PT Unknown AU Schwager, A TI Powerline Communications: Significant Technologies to become Ready for Integration PD 05 PY 2010 LA en DE Powerline Communication; PLC; PLT; BPL; EMC; EMI; Radio Broadcast; Interferrence; Coexistence; MIMO; Multiple Input Multiple Output; EMC Coordination; OFDM AB In-house PLT (Powerline Telecommunication) enables new and highly convenient networking functions without the need for additional cables on mains-powered devices. Since wireless networks are not able to reach sufficient throughput between different rooms or even floors, PLC is considered to be the ideal backbone home network medium, providing complementary and seamless interaction with wireless networks. The need to communicate information is not new. The historical overview of this thesis compares the development of PLT to radio broadcast technologies. The consumer expects technologies to operate without interferences. Today, there are coexistence problems between these two technologies. Why does this happens, and how the problems can be resolved are the main issues of this thesis. Initial calculations of the channel capacity provide encouraging results for using the mains cabling as a communication medium. Chapter 3 forecasts how PLT modems could develop in the future. The usage of frequencies above 30 MHz will increase the throughput rate. Next, the utilization of the 3rd wire (the protective earth) for communication enhances the coverage and the reliability of powerline transmissions. The reception of common mode signals and the usage of MIMO technologies enable 8 transmission paths between one pair of outlets, which improves the performance of the bad, strongly attenuated channels. Today, the main challenge for the mass deployment of PLT is the lack of harmonized international standards on interoperability and electromagnetic interference. The absence of a standard results in the undesirable situation of PLT modems interfering with technologies from different vendors and also with radio applications. Solutions for solving these problems are given in chapter 4 and chapter 5. The approach of ‘Smart Notching’ - monitoring the existence of receivable radio broadcast stations at the time and location where a PLT modem is operating, received wide resonance in the PLT and radio broadcast communities. ‘Smart Notching’, also called ‘Dynamic Notching’ or ‘Adaptive Notching’ is considered to be the key factor in solving the endless discussions about the interferences to HF radio broadcast. Details on the creation of ETSI TS 102 578 and the implementation of a demonstrator system is documented in chapter 5. Field tests conducted together with the EBU verified the efficiency of the concept. The jointly executed tests by representatives from the radio broadcast and the PLT communities became a historical event which brought the two technologies, radio receivers and PLT modems, back into one house. Finally, a vision of the future coordination of EMC and conclusions are presented. ER