplexen Herstellungsprozesses eines Warmbandwalzwerks. Eine signalbasierte Fehlerdiagnose und ein Fehlerprognoseansatz für den Bandlauf werden entwickelt. Eine Literaturübersicht gibt einen Überblick über die bisherige Forschung zu verwandten Themen. Es wird gezeigt, dass die große Anzahl vorheriger Arbeiten diese Thematik nicht gelöst hat und dass weitere Untersuchungen erforderlich sind, um eine zufriedenstellende Lösung der behandelten Probleme zu erhalten. Die Entwicklung einer neuen Signalverarbeitungskette und die Signalverarbeitungsschritte sind detailliert dargestellt. Die Klassifikationsaufgabe wird in Fehlerdiagnose, Fehleridentifikation und Fehlerprognose differenziert. Der vorgeschlagene Ansatz kombiniert fünf verschiedene Methoden zur Merkmalsextraktion, nämlich Short-Time Fourier Transformation, kontinuierliche Wavelet Transformation, diskrete Wavelet Transformation, Wigner-Ville Distribution und Empirical Mode Decomposition, mit zwei verschiedenen Klassifikationsalgorithmen, nämlich Support-Vektor Maschine und eine Variation der Kreuzkorrelation, wobei letztere in dieser Arbeit entwickelt wurde. Kombinationen dieser Merkmalsextraktion und Klassifikationsverfahren werden an Walzkraft-Daten aus einer Warmbreitbandstraße angewendet.

The approach introduced here is able to detect two specific severe faults, to identify them, to distinguish between four different system states, and to give a prognosis on the system behavior. The presented work investigates the condition monitoring of the complex production process of a hot strip rolling mill. A signal-based fault diagnosis and fault prognosis approach for strip travel is developed. A literature review gives an overview about previous research on related topics. It is shown that the great amount of previous work does not cope with the problems treated in this work and that further investigation is necessary to provide a satisfactory solution. The design of a new signal processing chain is presented and the signal processing steps are detailed. The classification task is differentiated into fault detection, fault identification and fault prognosis. The proposed approach combines five different methods for feature extraction, namely short time Fourier transform, continuous wavelet transform, discrete wavelet transform, Wigner-Ville distribution, and empirical mode decomposition, with two different classification algorithms, namely support vector machine and a variation of cross-correlation, the latter developed in this work. Combinations of these feature extraction and classification methods are applied to rolling force data originating from a hot strip mill.

Share and cite

Citation style:

Rother, Astrid: Approach for Improved Signal-Based Fault Diagnosis of Hot Rolling Mills. 2016.

Rights

Use and reproduction:
All rights reserved

Export